常数项级数的判敛法
- 格式:ppt
- 大小:2.39 MB
- 文档页数:4
n 1n 1§ 11-2 常数项级数的审敛法一、正项级数及其审敛法正项级数: U n U n 0⑴n 1显然,部分和数列s n 单调增加:s 1 s 2Sn . s n1.收敛准则定理1正项级数 U n 收敛部分数列S n 有界.n 1n例1判别正项级数亠的收敛性定理2设 U n 和V n 都是正项级数,且U n V . (nn 1n 1则 U n 收敛;反之, n 1 若 U n 发散,则 V n 发散.n 1 n 1 分析: V nn 1,贝U U n 的部分和 n 1 S n U 1 U 2 U n V 1 V 2 V n (n 1,2,),即S n 有界,由TH1知 U n 收敛。
反之,设n 1U n 发散,则n 1V n n 1必发散.因为若V n 收敛,由上面已证结论知 U n 也收敛,与假设矛盾n 11解「sin 2 22221 1 I 2n1 1 22Sin 2n1 1 1 2n2 222n1有上界 级数收敛1,2,).若 V n 收敛,n 12.比较审敛法推论 设 U n 和 V n 都是正项级数,如果级数 V n 收敛,且存在自然数 N,使n 1n 1kv n (k 0)成立,则级数 u n 收敛;如果级数 v n 发散,且当n Nn 1n 1分析:因为级数的每一项同乘不为零的常数 k ,以及去掉级数前面的有限项不会 影响级数的收敛性.注:比较审敛法的:必须有参考级数。
常用:几何级数, p —级数(调级数)例3判别下列级数的敛散性. 当n N 时有U n 时有 u n kv n (k 0)成立,则级数 U n 发散.n 1例2讨论p —级数⑵的收敛性,其中常数p>0.1,当n则書n时,1丄,但调和级数发散,故级数(2)发散. n有1 n pIn 1n p2dxx(nn p 1n 2,3,考虑级数(n 1) 级数(3)的部分和sn1 2卩11 3p 11 =1 1(n 1)p1 = (n 1)p 1因S n 1 .故级数(3)收敛. 由推论 1知,级数⑶当p>1时收敛.总之:p —级数(2)当p 1时发散,当p>1时收敛.(1).n n 121 n 5n 2U nn12 2^2n 5n 2n 8n丄发散,原级数发散 n 1 n(2).1 . 1 sin — n〔 n 1 n 1 U n 原级数收敛3. 比较审敛法的极限形式定理3设 u n 和n 1V n 都是正项级数,n 10 或 lim 土nV n例4判别下列级数的敛散性.4. 比值审敛法能发散.(证略,可参考教材) 例5判别下列级数的敛散性:(1)3 n n lim U n 1 - 1,级数收敛n 13n U n 3⑵n!nlim U n 1 lim n 1 级数发散n 1 2n U nn 2⑶n 1 nxn 1x 0lim U n 1 x0 x 1收敛,x 1 发散x 1发散n U n5.根值审敛法----柯西判别法(1)如果 lim unnV n(0 I),且级数V n 收敛,则级数 U n 收敛;n 1n 11(1) si nn 1 n.1 sinlim n n 10,丄发散 原级数发散n 1 n⑵ 2nta nn 13li mn1 2ntan]3nn2 3n2收敛收敛3,且级数 V n 发散,则级数 U n 发散n 1n 1(2)如果 limU nnV n 定理4设 u n 为正项级数,如果n 1lim 山 nU n则当1级数收敛;U n 11 (或 limnU n)时级数发散; 1时级数可能收敛也可例7判别下列级数的敛散性二、交错级数及其审敛法);(2) limu n 0,n则级数收敛,且其和S U 1,其余项r n 的绝对值r交错级数:U 1 U 2 U 3U 4(4)U 1 U 2 U 3U 4,其中U i ,u都是正数.定理7(莱布尼兹定理)如累交错级数(1)n1U n 满足条件:n 1定理5设 U n 为正项级数,如果lim n U nn 1n,则当 1时级数收敛, 1(或Hm nU n)时级数发散, 例6判别下列级数的敛散性1时级数可能收敛也可能发散.(证略,可参考教材)nU n n11Zn-0(nnn)1,级数收敛—5‘n imn ,n 31,级数发散6根限审敛法(与p —级数作比较)定理6设 u n 为正项级数,n 1(1)如果 lim nu n l 0 或 lim nu nnn,则 U n 发散;n 1⑶如果p 1,而limn p u nl 0nU n 收敛。
常数项级数敛散性判别法总结摘要:本文简要阐述了常数项级数敛散性判别法。
由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。
关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。
无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。
在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。
主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。
1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。
若部分和数列{Sn}有极限S,即,则称级数(1)收敛。
若部分和数列{Sn}没有极限,则称级数(1)发散。
注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。
极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。
借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。
例如,由性质(1)和当|q|0时,01,则发散。
当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。
比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。
例2:判别级数的敛散性。
解:因为由比值判别法知级数收敛。
2.3 根植判别法设为正项级数,若有,则当0≤r1,则发散。
当级数含有n次幂,型如an或(un)n选用根值判别法。
根值判别法不需要与已知的基本级数进行比较。
常数项级数敛散性判别法总结作者:李娜来源:《山东工业技术》2014年第24期摘要:本文简要阐述了常数项级数敛散性判别法。
由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。
关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。
无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。
在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。
主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。
1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。
若部分和数列{Sn}有极限S,即,则称级数(1)收敛。
若部分和数列{Sn}没有极限,则称级数(1)发散。
注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。
极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。
借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。
例如,由性质(1)和当|q|2 正项级数敛散性判别法若级数各项均为非负数,则称该级数为正项级数。
正项级数收敛的充要条件是它的部分和数列有上界。
正项级数有以下几种常用判别法:2.1 比较判别法设与都是正项级数,且un≤vn(n=1,2,…),则收敛时,收敛;发散时,发散。
比较判别法适用范围比较广泛,当级数表达式型如,un为任意函数或un含有sinθ或cosθ等三角函数的因子可以进行适当的放缩时,选用比较判别法。
常数项级数的审敛法定义 形如:级数其中即: 正、负项相间的级数称为交错级数。
列如莱布尼茨判别法 莱布尼茨定理:如果交错级数满足条件则级数收敛,其其和其余项的绝对值注意:只有当级数是交错级数时,才能用此判别法,否则将导致错误 注意:莱布尼兹判别法只是充分条件,非必要条件.使用本判别法时,关键是第一个条件的验证是否收敛时, 要考察与 大小111()n n n u ∞-=-∑n u >0111,2,3,);n n u u n +≥=L ()(lim 0,n x u →∞=(2)1,s u ≤nr 1.n n r u +≤0n u ≥()n u 1n u +n n u u +≥>10.()111111111(1)=1(1)234n n n n n∞--=--+-++-+∑L L().1112(1)1234(1)n n n n n ∞--=-=-+-++-+∑L L().这是一个交错级数又因为n n u u n n +=>=+1111,且显然收敛速度较慢.收敛。
使用本判别法时,关键是第一个条件的验证是否收敛时, 要考察与大小比较 与大小的方法有: 比值法差值法11111111(1)=1(1)234n n n n n∞--=--+-++-+∑1n u n =1lim lim 0n n n u n →∞→∞==n r n ≤+1||.10n u ≥()n u 1n u +n n u u +≥>10.()n u 1n u +11n nu u +<10n n u u +->11n n u u +≥()lim 0n x u →∞=(2)则交错级数111() n n n u ∞-=-∑。