教案:函数的单调性与极值
- 格式:doc
- 大小:118.50 KB
- 文档页数:5
函数的单调性与极值教案函数的单调性与极值教案目的要求1.理解并掌握函数最大值与最小值的意义及其求法.2.弄清函数极值与最值的区别与联系.3.养成整体思维的习惯,提高应用知识解决实际问题的能力.内容分析1.教科书结合函数图象,直观地指出函数最大值、最小值的概念,从中得出利用导数求函数最大值和最小值的方法.2.要着重引导学生弄清函数最值与极值的区别与联系.函数最大值和最小值是比较整个定义域上的函数值得出的,而函数的极值则是比较极值点附近两侧的函数值而得出的,是局部的.3.我们所讨论的函数y=f(x)在[a,b]上有定义,在开区间(a,b)内有导数.在文科的数学教学中回避了函数连续的概念.规定y=f(x)在[a,b]上有定义,是为了保证函数在[a,b]内有最大值和最小值;在(a,b)内可导,是为了能用求导的方法求解.4.求函数最大值和最小值,先确定函数的极大值和极小值,然后,再比较函数在区间两端的函数值,因此,用导数判断函数极大值与极小值是解决函数最值问题的关键.5.有关函数最值的实际应用问题的教学,是本节内容的难点.②依照极值点的定义讨论得出:f(a)、f(b)不是函数y=f(x)的极值.③直观地从函数图象中看出:f(x3)是最小值,f(b)是最大值.(教师在回答完问题①②③之后,再提问:如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?)④与学生共同讨论,得出求函数最值的一般方法:i)求y=f(x)在(a,b)内的极值(极大值与极小值);ii)将函数y=f(x)的各极值与f(a)、f(b)作比较,其中最大的一个为最大值,最小的一个为最小值.4.分析讲解例题例4 求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值.板书讲解,巩固求函数最值的求导法的两个步骤,同时复习求函数极值的一般求法.例5 用边长为60cm的正方形铁皮做一个无盖小箱,先在四角分别截去一个小正方形,然后把四边翻转90角,再焊接而成(教科书中图2-13).问水箱底边的长取多少时,水箱容积最大,最大容积为多少?用多媒体课件讲解:①用课件展示题目与水箱的制作过程.②分析变量与变量的关系,确定建模思想,列出函数关系式V=f(x),xD.③解决V=f(x),xD求最值问题的方法(高次函数的最值,一般采用求导的方法,提醒学生注意自变量的实际意义).④用几何画板平台验证答案.5.强化训练演板P68练习6.归纳小结①求函数最大值与最小值的两个步骤.②解决最值应用题的一般思路.布置作业教科书习题2.5第4题、第5题、第6题、第7题.。
初中数学教案:函数的单调性和极值问题函数的单调性和极值问题一、引言在初中数学中,函数是一个重要的概念。
函数研究了数值之间的关系,并通过图形来表示这种关系。
其中,函数的单调性和极值问题是数学教学中的一大难点和关键内容。
本文将详细介绍初中数学教案中有关函数单调性和极值问题的教学方法和策略。
二、函数的单调性1. 函数定义在讲解函数的单调性之前,首先需要对函数进行定义。
将两个集合A和B分别称为输入集合和输出集合,如果对于每一个元素a∈A都能找到一个唯一的元素b∈B与之相对应,那么就可以说存在着从A到B上的函数f。
2. 单调增减性在介绍了函数定义之后,可以开始讲解函数的单调增减性。
当对于任意x1、x2∈定义域D上满足x1<x2时,如果f(x1)<f(x2),则可称该函数具有严格递增性(或简称为增);反之,若f(x1)>f(x2),则可称其具有递减性(或简称为减);当对于任意x1、x2∈D & [x1≠x2]上满足f(x1)≤f(x2),则可称其具有非严格递增性(或简称为非增);反之,若f(x1)≥f(x2),则可称其具有非严格递减性(或简称为非减)。
3. 判断函数的单调性在教学中,可以通过计算函数的导数来判断函数的单调性。
对于处处可导的函数f(x),当在定义域上,导数恒大于零时,则该函数是递增的;当导数恒小于零时,则该函数是递减的。
4. 实例分析通过一个实例分析来深入理解函数的单调性。
例如:y=x^2-2x+3。
首先求出该函数的一阶导数:y'=2x-2。
然后令y'=0,得到x=1。
因此可以将定义域进行分割成三个部分:(-∞, 1)、(1, +∞) 和 x=1。
接下来取每个区间内的一个点代入原式进行运算,如 x=-2、0、2 分别代入 y=x^2-2x+3 得到 y=11、3、3.这样就可以结合表格和图像判断出该函数在不同区间上的单调性。
三、极值问题1. 极大值和极小值在引入极值问题之前,需要对极大值和极小值进行定义。
函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。
2. 学会利用单调性判断函数的性质,如极值、最值等。
