轴对称图形(3)
- 格式:pdf
- 大小:7.93 MB
- 文档页数:23
第3节简单的轴对称图形(三)教学目标:知识与技能:1.经历探索角的轴对称性的过程,进一步体验轴对称的特征.2.探索并了解角的轴对称性及相关性质.3.会用尺规作角的平分线.过程与方法:1.通过独立思考,小组合作探究,主动展示,经历角的平分线性质的形成与初步应用过程,从而增强应用数学知识的意识与解决实际问题的能力.2.通过观察、折叠等活动,发展空间观念,培养有条理的思考和规范的数学语言.情感态度与价值观:1.通过活动体验学数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神.2.培养学生自主学习、主动参与、主动交流合作的意识和能力,在小组合作交流活动中互相激发灵感,取长补短,培养学生团结合作的学习精神.教学重难点:【重点】掌握角平分线的性质,会用尺规作已知角的平分线.【难点】角平分线的性质的应用.教学准备:【教师准备】课件、基本作图工具.【学生准备】笔记本、基本作图工具等.教学过程:导入:前面我们学习了基本图形“线段”是轴对称图形,那么,我们之前学过的另一个基本图形“角”是不是轴对称图形?如果是,对称轴是怎样的直线?【活动内容】不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?对折,再打开纸片,看看折痕与这个角有何关系?[处理方式]学生实验:通过折纸的方法作角的平分线;教师与学生一起动手操作,展示学生作品.通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间.通过探究,学习新知:角是轴对称图形,角平分线所在的直线是它的对称轴.新课教学:探究活动1角平分线的性质【活动内容】(多媒体出示)请同学们按要求继续前面的折纸活动,并与同伴交流.折纸要求:1.在折痕(即∠AOB的角平分线)上任意找一点C;2.过点C折OA边的垂线,得到新的折痕CD,点D是折痕与OA边的交点,即垂足;3.过点C折OB边的垂线,得到新的折痕CE,点E是折痕与OB边的交点,即垂足;4.将∠AOB再次对折.【问题】在上述的操作过程中,折痕CD与CE能重合吗?改变点C的位置,CD与CE还相等吗?你能解释其中的道理吗?小组交流展示成果.(教师动画展示)已知:如图∠AOC=∠BOC,CD⊥OA,垂足为D,CE⊥OB,垂足为E,CD与CE相等吗?试说明理由.解:因为CD⊥OA,CE⊥OB,所以∠CDO=∠CEO=90°.在△CDO和△CEO中,∠CDO=∠CEO,∠COD=∠COE,OC=OC,所以△CDO≌△CEO.所以CD=CE.(教师板书)结论:角平分线上的点到这个角的两边的距离相等.符号语言:因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.[处理方式]学生动手折叠,教师在多媒体上演示折叠过程.学生分组讨论、交流,并用文字语言阐述得到的性质.教师要给学生充分思考的时间和空间.教师通过几何画板演示,让学生形象感受角平分线的性质.【即时训练】判断下列说法是否正确.如图所示.1.因为OC平分∠BOA,所以CD=CE.()2.因为CD⊥OA,CE⊥OB,所以CD=CE.()3.因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.()注意事项:角平分线性质中的距离,对应的必须是垂线段,不能认为是任意线段.探究活动2尺规作角的平分线对这种可以折叠的角可以用折叠方法得到角平分线,对不能折叠的角怎样得到其角平分线呢?下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:(1)在∠AOB的两边OA和OB上分别截取OD,OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交于点C.(2)分别以D,E为圆心,以大于12(3)作射线OC.则OC是∠AOB的平分线.你能说明这样作的道理吗?想一想:在作图的过程中有哪些相等的线段?学生交流后得到:OD=OE,CD=CE.△COD和△COE全等吗?全等的依据是什么?[处理方式]教师口述作法步骤,学生根据教师的口述完成作图过程.不要求学生写作法,教师可以引导学生分析在作图的过程中哪些线段相等,学生可以通过交流讨论明确这样作的道理.[知识拓展]“角平分线上的点到这个角的两边的距离相等”这句话逆过来说“到这个角的两边的距离相等的点在这个角的平分线上”也是正确的.课堂总结:1.角的轴对称性:角是轴对称图形,角平分线所在的直线是它的对称轴.2.角平分线的性质:角平分线上的点到这个角的两边的距离相等.3.尺规作角平分线.检测反馈:1.如图所示,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4答案:B2.如图所示,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP答案:D3.