平面图形的认识整理与复习(2)
- 格式:doc
- 大小:23.50 KB
- 文档页数:3
初一平面图形的认识2知识点1. 平面图形的分类在初一的数学学习中,我们会接触到许多不同的平面图形。
根据图形的特征和性质,我们可以将平面图形分为以下几类:1.1 直线直线是最基本的平面图形,可以用于连接两个点。
直线是由无数个点组成的,延伸的方向上没有尽头。
1.2 射线射线是由一个起点向一个方向延伸出去的直线。
射线只有一个端点,并且在延伸的方向上没有尽头。
1.3 线段线段是由两个端点确定的直线部分。
线段有确定的长度,起点和终点之间没有延伸。
1.4 角角是由两条射线共享一个端点组成的图形。
角可以通过两条射线的夹角来衡量,常用单位是度或弧度。
1.5 矩形矩形是一个具有四个直角的四边形。
矩形的对边相等且平行,对角线相等。
1.6 正方形正方形是一种特殊的矩形,它的四个角都是直角,并且四条边相等。
1.7 三角形三角形是一个由三条线段组成的图形。
根据边的长度和角的大小,三角形可以进一步分为等边三角形、等腰三角形和一般三角形。
1.8 平行四边形平行四边形是一种具有两对平行边的四边形。
平行四边形的对边相等且平行。
2. 平面图形的性质和特征了解平面图形的性质和特征有助于我们更好地认识和理解它们。
2.1 直线的性质 - 直线没有宽度和长度,可以延伸到无穷远。
-直线上的任意两点可以被直线上的任意一点所连接。
- 直线上的两个相邻角互补,即它们的和为180°。
2.2 角的性质 - 角的单位通常使用度或弧度来衡量。
- 角的大小可以用角度来表示,度数为0到360之间。
- 两个互补角的和为90°,两个补角的和为180°。
2.3 矩形的性质 - 矩形的对边相等且平行。
- 矩形的所有内角都是直角(90°)。
- 矩形的对角线相等且互相平分。
2.4 三角形的性质 - 三角形的三个内角的和为180°。
- 等边三角形的三条边相等,三个内角也相等(都是60°)。
- 等腰三角形的两个底角相等。
天津市七年级数学试卷平面图形的认识(二)压轴解答题复习题(附答案)一、平面图形的认识(二)压轴解答题1.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(1)如(图1),当AE⊥BC时,求证:DE∥AC(2)若∠C=2∠B,∠BAD=x°(0<x<60)①如(图2),当DE⊥BC时,求x的值.②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.2.如图,已知AM//BN,∠A=600.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN.(1)求∠ABN的度数(2)当点P运动时,∠CBD的度数是否随之发生变化?若不变化,请求出它的度数。
若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数。
3.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知,则成立吗?请说明理由.(2)如图2,已知,平分,平分 . 、所在直线交于点,若,,求的度数.(3)将图2中的线段沿所在的直线平移,使得点B在点A的右侧,若,,其他条件不变,得到图3,请你求出的度数(用含m,n的式子表示).4.如图,现有一块含有30°的直角三角板ABC,且l1∥l2,其中∠ABC=30°。
(1)如图(1),当直线l1 和l2分别过三角板ABC的两个顶点时,且∠1=35°,则∠2=________°(2)如图(2),当∠ADE=80°时,求∠GFB的度数。
(3)如图(3),点Q是线段CD上的一点,当∠QFC=2∠CFN时,请判断∠ADE和∠QFG的数量关系,并说出理由。
5.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,,为、之间一点,连接,得到 .求证:小明笔记上写出的证明过程如下:证明:过点作,∴∵,∴∴ .∵∴请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若,,则 ________.(2)如图,,平分,平分,,则________.6.如图①,将两个边长为1的小正方形分别沿对角线剪开,拼成正方形ABCD.(1)正方形ABCD的面积为________,边长为________,对角线BD=________;(2)求证:;(3)如图②,将正方形ABCD放在数轴上,使点B与原点O重合,边AB落在x轴的负半轴上,则点A所表示的数为________,若点E所表示的数为整数,则点E所表示的数为________7.如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图2,若∠ABG=50°,∠BCD的平分线交AD于点E、交射线GA于点F.求∠AFC 的度数;(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,请直接写出的值.8.如图,直线CB和射线OA,CB//OA,点B在点C的右侧.且满足∠OCB=∠OAB=100°,连接线段OB,点E、F在直线CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠BOE(2)当点E、F在线段CB上时(如图1),∠OEC与∠OBA的和是否是定值?若是,求出这个值;若不是,说明理由。
