现代仪器分析色谱分析
- 格式:ppt
- 大小:1.29 MB
- 文档页数:34
现代仪器分析技术在食品安全检测中的应用分析随着人们对食品安全的日益关注,食品检测技术成为保障食品安全的重要手段。
现代仪器分析技术(包括色谱、液相色谱、质谱、红外光谱等技术)在食品安全检测中广泛应用,不仅具有极高的分析精度、准确性和可靠性,而且能够快速、高效地进行检测分析。
色谱分析技术是一种分离技术,广泛应用于食品安全检测中。
其中,气相色谱(GC)和液相色谱(HPLC)是最常用的两种色谱分析技术。
1. 气相色谱在食品检测中的应用气相色谱技术通常用于检测食品中的有机污染物,如农药残留、挥发性有机物、环境污染物等。
在农药残留检测中,GC技术可以快速、准确地检测出多种农药残留,如氨基甲酸酯类、氯氰菊酯类、有机磷类等。
此外,在监测食品中的揮發性有機物时,气相色谱技术也得到了广泛的应用,如味精等调味品中的苯甲醛、气体难闻挥发性有机物的检测等。
液相色谱技术通常用于检测食品中的营养成分、添加剂、药物残留等物质。
例如,在检测食品中的添加剂时,HPLC技术可以检测多种食品添加剂,如甜味剂、食品色素等。
质谱是一种分析技术,其原理基于分析物质的分子量和分子结构。
质谱分析技术具有高灵敏度、高分辨率、高重复性、高可靠性等优点,广泛应用于食品安全检测中。
在食品中,质谱分析技术通常用于检测污染物、添加剂、药残等物质。
例如,在瘦肉精检测中,液相质谱(LC-MS)技术可以快速准确地检测出瘦肉精残留,保证消费者的健康。
此外,在检测食品中的添加剂和药物残留时,质谱技术的高灵敏度和高分辨率也使其成为了一种重要的检测手段。
红外光谱技术是一种无损测试技术,通过测量物质在红外区的吸收光谱来分析物质结构和组成。
在食品检测中,红外光谱技术通常可以检测食品中的脂肪、蛋白质、碳水化合物等成分。
例如,在奶制品中,红外光谱技术可以检测出蛋白质含量、氨基酸含量和脂肪含量等信息,为奶制品质量的控制提供了有效的手段。
总之,现代仪器分析技术在食品安全检测中起着重要作用,能够对食品中的污染物、添加剂和营养成分等进行快速准确的检测。
以下进行分析。
固定液用量一般为15--25‰。
大多数情况下,采用固体吸附剂作为固定相。
⑸要求担体粒度均匀、细小,但粒度过细阻力过大,使柱前压增大,对操作不利。
一般使用60—80目的担体比较适宜。
3、固定液的性质及用量:气相色谱使用的固定液可见上一节,原则上来讲,所有气相色谱使用的固定液均可用于液相色谱分析中。
在液相色谱法中将固定相分为以下几类:⑴全多孔型担体:高效液相色谱法早期使用的担体与气相色谱法相类似,是颗粒均匀的多孔球体,例如由氧化硅、氧化铝、硅藻土制成的直径为100μm左右的全多孔型担体。
由于分子在液相中的扩散系数要比气相中小4—5个数量级,所以填料的不规则性和较宽的粒度范围所形成的填充不均匀性成为色谱峰扩展的一个明显原因。
另外,由于孔径分布不一,并存在“裂隙”,在颗粒深孔中形成滞留液体(液坑),溶质分子在深孔中扩散和传质缓慢,这样就进一步促使色谱峰变宽。
为了克服上述缺点,应降低填料的颗粒,并从装柱技术上改进,使之能装填出均匀的色谱柱,这样就能达到很高的柱效。
20世纪70年代初期出现了小于10μm直径的全多孔型担体,它是由nm级的硅胶微粒堆聚而成为5μm或稍大的全多孔小球。
由于其颗粒小,传质距离短,因此柱效高,柱容量也不小。
⑵表层多孔型担体(又称薄壳型微珠担体):它是直径为30~40μm的实心核(玻璃微珠),表层上附有一层厚度约为1~2μm的多孔表面(多孔硅胶)。
由于固定相仅是表面很薄一层,因此传质速度快,加上是直径很小的均匀球体,装填容易,重现性较好,因此在20世纪70年代前期得到较广泛使用。
但是由于比表面积较小,因此试样容量低,需要配用较高灵敏度的检测器。
随着近年来对全多孔微粒担体的深入研究和装柱技术的发展,目前粒度为5~10μm的全多孔微粒担体是使用最广泛的高效填料。
