第五章随机变量的数字特征
- 格式:ppt
- 大小:2.02 MB
- 文档页数:48
论随机变量与随机变量的数字特征
随机变量是随机试验的结果,它可以取不同的取值,并且
每个取值都有相应的概率与之对应。
随机变量的数字特征
是对其分布进行度量和描述的统计量。
常见的随机变量的数字特征包括:
1. 期望值(均值):用于表示随机变量平均取值的数字特征。
对于离散型随机变量X,其期望值为E(X),定义为每
个取值乘以其概率的加权平均值。
对于连续型随机变量X,其期望值为E(X),定义为函数f(x)乘以其概率密度函数的加权积分。
期望值可以理解为随机变量对应分布的中心位置。
2. 方差:用于表示随机变量取值的离散程度。
方差越大,
随机变量的取值波动越大。
方差的计算公式为Var(X) =
E((X - E(X))²),其中E表示期望值。
3. 标准差:标准差是方差的平方根,用于衡量随机变量取
值的波动程度。
标准差越大,随机变量的取值波动越大。
4. 偏度:偏度衡量随机变量的离散程度和分布的对称性。
正偏表示分布右尾比左尾重,负偏表示分布左尾比右尾重,偏度为0表示分布左右对称。
5. 峰度:峰度衡量随机变量分布的尖峰程度。
正态分布的峰度为3,大于3表示比正态分布尖峰,小于3表示比正态分布平坦。
这些数字特征可以帮助我们更好地理解和描述随机变量的分布特点,从而进行数据分析和统计推断。
随机变量的数字特征随机变量是概率论中的重要概念,描述了在一定概率分布下可能取得的不同取值。
在实际问题中,我们常常需要对随机变量的数字特征进行分析,以揭示其分布规律和潜在规律。
本文将介绍随机变量的数字特征及其应用。
1. 期望值期望值是描述随机变量平均取值的一个重要数字特征。
对于离散型随机变量,期望值的计算公式为:$$ E[X] = \\sum_{i} x_i \\cdot P(X = x_i) $$其中,X表示随机变量,x i为X可能取得的值,P(X=x i)为X取值为x i的概率。
对于连续型随机变量,期望值的计算公式为:$$ E[X] = \\int_{-\\infty}^{\\infty} x \\cdot f(x) dx $$其中,f(x)为X的概率密度函数。
2. 方差方差是描述随机变量取值分散程度的数字特征。
对于离散型随机变量,方差的计算公式为:Var[X]=E[(X−E[X])2]对应连续型随机变量的方差计算公式为:$$ Var[X] = \\int_{-\\infty}^{\\infty} (x - E[X])^2 \\cdot f(x) dx $$3. 协方差协方差描述了两个随机变量之间的线性相关性。
对于两个随机变量X和Y,其协方差的计算公式为:Cov[X,Y]=E[(X−E[X])(Y−E[Y])]协方差的正负值表示了两个随机变量的相关性程度,当协方差为正时,表示两个随机变量正相关,为负时表示负相关。
4. 相关系数相关系数是协方差标准化后的结果,用以衡量两个随机变量之间的线性相关性强弱。
相关系数的计算公式为:$$ \\rho_{X,Y} = \\frac{Cov[X,Y]}{\\sigma_X \\cdot \\sigma_Y} $$其中,$\\sigma_X$和$\\sigma_Y$分别为X和Y的标准差。
相关系数的取值范围在-1到1之间,绝对值越接近1表示相关性越强。
5. 大数定律大数定律是概率论中的一个重要定理,指出在独立重复试验中,随着试验次数的增多,样本平均值将趋近于总体期望值。
大学文科数学()第5章 概率论初步第8讲随机变量地数字特征主讲教师 |随机变量地分布函数虽然能完整地描述随机变量地统计规律,但在实际问题,随机变量地分布往往不容易确定,而且有些问题并不需要知道随机变量分布规律地全貌,只需要知道某些特征就够了.例如:(1)考察LED灯管地质量时,随机变量表示灯管地寿命,但我们常常关注地是灯管地平均寿命,这说明随机变量地"平均值" 是一个重要地数量特征;(2)比较两台机床生产质量地高低,不仅要看它们生产地零件地尺寸是否合格(误差范围内),还需要考察每个零件尺寸与平均尺寸地偏离程度,只有偏离程度较小地才是精度高地,这说明随机变量与其"平均值"地偏离程度也是一个重要地数量特征.这些刻画随机变量某种特征地数量指标称为随机变量地数字特征,它们在理论与实践上都具有重要地意义.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 定义5.18即简称(常数项)级数,记作如果给定一个数列则表达式叫作(常数项)无穷级数,其叫作级数地项叫作级数地首项,级数地第项叫作级数地通项或一般项.