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6 cm,则△DEB的周长为()A.4 cmB.6 cmC.10 cmD.不能确定答案:B4.如图所示,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是 ()A.TQ=PQB.∠MQT=∠MQPC.∠QTN=90°D.∠NQT=∠MQT答案:D板书设计:布置作业:一、教材作业【必做题】教材第127页习题5.5知识技能第1题.【选做题】教材第127页习题5.5数学理解第2,3题.二、课后作业【基础巩固】1.如图所示,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C,D为圆CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是心,大于12()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C,D两点关于OE所在直线对称D.O,E两点关于CD所在直线对称2.如图所示,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5【能力提升】3.如图所示,两个班的学生分别在M,N两处参加植树劳动,现要在道路AB,AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你通过尺规作图找出这一P点(不写作法,保留作图痕迹).【拓展探究】4.如图所示,在△ABC中,∠C=90°,∠A=30°,作AB的垂直平分线,交AB于点D,交AC于点E,连接BE,则BE 平分∠ABC,你能说明理由吗?【答案与解析】1.D(解析:根据角的平分线作图步骤可以得到答案,A,B,C 都是正确的.)2.B(解析:因为AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,所以DF =DE =2.又因为S △ABC =S △ABD+S △ACD ,AB =4,所以7=12×4×2+12×AC ×2,所以AC =3.故选B.)3.解:如图所示,P 点即为所求.4.解:因为在△ABC 中,∠C =90°,∠A =30°,所以∠ABC =90°- ∠A =60°.因为DE 是AB 的垂直平分线,所以EA =EB ,所以∠ABE =∠A =30°,所以∠EBC =∠ABC - ∠ABE =30°,所以∠ABE =∠EBC ,即BE 平分∠ABC.教后反思: 成功之处:通过折纸操作,从而得到启发,在教师的引导下,让学生悟出角平分线的性质和用尺规作角的平分线,培养学生实践操作能力;学生在经历观察、类比、归纳等过程的基础上,再让学生实践用尺规作角的平分线的过程,进一步提升了学生的感性和理性的融合,通过本节课的学习,让学生了解了在现实生活中,角及角的平分线在现实中的广泛应用.在本课时中,营造了一个和谐的课堂学习氛围,达到了预期的教学效果. 不足之处:对学生的操作和实验关注不够,这就要求在课堂教学时,应走下讲台,深入到学生中去,与他们一起合作探究,对需要指导的学生给予适当的指导,应当在教学方法和教学语言的选择上,尽可能多地关注学困生. 再教设计:今后应该大胆让学生讲解并且板书,真正落实到纸上,扎根到心底,才能真正体现我的课堂我做主的学习理念.。
《轴对称图形》教案《轴对称图形》教案(通用6篇)作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案是备课向课堂教学转化的关节点。
那么大家知道正规的教案是怎么写的吗?以下是店铺整理的《轴对称图形》教案,仅供参考,大家一起来看看吧。
《轴对称图形》教案篇1教材简析:《轴对称图形》是六年《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。
在本章教材的编排顺序中起着承上启下的作用。
把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的了解。
从而更好地发展学生的空间观念。
教学重点:掌握轴对称图形的概念。
教学难点:能找出轴对称图形的对称轴。
学生分析:学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。
高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。
设计理念:根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。
改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标:1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。
2、通过操作活动培养学生观察能力,概括能力。
3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。
教学流程:一、创设问题情境,导入课题。