从原则上讲,气相色谱用的固定液,只要不和流动相互溶,就可用作液—液色谱固定液。
但考虑到在液—液色谱中流动相也影响分离,故在液—液色谱中常用的固定液只有极性不同的几种,如强极性的β,β’—氧二丙腈,中等极性的聚乙二醇—400和非极性的角鲨烷等。
仪器分析及其方法仪器分析是指利用各种仪器设备进行样品分析的科学技术领域。
它是现代分析化学的重要分支,具有高准确度、高灵敏度、高选择性等特点,广泛应用于环境监测、药品检测、食品安全等领域。
仪器分析的方法主要包括物质分离、物质识别与测定、物质结构研究等方面。
下面我们详细介绍几种常见的仪器分析方法。
一、光谱分析法:光谱分析法利用物质与电磁波相互作用的原理,通过测量样品在不同波长或频率下的吸收、发射、散射等光谱特性来进行分析。
常见的光谱分析方法有紫外可见吸收光谱法、红外光谱法、核磁共振光谱法等。
二、电化学分析法:电化学分析法是利用电化学基本原理,通过物质与电极界面的电化学反应产生的电流、电势等信号来进行分析。
常见的电化学分析方法包括电位滴定法、极谱分析法、循环伏安法等。
三、色谱分析法:色谱分析法是以固定相与流动相之间的分配作用对物质进行分离与测定的方法。
常见的色谱分析方法有气相色谱法、液相色谱法、超临界流体色谱法等。
四、质谱分析法:质谱分析法是利用物质的质量与电荷比在磁场中的运动轨迹和谱图进行分析的方法。
常见的质谱分析方法有质谱仪法、飞行时间质谱法、离子阱质谱法等。
五、核素分析法:核素分析法是利用放射性核素的独特性质进行分析的方法。
常见的核素分析方法有放射计数法、伽马射线分析法、中子活化分析法等。
六、电子显微镜分析法:电子显微镜分析法是利用电子束与样品相互作用所产生的信号来进行分析的方法。
常见的电子显微镜分析方法包括扫描电子显微镜、透射电子显微镜等。
七、光电分析法:光电分析法是利用光电效应测量电流或电压信号进行分析的方法。
常见的光电分析方法有光电比色法、光电导比法、光电堆积法等。
这些仪器分析方法各具特点,可以根据不同样品的性质和需要选择相应的方法进行分析。
仪器分析方法的发展使得分析结果更加准确、灵敏,缩短了分析时间,提高了工作效率,大大推动了科学研究和工业生产的进程。
现代仪器分析方法
现代仪器分析方法包括:
1. 液相色谱法(HPLC):用于分离和测定液体和溶液中的化学成分。
2. 气相色谱法(GC):用于分离和测定气体和挥发性液体中的化学成分。
3. 质谱法(MS):用于确定化合物的分子式、结构和质量。
可以与色谱法结合使用,例如气相色谱-质谱联用(GC-MS)。
4. 原子吸收光谱法(AAS):用于测定金属元素的含量和浓度。
5. 荧光光谱法:测量物质在吸收紫外或可见光后放射出的荧光。
6. 红外光谱法(IR):用于确定物质中的官能团和分子结构。
7. 核磁共振光谱法(NMR):用于确定物质的分子结构和官能团。
8. X射线衍射法(XRD):用于确定物质的结晶结构。
9. 表面分析技术(如扫描电子显微镜(SEM)和透射电子显微镜(TEM)):用于观察和分析材料的表面形貌和结构。
10. 热分析技术(如差示扫描量热仪(DSC)和热重分析(TGA)):用于测量材料在不同温度下的热稳定性和热性质。
这些现代仪器分析方法在科学研究、环境监测、食品安全、制药和化工等领域广泛应用。
现代仪器分析与应用引言:现代仪器分析是研究化学物质和生物系统的基本组成、结构及其性质的一种重要手段。
随着科学技术的不断发展,各种先进的仪器和分析方法逐渐应用于化学分析、环境监测、药物研发、生物学研究等领域。
本文将对现代仪器分析与应用领域进行探讨。
一、现代仪器分析的发展历程现代仪器分析的发展可以追溯到19世纪,当时以化学分析为主要手段。
20世纪初,光谱学的发展使得我们可以通过物质的光谱特性来分析其组成和结构。
20世纪60年代后,质谱仪的出现引发了一场仪器分析的革命。
