第二章 随机变量的概率分布与数字特征
- 格式:ppt
- 大小:2.67 MB
- 文档页数:78
随机变量的数字特征随机变量是概率论中的重要概念,描述了在一定概率分布下可能取得的不同取值。
在实际问题中,我们常常需要对随机变量的数字特征进行分析,以揭示其分布规律和潜在规律。
本文将介绍随机变量的数字特征及其应用。
1. 期望值期望值是描述随机变量平均取值的一个重要数字特征。
对于离散型随机变量,期望值的计算公式为:$$ E[X] = \\sum_{i} x_i \\cdot P(X = x_i) $$其中,X表示随机变量,x i为X可能取得的值,P(X=x i)为X取值为x i的概率。
对于连续型随机变量,期望值的计算公式为:$$ E[X] = \\int_{-\\infty}^{\\infty} x \\cdot f(x) dx $$其中,f(x)为X的概率密度函数。
2. 方差方差是描述随机变量取值分散程度的数字特征。
对于离散型随机变量,方差的计算公式为:Var[X]=E[(X−E[X])2]对应连续型随机变量的方差计算公式为:$$ Var[X] = \\int_{-\\infty}^{\\infty} (x - E[X])^2 \\cdot f(x) dx $$3. 协方差协方差描述了两个随机变量之间的线性相关性。
对于两个随机变量X和Y,其协方差的计算公式为:Cov[X,Y]=E[(X−E[X])(Y−E[Y])]协方差的正负值表示了两个随机变量的相关性程度,当协方差为正时,表示两个随机变量正相关,为负时表示负相关。
4. 相关系数相关系数是协方差标准化后的结果,用以衡量两个随机变量之间的线性相关性强弱。
相关系数的计算公式为:$$ \\rho_{X,Y} = \\frac{Cov[X,Y]}{\\sigma_X \\cdot \\sigma_Y} $$其中,$\\sigma_X$和$\\sigma_Y$分别为X和Y的标准差。
相关系数的取值范围在-1到1之间,绝对值越接近1表示相关性越强。
5. 大数定律大数定律是概率论中的一个重要定理,指出在独立重复试验中,随着试验次数的增多,样本平均值将趋近于总体期望值。
《概率论与数理统计》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。
第一章 随机事件与概率1.随机事件的关系与计算 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念2.古典概型中概率的计算 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式3. 利用概率的性质计算概率 (一级重点)选择、填空)()()()(AB P B P A P B A P -+=⋃,)()()(AB P B P A B P -=-(考得多)等,要能灵活运用。
4. 条件概率的定义 (一级重点)选择、填空 记住条件概率的定义和公式:)()(B P AB P = 5. 全概率公式与贝叶斯公式 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。
一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。
6. 事件的独立性(概念与性质) (一级重点)选择、填空定义:若)()()(B P A P AB P =,则称A 与B 相互独立。
结论:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 都相互独立。
7. n 重贝努利试验中事件A 恰好发生k 次的概率公式 (一级重点)选择、填空在n 重贝努利试验中,设每次试验中事件A 的概率为p (10 p ),则事件A 恰好发生k 次的概率n k p p C k P k n k k n n ,,2,1,0,)1()( =-=-。
第二章 随机变量的分布及其数字特征8.离散型随机变量的分布律及相关的概率计算 (一级重点)选择、填空、计算、综合。