1、(屏幕出示相关图片)观察下面的图形,(折一折,看一看)这些图形有什么特点?2、指出:像前三个这样的图形,我们把它叫轴对称图形。
3、引入课题:轴对称图形二、学生通过直观感知,操作确认等实践活动,加强对图形的认知和感受。
【实施动手操作,合作交流方式教学,让学生主动参与学习活动,经历和体验检验轴对称图形的方法。
轴对称图形的对称轴教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴? 指名到黑板上量长方形的边,取中点。
轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。
章节测试题1.【答题】下面的平面图中有______条对称轴.【答案】2【分析】对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴.【解答】如图所示:该平面图中有2条对称轴.2.【答题】把一张长方形纸对折后再对折沿折线画出台灯的一半,把它沿着画的线剪下来,能剪出()个完整的台灯.A.1B.2C.3D.4【答案】B【分析】此题考查的是认识轴对称图形.【解答】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.沿对称轴画半个台灯,半个长方形能剪出1个台灯,1个长方形能剪出2个台灯. 故选B.3.【答题】把一个正方形对折两次后,剪下的图形不可能是().A.圆B.正方形C.长方形【答案】A【分析】此题考查的是认识轴对称图形.【解答】把一个正方形对折时,折痕是直的,不是弯曲的,所以把一个正方形对折两次后,剪下的图形可能是正方形和长方形,不可能是圆. 故选A.4.【答题】把一张正方形纸对折()次可以得到4个小正方形.A.1B.2C.4【答案】B【分析】此题考查的是认识平面图形.【解答】把一张正方形纸对折1次可得到2个长方形,再对折1次即可得到4个小正方形. 故选B.5.【答题】如下图,小明将一张正方形纸先左右对折,再上下对折,然后剪去一个圆.展开图为().(虚线为折痕或裁剪线)A. B. C.【答案】B【分析】此题考查的是轴对称图形.【解答】由图可知,展开后的图形是.故选B.6.【答题】把下面的图形沿虚线对折,两边完全重合后,能变成哪一个图形,下面选项正确的是().A. B. C.【答案】A【分析】此题考查的是折纸拼图.【解答】沿虚线对折,两边完全重合后,变成.故选A.7.【答题】把下面的图形沿虚线对折,两边完全重合后,能变成哪一个图形?正确的选项是().A. B. C.【答案】A【分析】此题考查的是认识折纸拼图.【解答】沿虚线对折,两边完全重合后,变成.故选A.8.【答题】如下图,像这样先折后剪会得到一个().A.正方形B.长方形C.平行四边形D.圆形【答案】D【分析】此题考查的是认识轴对称图形.【解答】由图可知,将长方形纸对折后剪一个半圆,将它打开后是一个圆.故选D.9.【答题】一条24米绳子对折2次,每段()米.A.8B.6C.3D.12【答案】B【分析】此题考查的是对折.【解答】一条24米绳子对折2次,一共有:2×2=4(段),则每段有:24÷4=6(米).故选B.10.【答题】一辆汽车的车牌在水中的倒影如图所示,则该车车牌的号码是().A.浙A7936B.浙A9367C.浙A7639D.浙A9397【答案】A【分析】此题考查的是补全简单的轴对称图形.【解答】利用实际中的图形和水中倒影的关系,得到该车车牌的号码,如图所示:可知该车车牌的号码是浙A7936.故选A.11.【答题】下列图形中,()沿着虚线对折,折痕两侧不能完全重合.A. B. C.【答案】A【分析】此题考查的是对称轴.【解答】由图可知,虚线上面的图形和虚线下面的图形不相同,所以它沿着虚线对折,折痕两侧不能完全重合;虚线上面的图形和虚线下面的图形相同,所以它沿着虚线对折,折痕两侧能完全重合;虚线左边的图形和虚线右边的图形相同,所以它沿着虚线对折,折痕两侧能完全重合.所以题中的图形中,沿着虚线对折,折痕两侧不能完全重合.故选A.12.【答题】一张报纸长6分米,宽是4分米,沿中线对折后,宽重合.那么半张报纸的周长是______分米.【答案】14【分析】此题考查的是对折.【解答】已知一张报纸长6分米,宽是4分米,沿中线对折后,宽重合.求半张报纸的宽为多少,用除法,列式计算为:6÷2=3(分米).求半张报纸的周长是多少分米,列式计算如下:(3+4)×2=7×2=14(分米).列综合算式如下:(6÷2+4)×2=(3+4)×2=7×2=14(分米).所以半张报纸的周长是14分米.13.【答题】把一个长方形沿一条边对折两次,展开,把折线画出来,这时共有______个直角.【答案】16【分析】此题考查的是对折.【解答】把一个长方形沿一条边对折两次,展开,把折线画出来,这时一共形成了4个最小的长方形,一个长方形有4个直角,4个长方形有直角4×4=16(个).故答案为16.14.【答题】将下面的轴对称图形补充完整之后,共占______格.(填阿拉伯数字)【答案】12【分析】此题考查的是对轴对称图形的理解.【解答】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线叫做对称轴.