随着计算机技术的发展,各种仪器的自动化和智能化程度不断提高,使得仪器分析的速度和准确性有了显著提高。
二、常见的现代仪器分析方法1.质谱法:质谱法是一种通过分析物质的质谱图谱来确定其分子结构和组成的方法。
质谱法广泛应用于生物医学、食品安全、环境监测等领域。
2.核磁共振(NMR):核磁共振是通过测量分子中的原子核在磁场中的共振现象来确定物质的结构和性质。
核磁共振广泛应用于有机合成、药物研发以及材料科学领域。
3.液相色谱法(HPLC):液相色谱法是利用溶液中固定相和液相之间的相互作用来分离和鉴定化合物的方法。
液相色谱法广泛应用于药物分析、环境监测以及食品安全检测等领域。
4.气相色谱法(GC):气相色谱法是通过将样品挥发成气体,然后通过固定相中一系列与样品成分有选择的相互作用进行分离和鉴定的一种方法。
气相色谱法广泛应用于石油化工、环境监测以及食品安全检测等领域。
三、现代仪器分析在不同领域的应用1.化学分析:现代仪器分析在化学分析领域的应用非常广泛。
它可以通过测量物质的光谱、质谱、核磁共振谱等来确定其组成和结构,同时还可以测量物质的各种化学性质。
化学分析在无机化学、有机化学、生物化学、分析化学等领域都有重要应用。
2.环境监测:现代仪器分析在环境监测领域的应用主要用于监测大气、水体、土壤等环境中的污染物。
通过使用质谱仪、液相色谱仪、气相色谱仪等仪器,可以精确测量出环境中的微量污染物,为环境保护和资源利用提供科学依据。
现代仪器分析方法及应用一、分光光度法分光光度法利用物质对光的吸收、散射、干涉、闪烁等现象进行分析。
常用的分光光度法有紫外可见分光光度法、红外吸收分光光度法、原子吸收分光光度法等。
分光光度法广泛应用于药物分析、环境分析、食品分析等领域。
二、电化学方法电化学方法通过测定电极上物质的电荷转移过程或与电极表面发生的电化学反应来进行分析。
常用的电化学方法有电位滴定法、电化学溶液分析法、恒定电流伏安法等。
电化学方法在药物分析、环境分析、金属离子检测等方面具有广泛应用。
三、质谱分析法质谱分析法通过测定样品中物质的质量与电荷比来进行分析。
常用的质谱分析法有质子化质谱法、电喷雾质谱法、时间飞行质谱法等。
质谱分析法在有机化合物的结构分析、食品中农药残留的检测以及毒性物质的鉴定等方面具有重要应用。
四、色谱分析法色谱分析法通过分离和测定化合物混合物中不同组分的相对含量来进行分析。
常用的色谱分析法有气相色谱法、液相色谱法、超高效液相色谱法等。
色谱分析法广泛应用于药物分析、食品分析、环境分析等领域。
五、核磁共振法核磁共振法利用原子核间的磁耦合和原子核的磁共振现象来进行分析。
常用的核磁共振法有氢核磁共振波谱法、碳核磁共振波谱法等。
核磁共振法在有机化合物结构鉴定、药物分析和生物分子结构研究等方面具有重要应用。
六、质量光谱法质量光谱法通过测定物质的质量与电荷比来进行定性和定量分析。
常用的质谱法有线性离子阱质谱法、四级杆质谱法等。
质谱法广泛应用于有机物质的结构分析、药物代谢研究以及环境污染物的检测等领域。
以上是现代仪器分析方法的几个主要方向,这些方法在现代化学分析中具有重要的地位和作用。
随着科学技术的不断发展,这些方法将进一步提高其灵敏度、准确性和快速性,为化学分析提供更多的选择和可能性。
同时,仪器分析方法的应用范围也将进一步拓展,为人类社会的发展与进步做出更大的贡献。
《现代仪器分析》名词解释1、仪器分析:以物质的物理性质或物理化学性质(如光、电、热等)及其在分析过程中所产生的分析信号与物质的内在关系为基础,并借助于比较复杂或特殊的现代仪器,对待测物质进行定性、定量及结构分析和动态分析的方法。
2、光(学)分析法:是利用待测组分的光学性质(如光的吸收、发射、散射、反射、折射、干涉、衍射、偏振等)进行分析测定的仪器分析方法。
3、光谱:由光波按其波长或频率有序排列所组成的光带.4、光谱分析法:是利用物质吸收光、发射光、散射光所给出的光谱波长与强度进行定性和定量分析的方法.5、单色光:只含有一种频率或波长成分的光。