怀文中学2012—2013学年度第二学期期中复习初 一 数 学第七章平面图形认识(二)命题:陈秀珍 审核人:郁胜军 班级 学号 姓名 得分一、概念复习;1.三角形的分类 (1)按角分三角形2.三角形的三边关系及其应用3.三角形的三线(1)三角形高线;(2)三角形角平分线;(3)三角形中线 4.三角形的内角和(1)三角形的内角和等于180 (2)直角三角形的两个锐角互余; 5.三角形外角的性质(1)三角形的一个外角等于与它不相邻的两个内角的和;∵∠ACD 是△ABC 的外角 ∴ ∠ACD =∠A +∠B(2)三角形的一个外角大于任何一个与它不相邻的内角。
∵∠ACD 是△ABC 的外角 ∴ ∠ACD >∠A ∠ACD >∠B6.多边形的内角和(1)n 边形内角和等于( n -2)180(2)n 边形从一个顶点出发的对角线条数为n-3 (3)n 边形对角线总条数为2)3-(n n7.多边形的外角和:任意多边形的外角和都为360o二、巩固与训练A 组训练题 一、选择题1. 下面的说法不正确的是( )(A )两点之间线段最短. (B)经过两点有且只有一条直线.锐角三角形 直角三角形 钝角三角形(2)按边分底和腰不等的等腰三角形三角形 不等边三角形等腰三角形等边三角形(1)三角形任意两边之和 大于第三边;(2)三角形任意两边之差 小于第三边;(3)两边之差的绝对值<第三边<两边之和. 判断给定三条线段能否构成一个三角形; 已知三角形的两边长,确定第三边的范围.方法:看较小两边的和是否大于最长边.ABC DA 1A 2A 3A 4A 5A n(C)过一点有且只有一条直线垂直于已知直线.(D)过直线外一点有且只有一条直线平行于已知直线.2.小于平角的角可分为()(A)锐角、钝角.(B)直角、平角.(C)余角、补角. (D)锐角、直角与钝角.3. 已知线段AB长3cm.现延长AB到点C,使BC=3AB.取线 B D段BC的中点D,线段AD的长为() C (A)4.5cm. (B)6cm. E(C)7cm. (D)7.5cm.4.如图,AO⊥BO,射线OC平分AOB∠,射线OD平分∠等于()O A∠,则COEBOC∠,射线OE平分AOD(A)110 (B)11.250(C)11.45 (D)12.25 (第4题).5.现代社会的交通越来越发达.从杭州到北京有汽车、火车、轮船和飞机 A四种交通工具可选择,这四种交通工具行驶的路程最短的是()(A)汽车. (B)火车. (C)轮船. (D)飞机.6. 如图,沿着图中的线从A走到B,至少要经过的角的个数是()(A)2. (B)3. (C)4. (D)5.7.在8:30,估计时钟上的时针和分针之间的夹角为() B(A)60 . (B)70 . (C)75 . (D)85 . (第6题) 8.已知点A,B分别在直线MN外和直线MN上,点A到直线MN的距离等于5cm,那么()(A)AB>5 cm. (B)AB<5 cm.(C)AB≥5 cm.(D)AB≤5 cm.9.过两点可确定一条直线,过A、B、C、三点,可确定直线的条数是()(A)1条(B)3条(C)1条或2条(D)1条或3条10.一个角的余角和这个角的补角也互为补角,那么这个角的度数等于()(A)900 (B)750 (C)450(D)15011.有四个人在同一地点观察同一建筑物时所报出的方位分别如下,其中正确的是()(A)偏南200 (B)北偏西1100 (C)南偏西700 (D)东偏南160012.∠а的余角是23017/38//,∠β的补角是113017/38//,那么∠а和∠β的大小关系是()(A)∠а>∠β(B)∠а=∠β(C)∠а<∠β(D)不确定13.下列说法中不正确的是()(A)同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直(B)从直线外一点到这条直线的垂线段叫做点到直线的距离(C)一条直线的条垂线可以画无数(D)连结直线外一点与直线上各点的所有线段中,垂线段最短二、填空题14. 已知一个角的余角等于这个角的4倍,则这个角的补角的度数等于.15. 比较大小:直角锐角;38.51 38 50ˊ1〞.16.数轴上点A,B,C分别表示-2,4,8,则AC-BO(O为数轴的原点)的长度等于.17.在同一平面内有不重合的三条直线,那么这三条直线有个交点. 18.图形是有、、、构成的。
小学数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 小学数学 / 小学六年级数学教案编订:XX文讯教育机构总复习空间与图形平面图形的认识(2)教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于小学六年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
教学内容:义务教育课程标准实验教科书97-98页“整理与反思”和“练习与实践”7-10题。
教学目标:1、通过复习,使学生加深对长方形.正方形.平行四边形.梯形.三角形和圆等平面图形基本特征的认识。
2、能用所学的知识解决一些简单的实际问题。
教学重点、难点:用所学的知识解决一些简单的实际问题。
教学设计:一、整理与复习1.提出要求:请大家回忆,我们学过哪些围成的平面图形?先画出相关的图形,再在小组里交流一下。
2.进一步要求;如果把这些平面图形分成两类,可以怎样分?引导学生认识到:由线段围成的平面图形分为一类,由曲线或由曲线和线段共同围成平面图形分为一类。
3.追问:由线段围成的平面图形都可称为什么图形?如果把多边形进一步分类,可以怎样分?4.让学生在画出的三角形.平行四边形和梯形上作高,在画出的圆中用字母标出圆心.半径和直径。
二、复习三角形的知识1、三角形的概念。
“我们已经学过三角形,请同学们自己画出几种不同的三角形。
”教师巡视。
“大家已经会画三角形了,说一说三角形是什么样的图形。
”(三角形是由三条线段围成的图形。