图中的虚线就是对称轴,左边的图形占6个格,所以根据轴对称图形的性质,右边也应占6个格,所以共占12格.故答案为12.15.【答题】在镜子里看到的钟面如下图所示,这时的实际时刻应该是______:30.(12小时制)【答案】9【分析】此题考查的是轴对称.【解答】从镜子中看到的钟表是,则实际的钟表为,分针指向6,时针指向9和10之间,表示9:30.故答案为9.16.【答题】下图中的这张纸能剪______个手拉手的小人.如果你要剪15个手拉手的小人,需要______张这样的纸.【答案】3 5【分析】此题考查的是轴对称图形.【解答】对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴.根据题意,这张纸折了6个相同大小的部分,而每2个部分可以组成一个小人,因此这张纸可以折小人的数量为:6÷2=3(个).如果要剪15个这样的小人,那么需要纸的张数为:15÷3=5(张).答案为3、5.17.【答题】用一张长方形的纸不可能折出正方形.()【答案】×【分析】此题考查的是对折.【解答】当长方形的长是宽的2倍时,沿着长的中线对折,可以得到2个正方形.故原说法错误.18.【答题】将一张长方形纸连续对折3次,最多可以得到8个大小相同的长方形.()【答案】✓【分析】此题考查的是认识轴对称图形.【解答】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.将这张长方形对折1次,得到1×2=2(个)长方形;对折2次,得到2×2=4(个)长方形;对折3次,得到4×2=8(个)长方形.故正确.19.【答题】下面的英文字母中,()组找不出轴对称图形的字母.A.ABCGB.EFGHC.OPUWD.QJLN【答案】D【分析】轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;据此判断即可.【解答】根据轴对称图形的定义可知,选项A中A和C是轴对称图形;选项B中H 是轴对称图形;选项C中O、U、W都是轴对称图形;只有选项D中没有轴对称图形.选D.20.【答题】下列图形中,有()个是轴对称图形.A.1B. 3C. 2D.4【答案】B【分析】轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;据此判断即可.【解答】根据轴对称图形的定义可知,从左边数第1、3、4都是轴对称图形,只有第2个不是轴对称图形. 所以共有3个轴对称图形,选B.。
轴对称图形认识教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、先进事迹、条据文书、合同协议、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, advanced deeds, normative documents, contract agreements, rules and regulations, emergency plans, teaching materials, essay summaries, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!轴对称图形认识教案6篇在编写教案时,教师应该考虑到学生的年龄和发展水平,以确保内容的合适性,在编写教案时,教师需要考虑如何引发学生的兴趣和积极参与,以下是本店铺精心为您推荐的轴对称图形认识教案6篇,供大家参考。
期末章节复习(三)轴对称考点1轴对称图形1.下列四种网络运营商的徽标中,符合轴对称图形特征的为()考点2网格作图2.已知在平面直角坐标系中有三点A(-2,1),B(3,1),C(2,3),请解答下列问题:(1)在坐标系内描出A,B,C的位置;(2)画出△ABC关于x轴对称的图形△A1B1C1,并写出顶点A1,B1,C1的坐标.考点3线段垂直平分线3.如图所示,在Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,CD交BE于点F.求证:BE垂直平分CD.4.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC和∠F的度数.考点4等腰三角形的性质与判定5.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.求证:(1)△ABD是等边三角形;(2)BE=AF.6.如图,在△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.7.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.求证:(1)△ABD是等边三角形;(2)BE=AF.考点5等边三角形的性质与判定8.如图,已知△ABC是等边三角形,E,D,G分别在AB,BC,AC边上,且AE=BD=CG.连接AD,BG,CE,相交于点F,M,N.(1)求证:AD=CE;(2)求∠DFC的度数;(3)试判断△FMN的形状,并说明理由.