焊接变形的影响因素与控制(一)
- 格式:docx
- 大小:12.45 KB
- 文档页数:2
浅议焊接变形的影响因素及控制方法[摘要]随着社会的发展,工农等各行各业对焊接技术的要求越来越多、越来越严格,在焊接工作的实际操作过程中,由于焊接本身所具有的的特性很易造成急剧的非平衡加热及冷却,结构将不可避免地产生不可忽视的焊接残余变形。
针对钢结构工程焊接技术的重点和难点,根据多年的工程实践经验,本文主要阐述实用焊接变形的影响因素及控制措施和方法。
【关键词】焊接变形;影响因素;控制措施一、焊接变形的主要形式还接变形的形式很多,主要集中在收缩变形、角变形、弯曲变形、扭曲变形、波浪变形和错边变形等。
二、影响变形的因素和危害性1.焊接材料因素焊接材料和母材料的材质对焊接变形都会产生影响,通常来说,焊接材料和母材料均为金属制品,金属特有的热物理性能参数和力学性能参数都对焊接变形的产生过程有重要的影响。
材料的热传导系数将直接决定焊接变形,一般热传导系数越大,温度梯度越小,对焊接变形的影响越小。
材料的力学性能中热膨胀影响最为显著,另外材料在高温区的屈服极限和弹性模量也会影响焊接的质量。
2.焊接结构因素焊接变形的影响因素中影响最大的是焊接结构的设计,也是最复杂的因素。
其总体原则是随拘束度的增加,焊接残余应力增加,而焊接变形则相应减少。
焊接时,结构工件本身的拘束度是随着焊接的进行而不断变化的,一般来说,结构非常复杂时,其自身的拘束度作用在焊接过程中的主导作用将非常显著,结构本身在焊接过程中,其拘束度随复杂程度增加。
通常在设计焊接结构时,需要采用筋板或加强板来提高结构的稳定性和刚性,这会造成工作了的加大和焊接变形分析的难度。
3.焊接工艺因素相对于焊接材料和焊接结构等因素来说,焊接工艺对焊接变形的影响要复杂多样些,其影响方面也更多样化。
焊接工艺对焊接变形的影响方面包括焊接方法、焊接输入电流电压量、构件的定位、固定方法、焊接顺序、焊接胎架、夹具的应用等。
其中焊接顺序对焊接变形影响最为显著,一般情况下,改变焊接顺序可以改变残余应力的分布及应力状态,减少焊接变形。
焊接变形的产生原因和影响变形的主要因素「焊接变形系列」我们经常说焊接变形、要控制焊接变形,那么什么是焊接变形,焊接变形的原因和影响因素有哪些?我们一起来回顾和了解,其中部分观点我们平时不了解、不熟悉、不知道。
焊接变形:焊接过程中被焊工件受到不均匀温度场的作用而产生的形状、尺寸变化称为焊接变形。
整个焊接行为进行的不同阶段一共存在两种变形方式:焊接瞬时变形和焊接残余变形,两者的主要不同:一个是在焊接过程中形成,一个是在焊接后仍然存在。
焊接瞬时变形:在焊接过程中焊件产生的随时间变化的变形称为焊接瞬时变形。
焊接残余变形:在焊接完成后被焊工件完全冷却到室温时仍然存在的变形称为焊接残余变形。
我们都知道焊接是一个局部不均匀的加热和冷却过程,焊接变形的根本原因正是焊接过程中不均匀加热和冷却形成不同的温度场造成的。
单点的说就是:焊接过程中被焊材料受热和冷却时产生热胀冷缩,冷却收缩过程中出现不平衡收缩造成的。
焊接变形的根本原因是最基本的知识点之一。
而日常中我们说的要控制的焊接变形主要是指焊接残余变形,简称焊接变形。
影响焊接变形大小的因素很多,主要涉及以下几个方面:1、材料因素。
主要是指材料的热物理性能和力学性能。
热物理性能,特别是热传导系数将直接决定焊接变形,热传导系数越大,温度梯度越小,焊接变形就越小。
力学性能主要是热膨胀系数以及高温区屈服极限和弹性模量。
膨胀系数越大的材料其焊接变形量就越大;屈服极限增大,则会形成较高的残余应力变形增大;而弹性模量增大,弹性越好,越不容易发生塑性变形,焊接变形随之减少。
【塑性变形:不可恢复性,而弹性变形:可恢复】2、焊接结构。
焊接结构是影响焊接变形的最大因素之一,总体原则:拘束度增加,焊接变形减少。
焊接结构尽可能减少焊缝数量,避免不必要的焊缝。
尽可能用型钢、冲压件代替焊接件。
压型结构代替筋板焊接结构可以有效防止薄板的变形,自身要求不高的结构件可以适当增加平板的厚度减少筋板数量,从而减少焊接和变形的矫正量。
焊接应力和变形影响因素分析焊接应力和变形是焊接过程中不可避免的问题,对于焊接工艺和焊接接头的质量有着重要的影响。
本文将从焊接应力和变形的定义和影响因素入手,分析其对焊接质量的影响,并提出几种常用的控制焊接应力和变形的方法。
焊接应力是指焊接过程中产生的应力,包括热应力和残余应力。