)“三角形具有什么特性?日常生活中哪些地方用到这一特性?”“在三角形中一个顶点的对边是哪一条边?看一看自己画的三角形,指一下每个顶点的对边。
”“想一想三角形的高指的是什么,怎样画一个三角形的高。
”教师巡视,检查学生的画法是否正确。
2、三角形的分类。
第7章《平面图形的认识(二)》考点+易错知识梳理重难点分类解析考点1 和平移有关的图形周长、面积计算【考点解读】本考点解题时,一般运用平移的性质(如:连接平移前后对应点的线段的长等于平移的距离)来解决有关图形的周长、面积计算问题.例 1 如图所示是重叠的两个直角三角形,将直角三角形ABC 沿BC 方向平移到DEF ∆.如果8AB =c m,4BE =cm,3DH =cm ,那么图中阴影部分的面积为 cm 2.分析:阴影部分是一个梯形,用我们目前所学的知识无法求出该梯形的上、下底和高,因而不能运用梯形的面积公式求其面积.注意到DEF ∆是由ABC ∆经过平移得到的,因此ABC DEF S S ∆∆=,即HEC DEF ABEH S S S S ∆∆+=+阴影梯形,于是ABEH S S =阴影梯形1(883)4262=+-⨯=(cm 2). 答案:26【规律·技法】本题考查平移的性质:经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等,对应角相等。
解题的关键是找到平移的对应点。
【反馈练习】1。
(2018·苏州期中)如图,将ABC ∆沿BC 方向平移2 cm 得到DEF ∆.若ABC ∆的周长为16 cm ,则四边形ABFD 的周长为( )A 。
16 c m B. 18 c m C. 20 c m D。
22 cm点拨:由平移的性质可知2BE FC AD ===cm,AC DF =。
2。
(2018·扬州期末)如图是某公园里一处长方形风景欣赏区ABCD ,长50AB =m ,宽30BC =m,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1 m ,那么小明沿着小路的中间从出口A 到出口B 所走的路线(图中虚线)长为 m.点拨:分别求出小明横向和纵向移动的距离即可。
考点2 利用平行线的性质和三角形内角和定理求角度大小【考点解读】本考点解题时要熟练掌握平行线的性质与三角形内角和定理,这是解题的基础,要善于分解图形,即将较复杂的图形分解出“两条平行线被第三条直线所截"与“三角形”的图形,然后分析各角之间的联系.例2 (2017·重庆)如图,//AB CD ,E 是CD 上一点,42AEC ∠=︒,EF 平分AED ∠交AB于点F ,求AFE ∠的度数.分析:由互补的性质求出AED ∠的度数,由角平分线的定义得出DEF ∠的度数,再由平行线的性质即可求出AFE ∠的度数.解答:因为42AEC ∠=︒,所以18042138AED ∠=︒-︒=︒。
第七章 平面图形的认识(二)一、知识梳理1、在同一平面上,两条直线的位置关系有 或者 .练习:平面内三条直线的交点个数可能有 ( )A. 1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个2、判定与性质:什么叫做平行线?在同一平面内, 的两直线叫平行线。
的两直线平行。
判 定性 质(1) ,两直线平行。
(2) ,两直线平行。
(3) ,两直线平行。
(1)两直线平行, 。
(2)两直线平行, 。
(3)两直线平行,互补。
如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
(等积变形)(2)如图,长方形ABCD 的面积为16,四边形BCFE 为梯形,BC 与DE 交于点G,则阴)如图,对面积为,使得记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5= .(4)已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C ,连接AB ,AC ,BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有 个.(1)如图,边长为3cm ,与5cm 的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积是______cm 2(π取3).F3、图形的平移 在平面内,将一个图形沿着________________移动____________,这样的____________叫做图形的平移。
4、平移的性质(1)平移不改变图形的_______、________,只改变图形的_________。
苏科版七年级数学下册第7章《平面图形的认识(二 )》解答题常考题(二)1.一零件形状如图,按规定∠A应等于75°,∠B和∠C应分别是18°和22°,某质检员量得∠BDC=114°,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.2.如图,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.3.完成下列推理结论及推理说明:如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知AB∥CD()∠B=()又∵∠B=∠D(已知)=(等量代换)∴AD∥BE()∠E=∠DFE()4.如图,AB∥CD,∠FGB=154°,FG平分∠EFD,求∠AEF的度数.5.如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB 的度数.6.如图,已知∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=140°,求∠AFG的度数.7.