3. 能够运用单调性解决实际问题,如求函数的极值、最值等。
二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。
2. 单调性的判断方法及应用。
3. 实际问题中的单调性应用。
三、教学重点与难点:1. 函数单调性的概念及判断方法。
2. 单调性在实际问题中的应用。
四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。
2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。
3. 互动教学法:提问、讨论,激发学生的思考。
五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。
2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。
3. 举例:分析具体函数的单调性,让学生学会判断。
4. 练习:布置练习题,让学生巩固单调性的判断方法。
5. 案例分析:分析实际问题,引导学生运用单调性解决问题。
6. 总结:回顾本节课的内容,强调单调性的重要性。
7. 作业布置:布置课后作业,巩固所学内容。
六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。
2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。
3. 案例分析:评估学生在实际问题中运用单调性的能力。
七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。
2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。
八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。
2. 课件:制作课件,辅助教学,提高课堂效果。
3. 练习题:准备练习题,巩固所学内容。
4. 实际问题案例:收集实际问题案例,用于教学实践。
九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
2024年蓝天杯教学设计教案一、教学内容本节课选自《蓝天杯高中数学教材》第二章“函数的单调性与极值”,具体包括2.3节“函数的单调性”及2.4节“函数的极值”。
详细内容涉及函数单调性的定义及判定,以及利用导数研究函数的极值问题。
二、教学目标1. 理解并掌握函数单调性的定义,能够准确判断给定函数的单调性。
2. 学会运用导数判断函数的单调性及求解函数的极值问题。
3. 能够将函数单调性与极值知识应用于实际问题,提高解决问题的能力。
三、教学难点与重点教学难点:函数单调性与极值的概念及其应用。
教学重点:利用导数求解函数单调性和极值的方法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、练习本、铅笔。
五、教学过程1. 实践情景引入(5分钟)利用实际案例,如气温变化、股票价格等,引出函数单调性与极值的概念。
2. 知识讲解(15分钟)(1)讲解函数单调性的定义,通过示例进行说明。
(2)介绍利用导数判断函数单调性的方法,给出典型例题进行讲解。
3. 例题讲解(15分钟)(1)求解给定函数的单调性。
(2)利用导数求解函数的极值。
4. 随堂练习(10分钟)(1)判断给定函数的单调性。
(2)求解给定函数的极值。
5. 课堂小结(5分钟)六、板书设计1. 函数的单调性与极值2. 定义:函数单调性、极值3. 判断方法:导数判断单调性、求解极值4. 例题:典型例题及解答七、作业设计1. 作业题目:(1)求函数f(x)=2x^33x^212x+5的单调区间及极值。
(2)已知函数g(x)=x^36x^2+9x+1,求其极值。
答案:(1)单调递增区间:(∞,1),(2,+∞);单调递减区间:(1,2);极大值:f(1)=0,极小值:f(2)=15。
(2)极大值:g(1)=5,极小值:g(3)=1。
2. 拓展延伸:探讨函数单调性与极值在实际问题中的应用。
八、课后反思及拓展延伸本节课通过实践情景引入,使学生更好地理解函数单调性与极值的概念。
高中数学教案——函数的单调性与极值教学目标:1. 理解函数单调性的概念,能够判断函数的单调性。
2. 掌握利用导数研究函数的单调性,会求函数的极值。
3. 能够运用函数的单调性和极值解决实际问题。
教学重点:1. 函数单调性的判断。
2. 利用导数研究函数的单调性和求极值。
教学难点:1. 函数单调性的证明。
2. 利用导数求函数的极值。
教学准备:1. 教学课件。
2. 相关练习题。
教学过程:一、导入(5分钟)1. 复习初中阶段学习的函数单调性的概念。