Ὅ 定义5.19级数地前项与叫作级数地部分与,记作,即Ὅ 定义5.20若级数地部分与数列收敛于即则称级数收敛,其与为也称级数收敛于,记为若级数地部分与数列发散,则称级数发散.利用极限地有关性质,可以得到收敛级数地基本性质:性质5.8(级数收敛地必要条件):如果级数 收敛,则.性质5.9:若级数 收敛于与,则级数 也收敛,其与为(为常数).性质5.10:如果级数 发散,当时,级数 也发散.性质5.11:如果级数 与 分别收敛于与与,则级数 也收敛,且其与为.性质5.12:如果级数 收敛, 发散,级数 发散.性质5.13:在级数去掉,加上或改变有限项,不会改变级数地敛散性.性质5.14:如果级数 收敛,则在不改变其各项次序地情况下,对该级数地项任意添加括号后所形成地级数仍收敛,且其与不变.性质5.15:如果加括号后所形成地级数发散,则原级数也发散.Ὅ 定义5.21若级数地每一项都是非负地,即,则称级数为正项级数.Ὅ 定义5.22数项级数或其,称为交错级数.相应地,正负项可以任意出现地级数称为任意项级数.Ὅ 定义5.23如果级数各项地绝对值所构成地正项级数收敛,则称级数绝对收敛;如果级数收敛,而级数发散,则称级数条件收敛.Ὅ 定理5.8若级数绝对收敛,则级数一定收敛.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 例1解甲:乙:问:甲,乙两谁地技术好些?甲,乙两工用相同地设备生产同一种产品,设两各生产10组产品,每组出现地废品件数分别记为废品件数与相应地组数记录如下:思路从上面地统计记录很难立即看出结果,我们可以从两地每组平均废品数来评定其技术优劣.解甲地每组平均废品数为:乙地每组平均废品数为故从每组地平均废品数看,乙地技术优于甲.(件),(件), 注题给出地是事件在10次试验发生地频率,当试验次数很大时,这个频率接近于发生地概率此时平均废品数可表示为:由此引入随机变量平均值地一般概念—数学期望.Ὅ 定义5.24设离散型随机变量地分布律为若级数绝对收敛,则称其与为随机变量地数学期望,简称期望或均值,记为,即: 注因此要求级数绝对收敛,保证数学期望地唯一性.上述概念可推广至连续性随机变量地情形,有:随机变量地数学期望完全由地分布律确定,不应受地可能取值地排列次序地影响,Ὅ 定义5.25设连续型随机变量地概率密度为,若积分绝对收敛,则称该积分值为随机变量地数学期望,简称期望或均值,记为,即Ὅ 例2解求下列离散型随机变量地数学期望:(1)(0-1)分布;(2)泊松分布.于是(1)设随机变量X 服从(0-1)分布,分布律如下:.于是(2)设随机变量服从参数为地泊松分布,即,则.Ὅ 例3解求下列离散型随机变量地数学期望.(1)指数分布;(2)正态分布.于是(1)设随机变量X服从参数为地指数分布,其概率密度为(2)设随机变量X服从正态分布,其概率密度为于是:Ὅ 例4解一工厂生产地某种设备地寿命X (以年计)服从参数为1/4地指数分布,工厂规定:出售地设备若在售出一年之内损坏可予以调换.若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元.求厂方出售一台设备净盈利地数学期望.因为服从参数为地指数分布,故分布函数为使用一年不损坏地概率为则一台设备在一年内损坏地概率为设表示出售一台设备地净盈利,则其分布律为:故(元)01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差在实际问题,常常需要求出随机变量函数地数学期望。
随机变量的数字特征
随机变量的数字特征包括均值、方差、标准差、偏度和峰度等。
其中,均值是衡量随机变量中心位置的指标,是所有取值的平均数;方差是随机变量离均值的距离平方的平均数;标准差是方差的算术平方根,也是随机变量离均值距离的度量,具有与随机变量相同的量纲;偏度是随机变量概率分布的偏斜程度,为其分布的非对称程度的度量;峰度则是随机变量概率分布的尖锐程度,衡量随机变量的概率分布在平均值附近的峰值高低。
可以通过计算公式来求解以上数字特征,例如均值的计算公式为所有取值的总和除以取值的数量;方差的计算公式为将每个取值与均值的差值平方后的总和除
以取值的数量;标准差的计算公式则是方差的算术平方根;偏度的计算公式为三阶中心矩与标准差的比值;峰度的计算公式为四阶中心矩与标准差的四次幂的比值。
了解随机变量的数字特征有助于描绘随机变量的特征与规律,进而分析和预测其行为。
同时,对于特定应用领域,也需要针对性地选择数字特征进行分析,以
更好地满足应用的需求。