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明);探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=度;拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC =度.8.如图,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射线EF∥AC.(1)判断射线EF与BD的位置关系,并说明理由;(2)求∠C,∠D的度数.9.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.10.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.11.如图,已知AB∥CD,直线分别交AB、CD于点E,F,∠EFB=∠B,FH⊥FB.(1)已知∠B=20°,求∠DFH;(2)求证:FH平分∠GFD;(3)若∠CFE:∠B=4:1,则∠GFH的度数.12.如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且AD⊥CE于F,ED平分∠CEB,若∠ADC=40°,∠A﹣∠B=10°,求∠BDE的度数.13.如图,∠ABC=180°﹣∠A,EF∥BD,∠1+∠2=96°,DO⊥AD交EF于点O.求∠BDO 的度数.14.如图,已知:AB∥CD,DB⊥BC,∠1=40°,求∠2的度数.完成下面的证明过程:证明:∵AB∥CD(),∴∠1=∠BCD=40°().∵BD⊥BC,∴∠CBD=.∵∠2+∠CBD+∠BCD=(),∴∠2=.15.已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=60°,求:∠D的度数.参考答案1.解:如图,延长BD与AC相交于点E,∵∠1是△ABE的外角,∠A=75°,∠B=18°,∴∠1=∠B+∠A=75°+18°=93°,同理,∠BDC=∠1+∠C=93°+22°=115°,∵李师傅量得∠BCD=114°,不是115°,∴这个零件不合格.2.(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴∠BAC=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=55°,∴∠DAE=55°﹣37.5°=17.5°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.3.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D(已知),∴∠DCE=∠D(等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.4.解:∵AB∥CD,∠FGB=154°,∴∠GFD=180°﹣∠FGB=180°﹣154°=26°,∵FG平分∠EFD,∴∠EFD=2∠GFD=2×26°=52°,∵AB∥CD,∴∠AEF=∠EFD=52°.5.解:∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.6.解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=140°,∴∠1=40°,∴∠AFG=90°﹣40°=50°.7.解:探究:连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;相加可得∠BDC=∠A+∠B+∠C;应用:由探究的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;故答案为:40;拓展:由探究的结论易得∠BDC=∠BAC+∠ABC+∠ACB,易得∠ABC+∠ACB=50°;而∠BEC=(∠ABC+∠ACB)+∠A,代入∠BAC=100°,∠BDC=150°,易得∠BEC=125°故答案为:1258.解:(1)EF∥BD,∵∠A+∠B=(90+x)°+(90﹣x)°=180°,∴AC∥BD,∵EF∥AC,∴EF∥BD;(2)∵AC∥EF∥BD,∴∠CEF=∠C,∠DEF=∠D,∵∠CED=90°,∴∠C+∠D=90°,联立,解得.9.解:∵BE为△ABC的角平分线,∴∠CBE=∠EBA=34°,∵∠AEB=∠CBE+∠C,∴∠C=80°﹣34°=46°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=44°.10.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.11.解:(1)∵AB∥CD,∠B=20°,∴∠DFB=20°,∵FH⊥FB,∴∠BFH=90°,∴∠DFH=90°﹣∠DFB=70°;(2)证明:∵AB∥CD,∴∠DFB=∠B,∵∠EFB=∠DFB,∵∠DFB+∠DFH=90°,∴∠EFB+∠GFH=90°,∴∠GFH=∠DFH,∴FH平分∠GFD;(3)∵AB∥CD,∴∠CFB+∠B=180°,∵∠EFB=∠B,∠CFE:∠B=4:1,∴∠EFB=30°,∴∠GFH=90°﹣30°=60°.故答案为:60°.12.解:∵AB∥CD,∵∠A﹣∠B=10°,∴∠B=30°,∵AD⊥EF,∴∠AFE=90°,∴∠AEF=50°,∴∠BEC=130°,∵DE平分∠BEC,∴∠BED=∠BEC=65°,∴∠BDE=180°﹣30°﹣65°=85°.13.解:∵∠ABC=180°﹣∠A,即∠ABC+∠A=180°,∴AD∥BC,∴∠1=∠3,又∵EF∥BD,∴∠2=∠3,∴∠1=∠2,又∵∠1+∠2=96°,∴2∠1=96°,∠1=48°,又∵DO⊥AD,∴∠ADO=90°,∴∠BDO=90°﹣∠1=42°.答:∠BDO的度数为42°.14.证明:∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.15.解:∵AB∥CD,∴∠A=∠1,∵∠A+∠1=60°,∴∠1=∠A=30°,∴∠ECD=∠1=30°,∵DE⊥AE,∴∠DEC=90°,∴∠D=180°﹣∠DEC﹣∠ECD=60°.。