6、复合光:含有多种频率或波长成分的光。
7、分析光(线):指负载了样品结构和组成信息的单色光(或复合光).8、杂散光:指定波长外的光,为干扰光,干扰负载信息的测定。
9、色散:将波长很宽的复合光分散开来,成为许多波长范围狭小的“单色光”的过程。
10、光的吸收定律(即Lamber – Beer定律):在一定浓度范围内,物质的吸光度A与吸光样品的浓度c 及厚度L的乘积成正比( A= κ c L,κ为摩尔吸收系数,是在一定温度下光吸收物质的一个特征常数,是物质对光吸收能力的量度)。
11、能级:即具有不同能量的电子层或轨道。
12、基态:能量最低的能级。
13、激发态:比基态能量高的能级.14、能级跃迁:物质粒子吸收或发射光子的过程。
15、激发:物质吸收光子后,由低能级跃迁到高能级的过程.16、原子光谱:是由气态原子发生外层纯电子能级跃迁而产生的线状光谱,17、分子光谱:主要是由分子中电子能级和振–转能级的跃迁而产生的带状光谱。
18、吸收光谱:当物质受到光能作用时,物质中的分子或原子吸收了特定(λ或υ)的光子之后,由基态被激发跃迁到激发态时所产生的光谱.19、发射光谱:处于激发态的分子或原子释放出所吸收的能量后,跃迁回到基态或较低能态时所产生的光谱。
20、(主)共振吸收线:原子的外层电子由基态跃迁到能量最低的第一激发态时所产生的吸收线.21、极大(峰)值吸收系数(K0):基态原子对波长等于中心波长(特征波长)的光的吸收系数.22、原子化:被测元素由试样中转入气相,并解离为基态原子的过程。
现代仪器分析实验报告实验报告:现代仪器分析实验一、实验目的本实验旨在介绍现代仪器分析的原理和应用,并通过实验操作,让学生掌握常用仪器的使用方法和数据分析技能。
二、实验步骤1.使用原子吸收光谱仪分析食品样品中的微量金属元素。
a.将食品样品与硝酸混合,进行酸解。
b.用氧/乙炔火焰产生气体,并使用火焰稳定器进行稳定。
c.将产生的气体通过光谱仪进行测试,记录吸光度的数据。
d.使用标准曲线法计算食品样品中金属元素的浓度。
2.使用气相色谱仪分析环境空气中的有机污染物。
a.装配气相色谱仪并进行参数设置。
b.存储样品并进行进样操作。
c.通过色谱柱分离样品中的有机污染物,并记录峰面积数据。
d.使用峰面积法计算样品中有机污染物的浓度。
3.使用核磁共振仪分析有机化合物的结构。
a.将样品溶解于溶剂中,并将溶液装入核磁管。
b.运行核磁共振仪,采集样品的核磁共振谱图。
c.根据谱图确定样品的分子结构。
4.使用超高效液相色谱仪分析药物中的成分。
a.预处理样品,将其溶解于溶剂中。
b.设置色谱仪的参数,包括流速、柱温等。
c.进行样品进样和色谱分离,记录峰面积和保留时间。
d.使用指纹图谱法进行数据分析,确定样品中药物成分的种类和含量。
三、实验结果1.食品样品中金属元素的浓度如下:金:0.05 mg/kg银:0.02 mg/kg铜:0.03 mg/kg2.环境空气中有机污染物的浓度如下:苯:10μg/m³甲苯:5μg/m³二甲苯:2μg/m³3.样品的核磁共振谱图如下:化合物A:含4个苯环化合物B:含1个醇基和1个甲基4.药物中的成分和含量如下:成分A:含量0.1%成分B:含量0.2%成分C:含量0.3%四、实验讨论1.通过原子吸收光谱仪分析食品样品中的金属元素含量,可以判断食品的安全性。
2.气相色谱仪能够高效地分离和检测环境空气中的有机污染物,对环保工作具有重要意义。
3.核磁共振仪能够精确地确定有机化合物的结构,为有机化学研究提供重要依据。
一、实验目的1. 掌握气相色谱-质谱联用仪(GC-MS)的基本原理和操作方法。
2. 学习如何进行样品前处理,包括提取、净化和浓缩。
3. 通过实验,分析样品中的未知化合物,并鉴定其结构。
4. 熟悉数据处理和分析方法,如峰面积归一化、保留时间校正等。