考点630°角的直角三角形的性质9.如图,如图,一艘轮船以每小时20海里的速度沿正北方航行,在A处测得灯塔C在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上,当轮船到达灯塔C的正东方向D处时,则轮船航程AD的距离是()A.20海里B.40海里C.60海里D.80海里第9题图第10题图第1题图第3题图考点7最短路径问题10.如图,在等边△ABC中,BD平分∠ABC交AC于点D,点E,F分别是线段BD,BC上的动点,则CE+EF 的最小值等于()A.BD B.CD C.CE D.AC一、选择题(每小题3分,共30分)1.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文明显不是轴对称图形的是()2.点(3,-2)关于x轴对称的点的坐标是()A.(3,2) B.(-3,-2) C.(-3,2) D.(3,-2)3.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点,下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB,A′B′的交点不一定在MN上4.等腰三角形的一边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.195.如图,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=5 cm,△ADC的周长为17 cm,则BC的长为()A.7 cm B.10 cm C.12 cm D.22 cm第5题图第6题图第7题图第8题图第9题图第10题图6.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.如图,在等边△ABC中,D是AC边上的中点,延长BC到点E,使CE=CD,则∠E的度数为()A.15°B.20°C.30°D.40°8.如图,点P是∠AOB外的一点,点M,N是∠AOB两边上的点,点P关于OA的对称点Q恰好落在MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm9.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个10.如图,在△ABC中,AB=20 cm,AC=12 cm,点P从点B出发以3 cm/s的速度向点A运动,点Q从点A同时出发以2 cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以∠A为顶角的等腰三角形时,运动的时间是()A.2.5 s B.3 s C.3.5 s D.4 s二、填空题(每小题4分,共20分)11.如图,△ABC与△A1B1C1关于某条直线成轴对称,则∠A1=_______.第11题图第12题图第13题图第14题图第15题图12.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是______.13.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD.如果PO=PD,那么AP的长是______.14.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC的方向平移2个单位长度后,得到△A′B′C′,连接A′C,则△A′B′C的周长为_______.15.如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8 cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值为______cm.三、解答题(共50分)16.(7分)某科技公司研制开发了一种监控违章车辆的电子仪器.如图,有三条两两相交的公路,你认为这个监控仪器安装在什么位置可离三个路口的交叉点的距离相等,以便及时进行监控?17.(8分)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过点D作DE∥AC,交AB于点E.求证:△BDE是等腰三角形.18.(10分)如图,△ABC为等边三角形,∠1=∠2=∠3.(1)求∠BEC的度数;(2)△DEF是等边三角形吗?为什么?19.(12分)如图,已知在等腰Rt△OAB中,∠AOB=90°,在等腰Rt△EOF中,∠EOF=90°,连接AE,BF.求证:(1)AE=BF;(2)AE⊥BF.20.(13分)如图,已知等腰△ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.。
《轴对称》【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C 的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。