平面图形的认识(二)知识点总复习及强化练习【知识梳理】1.平行线的认识(1)认识三线八角:如图,两条直线被第三条直线所截,分成了八个角。
(2)平行的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
(3)平行的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
2.三角形的认识(1)三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
(2)三角形的内角和:三角形的内角和是180°(3)三角形内外角关系:一个外角大于和它不相邻的任意一个内角,等于和它不相邻的两个内角和。
(4)三角形的分类:直角三角形;锐角三角形;钝角三角形。
(5)三角形的三线:角平分线;中线;高线。
3.多边形的外角和与内角和公式。
【例题精讲】题型一:平行的判定与性质例1.如图所示,AB∥CD,AF平分∠CAB,CF平分∠ACD.计算(1)∠B+∠E+∠D=________;(2)∠AFC=________.例2.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________.题型二:折叠问题例1.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=__________.与AD交于点G,例2.如图,把矩形ABCD沿EF折叠,点A、B分别落在A′、B′处.A′B′若∠1 =50°,则∠AEF=()A.110°B.115°C.120°D.130°题型三:多边形的内角和与外角和例1.一多边形内角和为2340°,若每一个内角都相等,求每个外角的度数.......。
例2.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.例3.如图,已知∠DAB+∠D=180°,AC平分∠A,且∠CAD=25°,∠B=95°(1)求∠DCA的度数;(2)求∠ACE的度数.题型四:拓展延伸例1.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=200,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.例2.如图,△ABC中,BE,CD为角平分线且交点为点O,当∠A=600时,(1)求∠BOC的度数;(2)当∠A=1000时,求∠BOC的度数;(3)若∠A=α时,求∠BOC的度数。
平面图形的认识(二)知识点总结一、直线平行的条件1.关于同位角、内错角和同旁内角同位角、内错角和同旁内角是两条直线被第三条直线所截得到的,因此识别这三种角的关键是认清第三条直线,即截线.这三种角有各自的特征.同位角的特征:在截线的同旁,被截两直线的同方向;内错角的特征:在截线的两旁,被截两直线的中间;同旁内角的特征:在截线的同旁,被截两直线之间.【例】填空1.∠1和∠3是,它是直线和被直线所截而成的;2.∠4和∠5是,它是直线和被直线AC所截而成的;3.∠2和∠6是,它是直线和BC被直线所截而成的;4.∠5和∠7是,它是直线和被直线AC所截而成的.2.关于两条直线互相平行的条件利用平移三角尺的方法画平行线,探索同位角与直线平行的关系:图中,当∠1与∠2相等,所画的直线a、b就;当∠1与∠2不相等时,直线a、b_________两直线平行的判定方法:①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;简称:______________________________.②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;简称:______________________________.③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;简称:______________________________.④垂直于同一条直线的两条直线互相平行。
⑤(平行线公理推论)如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
⑥(平行线定义)在同一平面内,不相交的两条直线平行。