热应力是由于焊接过程中产生的温度差引起的,而残余应力是由于焊缝冷却后产生的体积变化不一致引起的。
焊接变形指的是焊接过程中工件的形状发生改变。
焊接应力和变形的主要影响因素包括焊接材料的热膨胀系数、焊接过程中的热输入、焊接接头的几何形状和尺寸、焊接顺序等。
焊接材料的热膨胀系数是影响焊接应力和变形的重要因素之一。
不同材料的热膨胀系数不同,当焊接材料之间存在温度差时,就会产生应力。
一般来说,焊接接头的应力和变形与焊材的热膨胀系数成正比,因此在设计焊接接头时要考虑到材料的热膨胀系数,以减小应力和变形的产生。
焊接过程中的热输入也是影响焊接应力和变形的重要因素之一。
在焊接过程中,热输入的大小直接影响到焊接接头的温度分布和热量分布。
当热输入较大时,焊接接头受热均匀,产生的应力和变形较小;而当热输入较小时,焊接接头受热不均匀,可能产生较大的应力和变形。
因此,合理控制焊接过程中的热输入是减小焊接应力和变形的关键。
焊接接头的几何形状和尺寸也会影响焊接应力和变形的产生。
一般来说,焊接接头的表面积越大,焊接应力和变形越大。
因此,设计焊接接头时应考虑到减小焊接接头的表面积,以减少焊接应力和变形的产生。
焊接的顺序也会对焊接应力和变形产生影响。
一般来说,焊接时应从中心向两端均匀进行,避免集中焊接导致应力集中和变形集中。
此外,还应根据焊接接头的形状和特点,确定合适的焊接顺序,以减小应力和变形的产生。
为了控制焊接应力和变形,常用的方法包括预应力焊接、焊接变形补偿和焊接过程监测与控制等。
预应力焊接是通过给焊接材料施加预应力来减小焊接应力和变形的方法。
焊接变形补偿是通过在设计焊接结构时采用特殊形状和尺寸,以使其在焊接后的变形能够补偿焊接应力和变形。
焊接变形的影响因素和控制焊接变形是指焊接过程中,由于热应力和冷却被限制而引起的组件形状或尺寸的变化。
焊接变形不仅会影响组件的外观与尺寸精度,还可能导致应力集中、裂纹或变形失真。
因此,在实际焊接过程中,需要采取一系列措施来控制焊接变形。
影响焊接变形的因素主要有以下几点:1.材料的选择:材料的焊接温度和热膨胀系数不同,会导致热应力和冷却应力的不同,从而影响焊接变形。
因此,在选择材料时,应尽量选择具有相似热膨胀系数的材料,以减小焊接变形。
2.焊接方式的选择:不同的焊接方式对焊接变形的影响不同。
通常来说,焊接时应尽量选择低热输入的焊接方式,以减小热应力和冷却应力的产生。
3.焊接顺序的控制:焊接顺序的合理控制对减小焊接变形至关重要。
一般而言,由内而外、由下而上的焊接顺序有利于减小焊接变形。
此外,还可以通过跳焊、局部预热等方法控制焊接变形。
4.夹持和固定:夹持和固定可以有效地限制焊接件的变形。
在焊接过程中,应合理设计夹具,使其能够夹持和固定焊接件,从而减小翘曲和弯曲等变形。
5.控制焊接参数:焊接参数的选择对焊接变形也有重要影响。
例如,焊接电流、焊接速度、焊接温度等参数的调整可以控制焊接时的热应力和冷却应力,从而减小焊接变形。
6.预留余量:在焊接件的设计中,应留有一定的余量,以便在焊接变形时能够进行调整。
通过预留余量,可以降低焊接变形对工件的影响,提高焊接件的尺寸精度。
7.热处理:焊接件在焊接后进行热处理,可以通过回火、退火等方法来消除部分焊接应力,从而减小焊接变形。
总之,焊接变形是不可避免的,但通过合理的材料选择、焊接方式选择、焊接顺序控制、夹持固定、焊接参数调控、预留余量设计以及热处理等方法,可以有效地控制焊接变形,提高焊接质量和工件精度。
影响焊接应力和焊接变形的因素及控制措施摘要:本文主要探讨了电站管道焊接过程中常见的焊接变形和焊接应力产生的主要因素,以及焊接变形和焊接应力的控制措施,希望对以后的焊接工作有一些帮助。
关键词:焊接变形,焊接应力,热循环,焊接工艺,控制目前火力发电朝着大容量机组发展,来满足日益增长的用电需求和达到节能减排的重要目标。
而在火电建设事业中,焊接技术成了一个关键的课题。
在施工过程中,由于焊接产生的焊接变形和残余应力,严重影响着工程的质量、安装进度和使用性能。
增大了电厂运行的安全隐患。
因而,急需分析其产生的原因,并积极采用合理的方法予以控制。
焊接过程实际上是在焊件局部区域加热后又冷却凝固的热循环过程,由于不均匀的温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力并引起焊接变形。
焊接应力与变形对接头的性能有着较大影响,使得焊件强度、韧性下降。