2. 引入高中阶段函数单调性的学习,指出其在高中数学中的重要性。
二、新课讲解(15分钟)1. 讲解函数单调性的定义和性质。
2. 举例说明如何判断函数的单调性。
3. 讲解利用导数研究函数的单调性,导数的正负与函数单调性的关系。
三、实例分析(15分钟)1. 分析具体函数的单调性,求函数的单调区间。
2. 利用导数求函数的极值,讲解极值的概念和求法。
四、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 对学生的练习情况进行讲解和指导。
五、总结与展望(5分钟)1. 总结本节课的主要内容和知识点。
2. 指出函数单调性和极值在实际问题中的应用价值。
3. 展望下一节课将要学习的内容。
教学反思:本节课通过讲解和实例分析,让学生掌握了函数单调性的判断和利用导数研究函数的单调性及求极值的方法。
在课堂练习环节,学生能够独立完成相关题目,对函数单调性和极值的概念有了清晰的认识。
但在教学过程中,发现部分学生对于函数单调性的证明仍存在一定的困难,需要在今后的教学中加强这方面的训练。
六、应用拓展(10分钟)1. 通过实际问题,让学生运用函数的单调性和极值进行分析。
2. 引导学生将函数单调性和极值的知识应用到其他学科或生活中。
七、课堂小结(5分钟)1. 回顾本节课所学内容,巩固函数单调性和极值的概念及应用。
2. 强调函数单调性和极值在高中数学中的重要性。
八、作业布置(5分钟)1. 布置适量作业,让学生巩固所学知识。
湖南师范大学附属中学高三数学总复习教案:函数的单调性与极值 教学目标:正确理解利用导数判断函数的单调性的原理;掌握利用导数判断函数单调性的方法;教学重点:利用导数判断函数单调性;教学难点:利用导数判断函数单调性教学过程:一 引入:以前,我们用定义来判断函数的单调性.在假设x 1<x 2的前提下,比较f(x 1)<f(x 2)与的大小,在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.二 新课讲授1 函数单调性我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数342+-=x x y 的图像可以看到:在区间(2,∞+)内,切线的斜率为正,函数y=f(x)的值随着x 的增大而增大,即/y >0时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内,切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间(∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/y <0,那么函数y=f(x) 在为这个区间内的减函数。
例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。
例2 确定函数76223+-=x x y 的单调区间。
2 极大值与极小值观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。
一般地,设函数y=f(x)在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x附近所有各点的函数值都小,我们说f(x)是函数y=f(x)的一个极小值。
城东蜊市阳光实验学校第三中学高考数学一轮复习函数的单调性与最值教案①利用函数的单调性.②定义法:先求定义域,再利用单调性定义.③图象法:假设f(x)是以图象形式给出的,或者者者f(x)的图象易作出,可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间. 5.函数的最值 设函数y =f(x)的定义域为I ,假设存在实数M 满足:(1)对于任意的x ∈I ,都有.(2)存在x0∈I ,使得.那么,我们称M 是函数y =f(x)的.最值与函数的值域有何关系?【提示】函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在。
(1) 求一个函数的最值时,应首先考虑函数的定义域.(2)函数的最值是函数值域中的一个取值,是自变量x 取了某个值时的对应值,故函数获得最值时,一定有相应的x 的值.前提自测 1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,那么 (D) 2.假设函数y =ax 与y =-x b在(0,+∞)上都是减函数,那么y =ax2+bx 在(0,+∞)上是 (B) A .增函数 B .减函数C .先增后减 D .先减后增. 3.函数()f x =223x ax -+在区间(],2-∞上是单调函数,那么实数的取值范围是a≥2.4.设x1,x2为y =f(x)的定义域内的任意两个变量,有以下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0;其中能推出函数y =f(x)为增函数的命题为__①_③_____5.函数2()23f x x x =-+在[]0,m 上有最大值3,最小值2,那么正数m 的取值范围1≤m≤2.6.证明函数x x x f 3)(3+=在),(+∞-∞上是增函数 自主﹒﹒探究 例1答案:a >0:f(x)为减函数。