【例】如图,(1)因为∠1=∠2,所以_______∥_______,理由是______________;(2)因为∠3=∠D,所以_______∥_______,理由是______________;(3)因为∠B+∠BCD=180°,所以_______∥_______,理由是______________.【例】如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC与BD平行吗?AE与BF平行吗?为什么?试猜想AC与BF的位置关系.二、直线平行的性质探索平行线的性质:平行线的性质:性质一:两条平行线被第三条直线所截,同位角相等简称:________________________________.性质二:两条平行线被第三条直线所截,内错角相等简称:________________________________.性质三:两条平行线被第三条直线所截,同旁内角互补简称:________________________________.【例】已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解:AD是∠BAC的平分线,理由如下:因为AD⊥BC,EG⊥BC(已知),所以∠4=90°,∠5=90°(_______).所以∠4=∠5(_______).所以AD∥EG(______________).所以∠1=∠E(_______),∠2=∠3(______________).因为∠E=∠3(已知),所以 _______=_______(_______),所以AD是∠BAC的平分线(_______).【例】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明你的理由.【例】将一张长方形纸片如图所示折叠后,再展开,如果∠1=55°,那么∠2等于______°三、图形的平移1、平移的概念在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫作平移。
平面图形的认识二知识点及试作者:日期: 2第七章平面图形的认识(二)、平行线1、同位角、内错角、同旁内角的定义两条线(a,b )被第三条(c)直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角(corresponding angles) 如图:Z1与/8, Z2与/7,/3与/6,/4与/5均为同位角。
两条线(a,b )被第三条(c)直线所截,两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
如图:/1与/6,72与/5均为同位角。
两条线(a,b )被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side ) 。
女口图:71与7 5,72与7 6均为同位角。
2、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
3、平行线的判定(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)平行于同一直线的两直线平行4、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation ),简称平移。
5、平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
二、三角形1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。
要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数; (2)正多边形的每个内角都相等,都等于(2)180nn°.2. 多边形的外角和:任意多边形的外角和都为360°.要点诠释:多边形的外角和为360°.n边形的外角和恒等于360°,它与边数的多少无关. 【典型例题】类型一、平行线的性质与判定例1.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是( ).A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6= .例2.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.类型二、图形的平移例3.(吉林)如图所示,把边长为2的正方形的局部进行图①~④的变换,组成图⑤,则图⑤的面积是( )A.18 B.16 C.12 D.8举一反三:【变式】如图,AB∥DC,ED∥BC,AE∥BD,写出图中与△ABD面积相等的三角形。
类型三、认识三角形例4. 如图,P为△ABC内任意一点,试比较AB+AC与PB+PC的大小,并说明理由。
举一反三:【变式】下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)例5.已知如图∠xOy=90°,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,当点A,B分别在射线Ox,Oy上移动时,试问∠C的大小是否发生变化?如果保持不变,请说明理由;如果随点A,B的移动而变化,请求出变化范围.类型四、多边形的内角和与外角和例6.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180° B.720° C.1080° D.540°举一反三:【变式】如图,∠1+∠2+∠3+∠4+∠5=320°,则∠6=.举一反三:【变式1】如图,AC、BD相交于点O, ∠A+∠B=∠C+∠D吗?为什么?【变式2】如图,△ABC的角平分线BD、CE相交于点P,∠A=70°,求∠BPC的度数.课后练习:一、选择题1.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C .第一次向左拐50°,第二次向左拐130°.D .第一次向左拐50°,第二次向右拐130°.2.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是( ).A .同位角B .同旁内角C .内错角 D. 同位角或内错角3. 