因此将对焊接变形产生原因及其影响因素进行分析,针对不同的焊接施工过程特点,采取不同的措施进行处理,以达到降低或消除焊接变形的目的。
1、影响焊接变形的因素及控制措施1.1焊缝截面积的影响焊缝截面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向,横向的影响趋势是一致的,而且是主要的影响。
因此,在壁厚相同时,坡口尺寸越大,收缩变形越大。
1.2焊接热输入的影响一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
1.3焊接方法和焊接工艺参数的影响不同焊接方法引起的收缩量也不同。
当焊件的厚度相同时,单层焊的纵向收缩比多层焊收缩大,这是因为多层焊时,先焊焊道冷却后阻止了后焊焊道的收缩。
焊接工艺参数的影响主要为线能量。
一般规律是,随着线能量的增加,压缩塑性变形区扩大,因而收缩量增大。
1.4接头形式的影响在焊接热输入、焊缝截面积、焊接方法等因素条件相同时,不同的接头形式对纵向、横向变形量有不同的影响。
在电站管道焊接中,接头形式一般是对接接头并且是单面焊双面成型。
影响水电站钢结构焊接变形的因素与质量控制摘要:水电站钢结构质量的好坏和焊接施工密切相关,然而焊接变形却影响了水电站整体工程的质量,因此一定要做好焊接变形的质量控制。
本文介绍了水电站钢结构焊接变形的种类及其影响因素,从焊前控制、焊接中施工技术、焊后热处理三方面提出了控制焊接变形的措施,为焊工施工提供操作依据,提高钢筋焊接水平,确保钢筋焊接质量。
关键词:水电站;钢结构;焊接变形;质量控制abstract: hydropower station steel structure the stand or fall of quality and welding construction, however, closely related to the welding deformation is affects the whole hydropower station engineering quality, so must do the quality control of welding deformation. this paper introduces the hydropower station steel structure types of welding deformation and its influencing factors, from before welding, welding control in construction technology, postweld heat treatment three aspects put forward control welding distortion measures, for welding construction to provide the basis for operation, improve the steel welding level, ensure that steel welding quality.keywords: hydropower station; steel structure; weldingdistortion; quality control中图分类号: tv73 文献标识码:a 文章编号:2095-2104(2013)前言焊接变形是焊件在焊接过程中产生的变形,是钢结构制造中所遇到的一个普遍问题。
焊接变形的原因及控制方法焊接变形是指焊接过程中产生的结构形状、尺寸和应力的改变。
变形对于焊接结构的质量和使用寿命都具有重要影响,因此需要采取控制措施来减少焊接变形。
1.熔融区的体积收缩:在焊接中,熔融区的温度升高,熔化的金属液体会发生体积收缩。
当焊接过程中发生多次的局部加热和熔化,熔融区收缩现象将会导致焊接件变形。
2.焊接应力:焊接过程中形成的焊接应力是导致焊缝及周边材料变形的重要原因。
焊接引起的应力主要有热应力和残余应力两种。
3.材料的热物理性质差异:焊接过程中,不同材料的热膨胀系数和热传导系数的差异也会导致焊件变形。
为了控制焊接变形,可以采取以下方法:1.合理设计焊接结构:通过合理设计焊接结构,可以减轻焊接变形产生的程度。
例如,在设计焊接结构时可以采用对称组织,增加长交叉焊缝间的连接来减轻焊接变形。
2.使用焊接工艺参数:调整焊接工艺参数,如焊接速度、焊接电流和电压等,可以减少焊接变形。
