常数项级数的收敛性及其判别法
- 格式:ppt
- 大小:1003.50 KB
- 文档页数:38
常数项级数敛散性判别法总结摘要:本文简要阐述了常数项级数敛散性判别法。
由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。
关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。
无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。
在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。
主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。
1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。
若部分和数列{Sn}有极限S,即,则称级数(1)收敛。
若部分和数列{Sn}没有极限,则称级数(1)发散。
注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。
极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。
借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。
例如,由性质(1)和当|q|0时,01,则发散。
当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。
比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。
例2:判别级数的敛散性。
解:因为由比值判别法知级数收敛。
2.3 根植判别法设为正项级数,若有,则当0≤r1,则发散。
当级数含有n次幂,型如an或(un)n选用根值判别法。
根值判别法不需要与已知的基本级数进行比较。
常数项级数敛散性判别法总结作者:李娜来源:《山东工业技术》2014年第24期摘要:本文简要阐述了常数项级数敛散性判别法。
由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。
关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。
无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。
在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。
主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。
1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。
若部分和数列{Sn}有极限S,即,则称级数(1)收敛。
若部分和数列{Sn}没有极限,则称级数(1)发散。
注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。
极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。
借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。
例如,由性质(1)和当|q|2 正项级数敛散性判别法若级数各项均为非负数,则称该级数为正项级数。
正项级数收敛的充要条件是它的部分和数列有上界。
正项级数有以下几种常用判别法:2.1 比较判别法设与都是正项级数,且un≤vn(n=1,2,…),则收敛时,收敛;发散时,发散。
比较判别法适用范围比较广泛,当级数表达式型如,un为任意函数或un含有sinθ或cosθ等三角函数的因子可以进行适当的放缩时,选用比较判别法。
常数项级数的审敛法定义 形如:级数其中即: 正、负项相间的级数称为交错级数。
列如莱布尼茨判别法 莱布尼茨定理:如果交错级数满足条件则级数收敛,其其和其余项的绝对值注意:只有当级数是交错级数时,才能用此判别法,否则将导致错误 注意:莱布尼兹判别法只是充分条件,非必要条件.使用本判别法时,关键是第一个条件的验证是否收敛时, 要考察与 大小111()n n n u ∞-=-∑n u >0111,2,3,);n n u u n +≥=L ()(lim 0,n x u →∞=(2)1,s u ≤nr 1.n n r u +≤0n u ≥()n u 1n u +n n u u +≥>10.()111111111(1)=1(1)234n n n n n∞--=--+-++-+∑L L().1112(1)1234(1)n n n n n ∞--=-=-+-++-+∑L L().这是一个交错级数又因为n n u u n n +=>=+1111,且显然收敛速度较慢.收敛。
使用本判别法时,关键是第一个条件的验证是否收敛时, 要考察与大小比较 与大小的方法有: 比值法差值法11111111(1)=1(1)234n n n n n∞--=--+-++-+∑1n u n =1lim lim 0n n n u n →∞→∞==n r n ≤+1||.10n u ≥()n u 1n u +n n u u +≥>10.()n u 1n u +11n nu u +<10n n u u +->11n n u u +≥()lim 0n x u →∞=(2)则交错级数111() n n n u ∞-=-∑。
常数项级数与幂级数的收敛性在数学中,级数是由一系列数按照一定次序进行加法运算得到的结果。
本文将讨论两种重要的级数,即常数项级数和幂级数的收敛性。
一、常数项级数的收敛性常数项级数是指以常数项为公差得到的级数。
常数项级数的一般形式可以写作\[S = a_0 + a_1 + a_2 + a_3 + \ldots\]其中,\(a_0, a_1, a_2, \ldots\)为常数项。
我们来研究常数项级数的收敛性。
1. 收敛性的定义常数项级数收敛是指级数的部分和\(S_n = a_0 + a_1 + \ldots + a_n\)当\(n\)趋向于无穷大时有极限存在,即\[\lim_{{n \to \infty}} S_n = S\]这个极限称为常数项级数的和。
2. 收敛判别法常数项级数的收敛性常用的判别法有以下几种:2.1. 正项级数判别法如果常数项级数中的每一项都是非负数,且满足\(a_1 \leq a_2 \leq a_3 \leq \ldots\),那么级数收敛与否可以通过判断部分和序列\(S_n\)是否有上界来决定。
即如果存在一个实数\(M\)使得对于任意正整数\(n\),都有\(S_n \leq M\),那么级数收敛。
2.2. 比较判别法比较判别法分别有以下两种情况:2.2.1. 当级数\(S = a_0 + a_1 + a_2 + \ldots\)中的每一项\(a_n\)都是非负数且满足\(a_n \leq b_n\),其中级数\(T = b_0 + b_1 + b_2 + \ldots\)收敛时,级数\(S\)也收敛。
2.2.2. 当级数\(S = a_0 + a_1 + a_2 + \ldots\)中的每一项\(a_n\)都是非负数且满足\(a_n \geq b_n\),其中级数\(T = b_0 + b_1 + b_2 + \ldots\)发散时,级数\(S\)也发散。
2.3. 比值判别法比值判别法是判断正项级数的收敛性的一种方法。