二、实验原理气相色谱-质谱联用仪(GC-MS)是一种分离和分析复杂混合物中化合物的高效手段。
它结合了气相色谱(GC)的高分离能力和质谱(MS)的高灵敏度和高选择性。
GC-MS的原理是:首先,将样品通过气相色谱柱进行分离,然后进入质谱仪进行检测和鉴定。
三、实验仪器与试剂1. 仪器:气相色谱-质谱联用仪(美国安捷伦,型号7890A-5975C)、气相色谱柱(DB-5MS,30m×0.25mm×0.25μm)、进样器、质谱仪、工作站等。
2. 试剂:正己烷、乙酸乙酯、环己烷、石油醚、丙酮、无水硫酸钠、样品等。
四、实验步骤1. 样品前处理- 称取一定量的样品,用正己烷溶解,转移至离心管中。
- 加入适量无水硫酸钠,振荡混匀,静置,取上层溶液。
- 将溶液转移至浓缩管中,在氮气吹扫下浓缩至近干。
- 用正己烷溶解残渣,转移至进样瓶中,备用。
2. 气相色谱-质谱联用仪操作- 打开气相色谱-质谱联用仪,预热约30分钟。
- 设置气相色谱参数:柱温程序、流速、进样量等。
- 设置质谱参数:扫描范围、扫描速度、离子源温度等。
- 启动工作站,进行数据处理和分析。
3. 数据分析- 将色谱图导入工作站,进行峰面积归一化。
- 根据保留时间和质谱图,对未知化合物进行鉴定。
- 查阅标准谱库,确定化合物的结构。
五、实验结果与讨论1. 通过气相色谱-质谱联用仪,成功分离并鉴定了样品中的多种化合物。
2. 鉴定结果与标准谱库中的谱图高度一致,证明鉴定结果的准确性。
3. 实验过程中,发现以下问题:- 样品前处理过程中,部分样品溶液出现浑浊现象,可能是因为样品中含有杂质。
- 部分化合物的质谱图与标准谱库中的谱图相似度不高,可能是因为样品浓度较低或存在同分异构体。
现代仪器分析综述现代仪器分析是一门基于物理、化学和工程学原理的科学和技术领域,通过仪器仪表的使用来分析和测量样品的性质和成分。
随着科学技术的不断发展和进步,现代仪器分析在许多领域中得到广泛应用,包括环境科学、生物医学、材料科学、化学工程等。
本文将综述现代仪器分析的一些重要方法和应用。
现代仪器分析的一项重要技术是光谱学。
它包括紫外可见光谱、红外光谱、拉曼光谱、核磁共振光谱等。
紫外可见光谱用于测量物质在紫外和可见光波段的吸收或发射现象,可以用来确定物质的组成和浓度。
红外光谱通过测量物质对不同波长红外光的吸收,可以确定物质的分子结构和功能官能团。
拉曼光谱则通过测量物质对激光的散射光谱,可以分析物质的分子振动和晶格结构。
核磁共振光谱是测量物质在外加磁场作用下的核自旋能级差异,用于确定化合物的分子结构和核组成。
除了光谱学外,现代仪器分析还包括质谱、色谱、电化学和热分析等技术。
质谱是一种通过测量样品中离子和分子的质量-荷比率,来确定其成分和结构的方法。
质谱仪可用于分析样品中各种化合物的分子量和相对丰度,从而进行定性和定量分析。
色谱技术是一种通过对样品中化合物分离和测量来分析其成分和浓度的方法。
常见的色谱技术包括气相色谱、液相色谱和薄层色谱等。
电化学是研究电荷和电化学反应的科学,包括电化学分析和电化学合成等领域。
热分析则是通过测量样品随温度变化的质量、体积、导电性等性质来分析样品的组成和热行为。
现代仪器分析在环境科学、生物医学、材料科学和化学工程等领域有广泛的应用。
在环境科学中,仪器分析可用于污染物监测和环境质量评估。
例如,通过质谱和色谱等技术可以分析空气中的有害气体和颗粒物,了解空气质量和大气污染源。
在生物医学领域,仪器分析可用于生物分子的检测和药物的分析。
例如,核磁共振和质谱等技术可以用于确定人体内的代谢产物和药物浓度,诊断疾病和评估药物治疗效果。
在材料科学中,仪器分析可用于材料的成分和结构表征。
例如,电子显微镜和X射线衍射等技术可以观察材料的微观结构和晶格排列,研究材料的性能和应用。
现代仪器分析方法随着科学技术的不断发展,人们对于仪器分析方法也有了更高的要求。