如图所示,b ∥c ,a ⊥b ,∠1=130°,则∠2=( ).A .30° B. 40° C. 50° D. 60°4.如图,1753DE //AB,CAE CAB,CDE ,∠=∠∠=65B ∠=,则∠AEB =( ). A .70 B .65 C .60 D .555.一个凸n 边形,除一个内角外,其余n -1个内角的和是2400°,则n 的值是( ).A.15B.16C.17D.不能确定6. 如图所示,把一张对面互相平行的纸条折成如图所示,EF 是折痕,若∠EFB =32°,则下列结论不正确的有( ).A.32='∠EF C B. ∠AEC =148° C. ∠BGE =64° D. ∠BFD =116°7. 过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( )A .8B .9C .10D .118.如图把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间的数量关系保持不变,请找一找这个规律,你发现的规律是( ). A B C ' D ' C D E F GA、∠A=∠1+∠2B、2∠A=∠1+∠2C、2∠A=2∠1+∠2D、3∠A=2(∠1+∠2)二、填空题9. 如图所示,AB∥CD,点E在CB的延长线上.若∠ECD=110°,则∠ABE的度数为________.10.如图所示,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A、B两岛的视角∠ACB等于________.11.如图所示,AB∥CD,MN交AB、CD于E、F,EG和FG分别是∠BEN和∠MFD的平分线,那么EG 与FG的位置关系是.12.如图,一块梯形玻璃的下半部分打碎了,若∠A=125°,∠D=107°,则打碎部分的两个角的度数分别为 .13.如图,∠1=∠2,∠A=60°,则∠ADC=度.14. 如图,某个窗户上安装有两扇可以滑动的铝合金玻璃窗ABCD 和A /B /C /D /,当玻璃窗户ABCD 和A /B /C /D /重合时窗户是打开的;反之窗户是关闭的。
平面图形的认识(二)一、两条直线被第三条直线所截,构成“三线八角”同位角三线八角内错角同旁内角1、同位角:两条直线被第三条直线所截,如果两个角分别在两条直线相同的一侧,且在第三条直线的同旁,那么这两个角叫做同位角2、内错角:两条直线被第三条直线所截,如果两角分别在两条直线之内,且在第三条直线的两旁,那么这两个角叫做内错角。
3、同旁内角:两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角。
注意:构成“三线八角”的不仅可以是直线,也可以是线段或射线。
“三线八角”与直线是否平行无关。
二、平行线的判定及性质1、同一平面内两条直线的位置关系:平行(概念):同一平面内两条不相交的直线。
相交(包括:重合)2、两直线平行的判定方法:⑴、根据平行线的定义。
温故⑵、两条直线都与第三条直线平行,那么这两条直线也相互平行。
⑶、同位角相等,两直线平行。
⑷、内错角相等,两直线平行。
⑸、同旁内角互补,两直线平行。
3、平行线的性质:⑴、两直线平行,同位角相等。
⑵、两直线平行,内错角相等。
⑶、两直线平行,同旁内角互补。
⑷、平行线间的距离处处相等。
(平行线间的距离:一条平行线上的一点到另一条平行线垂线段的长度。
)注意:平行线性质判断所给角的关系,前提条件是“两条直线被第三条直线所截”。
三、图形的平移1、平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。
注意:平移是由平移的方向和距离决定的,平移不改变图形的形状和大小。
2、平移的性质:⑴、对应点的连线平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等。
⑵、对应角相等,对应角的两边分别平行且方向一致。
注意:平移后,对应角相等,对应线段平行且相等。
对应点之间线段的长度就是平移的距离。
四、认识三角形:1、三角形的概念:由三条不在同一直线上的线段,首尾依次相接组成的图形。
2、三角形的分类:锐角三角形(三个角都是锐角)⑴、按角分直角三角形(有一个角是直角)钝角三角形(有一个角是钝角)不等边三角形(三边都不相等)⑵、按边分一般等腰三角形(两边相等)等腰三角形等边三角形(三边都相等)3、三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
第17课时平面图形的认识整理与复习(2)
教学内容:
苏教版六下P88 “练习与实践”第6~9题,思考题。
教学目标:
1.学生加深对长方形、正方形、平行四边形、梯形、三角形和圆等平面图形基本特征和相关知识的认知,进一步理解各类平面图形之间的关系,能应用知识进行计算或判断。
2.学生进一步体会平面图形知识的联系,积累学习平面图形知识的经验和方法;能解释自己的判断和应用的方法,发展简单的推理、判断能力;进一步培养空间观念。
3.学生进一步感受图形与几何领域内容的趣味性和挑战性,感受认识图形的收获,产生学习数学的积极情感,增强学好数学的自信心。
教学重点:
理解平面图形的特征及其相互关系。
教学难点:
理解平面图形之间的联系和区别。
教学过程:
一、揭示课题
1.回忆图形。
引导:今天我们继续复习图形的认识,主要复习围成的平面图形。
先请同学回忆一下,我们学过哪些围成的平面图形?先画出相关的图形,再和同桌相互说一说。
集体交流,了解学过的平面图形:三角形、长方形、正方形、平行四边形、梯形、圆……
2.图形分类。
(1)提问:如果把这些平面图形分成两类,你打算怎样分?把你的想法与同桌交流。
集体交流,引导学生明确。
(2)提问:多边形包括哪些图形?