例如,在焊接速度控制方面,可以采用逆向焊接、速度波动焊接和脉冲焊接等方法来减少焊接变形。
3.采用预应力:对焊接材料进行预应力处理可以减少焊接变形的产生,常见的方法有热拉伸和压力留置法。
4.使用夹具和支撑物:采用夹具和支撑物对焊接结构进行支撑和固定,可以减少焊接变形的产生。
夹具可以限制材料的收缩和变形,支撑物能够提供必要的支撑力和刚度。
5.控制焊接热输入:通过控制焊接热输入来减少焊接变形。
可以采用分段焊接、小电流多道焊、局部加热等方法来降低焊接区域的温度梯度。
总之,焊接变形是焊接过程中难以避免的问题,但通过合理的设计和控制参数的调整,可以有效减少焊接变形的产生,提高焊接结构的质量和可靠性。
焊接变形原因及控制方法焊接是一种常见的金属连接方法,但在实际应用中,我们常常会遇到焊接件变形的问题。
本文将探讨焊接变形的原因以及控制方法,帮助读者更好地理解和解决这一问题。
一、焊接变形的原因1. 焊接过程中的温度梯度:焊接时,焊缝区域受到高温的加热,而其它部位则保持较低的温度。
这种温度梯度会导致焊接件产生热应力,从而引起变形。
2. 残余应力的存在:焊接后,冷却过程中会产生残余应力。
这些应力会引起焊接件的变形,尤其是在焊接接头附近。
3. 材料的物理性质:不同材料在焊接过程中会由于热影响区域的不同导致不同的变形情况。
例如,具有较高热膨胀系数的材料在焊接后更容易发生变形。
二、焊接变形的控制方法1. 优化焊接工艺:通过合理安排焊接顺序、增加焊缝长度等方式来减小温度梯度,从而降低焊接变形的发生。
2. 使用预应力技术:在焊接过程中引入预应力,可以通过反向应力来抵消残余应力,从而减小焊接件的变形。
3. 控制焊接变形方向:合理预测焊接变形的方向,并采取相应的措施来控制变形。
例如,在设计中合理选择焊接结构和间隙,减小焊接残余应力对结构的影响。
4. 应用补偿技术:通过在焊接过程中进行额外的加工,例如机械加工或热处理等,来消除或减小焊接变形。
5. 使用支撑和夹具:通过设置支撑物或夹具来限制焊接件的变形,保持其形状和位置。
6. 使用适合的焊接方法:不同的焊接方法具有不同的变形控制效果。
在实际应用中,应根据具体情况选择适当的焊接方法,以减小焊接变形。
三、小结焊接变形是焊接过程中常见的问题,其产生原因主要包括温度梯度、残余应力和材料的物理性质。
为了控制焊接变形,我们可以通过优化焊接工艺、使用预应力技术、控制变形方向、应用补偿技术、使用支撑和夹具以及选择适合的焊接方法等方式进行控制。
只有在理解了焊接变形的原因并采取相应的措施后,我们才能更好地解决这一问题,并获得满意的焊接结果。
通过本文的探讨,相信读者对焊接变形的原因及其控制方法有了更深入的了解,这将有助于在实践中更好地应对焊接变形问题。
焊接应力与变形产生的原因及对策
焊接过程中,由于焊接热量的作用,会引起材料的膨胀和收缩,从而产生应力和变形。
这些应力和变形会影响焊接件的尺寸精度、强度和耐久性,甚至导致焊接件出现裂纹和变形失效。
造成焊接应力和变形的原因主要有以下几个方面:
1. 热应力:焊接过程中,由于焊接热量的作用,使得焊接区域的温度急剧升高,从而引起材料的扩张和收缩。
这种温度差异会产生热应力,导致焊接件发生变形和应力。
2. 冷却应力:焊接完成后,焊接件会迅速冷却,冷却速度过快会导致焊接件表面和内部温度梯度过大,产生冷却应力,进而引起应力和变形。
3. 材料不匹配:焊接材料的热膨胀系数、熔点、硬度等物理性质不同,容易导致焊接区域产生应力和变形。
4. 焊接结构设计不合理:焊接结构设计不合理,如焊接位置不当、焊接接头不够强壮等,容易导致应力集中和变形。
针对焊接应力和变形的问题,可以采取以下对策:
1. 控制焊接热量:采用合适的焊接参数,控制焊接热源的大小和位置,以减少焊接区域的温度梯度,从而降低应力和变形。
2. 加强冷却措施:在焊接完成后,采取适当的冷却措施,如缓慢冷却、局部加热等,以减少焊接件的冷却速度,从而降低冷却应力。
3. 选择合适的焊接材料:选择合适的焊接材料,如选择热膨胀
系数和熔点相似的材料,可以减少焊接区域的应力和变形。
4. 优化焊接结构设计:优化焊接结构设计,加强焊接部位的加强设计,采用适当的焊接方式和焊接技术,可以减少应力集中和变形。
总之,采取合适的对策,可以有效地控制焊接应力和变形,提高焊接件的质量和性能。
焊接变形的影响因素与控制(一)
摘要:在焊接过程中由于急剧的非平衡加热及冷却,结构将不可避免地产生不可忽视的焊接残余变形。
焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。
针对钢结构工程焊接技术的重点和难点,根据多年的工程实践经验,本文主要阐述实用焊接变形的影响因素及控制措施和方法。
关键词:焊接变形;影响因素;控制措施
Abstact:Obviousresidualweldingdeformationisproducedinstructureinevitablyunbalancedheatinga ndcoolingduringwelding.whicharekeyinfluencingfactorsofstructuraldesignintegrity,manufacturingt echnologyrationalityandstructuralreiability.Basedonemphasisanddifficultiesofstructuralwelding,in fluencingfactorsandcontrolmeasuresforweldingdeformationareintroducedaccordingtoconstructio nexperience.
Keywords:weldingdeformation;influencingfactor;controlmeasure
钢材的焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加的焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的钢材连接成整体。
由于焊接加热,融合线以外的母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。
这样,在焊接完成并冷却至常温后该塑性变形残留下来。
1焊接变形的影响因素
焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。
影响焊接变形的因素很多,但归纳起来主要有材料、结构和工艺3个方面。
1.1材料因素的影响
材料对于焊接变形的影响不仅和焊接材料有关,而且和母材也有关系,材料的热物理性能参数和力学性能参数都对焊接变形的产生过程有重要的影响。
其中热物理性能参数的影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显著。
力学性能对焊接变形的影响比较复杂,热膨胀系数的影响最为明显,随着热膨胀系数的增加焊接变形相应增加。
同时材料在高温区的屈服极限和弹性模量及其随温度的变化率也起着十分重要的作用,一般情况下,随着弹性模量的增大,焊接变形随之减少而较高的屈服极限会引起较高的残余应力,焊接结构存储的变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范围不大,因而焊接变形得以减少。
1.2结构因素的影响
焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。
其总体原则是随拘束度的增加,焊接残余应力增加,而焊接变形则相应减少。
结构在焊接变形过程中,工件本身的拘束度是不断变化着的,因此自身为变拘束结构,同时还受到外加拘束的影响。
一般情况下复杂结构自身的拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中的拘束度变化情况随结构复杂程度的增加而增加,在设计焊接结构时,常需要采用筋板或加强板来提高结构的稳定性和刚性,这样做不但增加了装配和焊接工作量,而且在某些区域,如筋板、加强板等,拘束度发生较大的变化,给焊接变形分析与控制带来了一定的难度。
因此,在结构设计时针对结构板的厚度及筋板或加强筋的位置数量等进行优化,对减小焊接变形有着十分重要的作用。
1.3工艺因素的影响
焊接工艺对焊接变形的影响方面很多,例如焊接方法、焊接输入电流电压量、构件的定位或固定方法、焊接顺序、焊接胎架及夹具的应用等。
在各种工艺因素中,焊接顺序对焊接变形的影响较为显著,一般情况下,改变焊接顺序可以改变残余应力的分布及应力状态,减少焊接变形。
多层焊以及焊接工艺参数也对焊接变形有十分重要的影响。
焊接工作者在长期研究中,总结出一些经验,利用特殊的工艺规范和措施,达到减少焊接残余应力和变形,改善残余应力
分布状态的目的。