现代仪器分析方法采用了许多新的先进仪器和技术手段,具有高度的灵敏性、准确性和可靠性,广泛应用于各个领域。
本文将对现代仪器分析方法进行详细介绍。
一、光谱分析方法光谱分析是通过测量物质与电磁辐射的相互作用,来研究物质性质的一种方法。
其中,红外光谱、紫外光谱、拉曼光谱和核磁共振谱等是常用的几种光谱分析方法。
红外光谱分析可以用来鉴定物质的结构和功能官能团,广泛应用于有机化学和药物工业等领域。
紫外光谱分析可以用来研究物质的电子结构和反应机理,广泛应用于药物、生物化学和环境科学等领域。
拉曼光谱分析可以用来研究物质的分子振动和晶格振动,广泛应用于材料、生物和环境领域。
核磁共振谱分析可以用来研究物质的分子结构和核自旋状态,广泛应用于化学、物理和生物学等领域。
二、质谱分析方法质谱分析是通过测量物质分子的质量和相对丰度来鉴定和测量物质的方法。
通过质谱仪的加速离子的方法将待测样品中的分子离子化,并在电磁场中进行分离和检测,最后获得质谱图。
质谱分析具有高分辨率和高灵敏度的特点,可以应用于有机化学、生物化学、环境科学等领域。
三、色谱分析方法色谱分析是通过在固定相上的分离和移动,来分析样品中的成分的方法。
常见的色谱分析方法有气相色谱、液相色谱和超临界流体色谱。
气相色谱一般用于分析挥发性和热稳定性的物质,液相色谱一般用于分析疏水性和疏溶性的物质,超临界流体色谱一般用于分析温度和压力高的物质。
色谱分析方法具有高分离效应和准确性的特点,广泛应用于制药、化工和环境等领域。
四、电化学分析方法电化学分析是通过测量物质在电场作用下的电化学反应和现象来分析物质的方法。
常见的电化学分析方法有电位滴定法、电解析法、极谱法和电化学发光法。
电化学分析方法通过测量电流、电势和电荷等电化学参数,来分析物质的浓度、反应速率和物理化学性质等。
电化学分析方法具有高灵敏度和高选择性的特点,广泛应用于电化学工业、环境保护和生物化学等领域。
第二章习题解答1简要说明气相色谱分析的基本原理借在两相间分配原理而使混合物中各组分分离。
气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。
组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。
2.气相色谱仪的基本设备包括哪几部分?各有什么作用?气路系统.进样系统、分离系统、温控系统以及检测和记录系统.气相色谱仪具有一个让载气连续运行管路密闭的气路系统.进样系统包括进样装置和气化室.其作用将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中.3.当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么?答:固定相改变会引起分配系数的改变,因为分配系数只于组分的性质及固定相与流动相的性质有关.所以(1)柱长缩短不会引起分配系数改变(2)固定相改变会引起分配系数改变(3)流动相流速增加不会引起分配系数改变(4)相比减少不会引起分配系数改变4.当下列参数改变时: (1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么?答: k=K/b,而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关.故:(1)不变化,(2)增加,(3)不改变,(4)减小5.试以塔板高度H做指标,讨论气相色谱操作条件的选择.解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。
(1)选择流动相最佳流速。
(2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。
(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。