3.引入复习。
谈话:刚才我们回忆了学过的平面图形,今天就整理复习这些平面图形的知识。
二、回顾与反思
(一)整理复习三角形的知识
1.引导:什么是三角形?你学过三角形的哪些知识?同桌相互说一说。
集体交流,教师板书画三角形。
2.提问:三角形分为哪几类?按边的特点来看,有哪几种特殊的三角形?
出示三角形分类关系和包含的集合图。
提问:看图说一说,三角形是怎样分类的?
提问:怎样的三角形是等腰三角形?怎样的三角形是等边三角形?看图想一想,等边三角形是等腰三角形吗?为什么?
提问:想一想,等腰三角形也有什么特征?等边三角形有什么特征呢?
3.出示问题:
(1)在一个三角形中,任意两边之和与第三边的长有什么关系?
(2)在一个三角形中,最多有几个直角?最多有几个钝角?为什么?
指名学生回答上面两个问题。
(二)整理复习四边形的知识
1.提问:怎样的图形是四边形?我们学过的四边形有哪些?你能根据对边平行的关系和不同图形特点的联系,试着说说这些四边形之间的关系吗?
根据学生交流的图形名称和关系,相应板书。
2.提问:平行四边形、梯形、长方形、正方形各有什么特征?
各个图形中字母表示图形的什么?图中高和底有怎样的位置关系?
追问:你能在看图说说这些图形之间的关系吗?
(三)整理复习圆的知识
1.提问:谁来说说用圆规怎么画圆?
引导:你知道圆的圆心、半径和直径吗?请在课本上圆里用字母表示出来。
交流:你是怎样表示的?
2.提问:你能看图说说圆的特征吗?
三、练习与实践
1.做“练习与实践”第6题。
出示第6题,了解要求。
(1)让学生依次完成第(1)题和第(2)题的画图。
提问:怎样画长4厘米、宽3厘米的长方形?怎样画底边上的高?
指名学生分别呈现画出的长方形和底边上的高,说明画法。
提问:每个图形中的高和底有怎样的位置关系?
(2)让学生完成第(3)题。
呈现学生画出的两个圆,说说怎样画的,引导说明是怎样确定半径的。
提问:图中大圆的直径是哪条线段?小圆的直径是哪条线段的长?
从图上看,圆的大小是由什么决定的?
2.做“练习与实践”第7、8题。
(1)出示第7题。
提问:围一个等腰三角形,你准备选哪三根小棒?为什么?先在小组里讨论。
指名回答,让学生说说是怎样想的。
(2)学生独立完成第8题。
集体校对,让学生说说是怎样计算的。
四、拓展练习
1.做“练习与实践”第9题。
出示第9题。
提问:把正六边形分割成6个完全一样的图形,可以有几种不同的分法?先小组讨论,再试着分一分。
集体交流,展示学生的不同分法,说说各是分成的什么图形。
2.讨论思考题。
学生读题,理解题意。
要求学生先在图中画出相应的线段,再数一数框架内的三角形一共有多少个,并说一说这些三角形各是什么三角形。
提示:数三角形时,可以先数单个的三角形,再数由两个小三角形拼合而成的三角形。
集体交流讨论。
五、全课总结
提问:这节课复习了哪些内容?你有什么收获,还有什么问题?。