a <0:f(x)为增函数。
第三节函数的单调性与最值一、函数的单调性 1.单调函数的定义自左向右看图象自左向右看图象若函数y =f (x )在区间D 上是 或 ,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的 .3.函数单调性的性质①、奇函数在其关于原点对称的区间上的单调性 ; ②、偶函数在其关于原点对称的区间上的单调性 ;③、在公共定义域内:增函数+增函数是 ,减函数+减函数是 增函数—减函数是,减函数—增函数是 。
二、函数的最值 预习演练1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-123.f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________.4.已知函数f (x )为R 上的减函数,若m <n ,则f (m )______f (n );若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1),则实数x 的取值范围是______.5.写出下列函数的单调区间:⑴ 函数y =2x +x 2-3单调递增区间为________,单调递减区间为_______; ⑵ 函数y =x1的单调区间为______________, 6.函数)(x f =-2x +ax 2⑴若)(x f 的减区间为[1,+∞),a 的取值范围是_______;⑵若)(x f 的在[1,+∞)上是减函数,则a 的取值范围是____________ 注:1.函数的单调性是局部性质从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.2.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 题型一:函数单调性的判断[例1] 证明函数f (x )=2x -1x在(-∞,0)上是增函数.小结:对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)结合定义(基本步骤为取值、作差或作商、变形、判断)证明;(2)可导函数则可以利用导数证明.对于抽象函数单调性的证明,一般采用定义法进行. 变式1.判断函数g (x )=-2x x -1在 (1,+∞)上的单调性.题型二:求函数单调区间[例2] 函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)小结:求函数的单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数的正负确定函数的单调区间. 题型三:复合函数单调区间的求解例3:求函数()f x =变式3:求解函数()f x 的单调区间 小结:对于复合函数()y fg x =⎡⎤⎣⎦,其单调性质如下:复合函数单调性可简记为“同增异减”,即内外函数的单调性相同时增;相异时减.题型四:函数单调性的应用[例4] (1)若f (x )为R 上的增函数,则满足f (2-m )<f (m 2)的实数m 的取值范围是________.(2)(2012·安徽高考)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. (3)(2013·孝感调研)函数f (x )=1x -1在[2,3]上的最小值为________,最大值为________. (4)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =__________.题型五:抽象函数的单调性例5. 定义在R 上的函数()y f x =,()00f ≠,当0x >时,()1f x >,且对任意的,a b R ∈,有()()()f a b f a f b +=. ⑴求证: ()01f =;⑵求证:对任意的x R ∈,恒有()0f x >; ⑶证明:()f x 是R 上的增函数; ⑷若()()221f x f x x ->,求x 的取值范围变式5:已知定义在区间()0,+∞上的函数()f x 满足()()1122x f f x f x x ⎛⎫=-⎪⎝⎭,且当1x >时,()0f x < ⑴求()1f 的值;⑵判断函数()f x 的单调性; ⑶若()31f =-,解不等式()2f x <-。