成都市2018届高三文科数学《天府数学高三冲刺专辑》模拟题二答案
- 格式:pdf
- 大小:1.25 MB
- 文档页数:4
成都市2018级高中毕业班摸底测试数 学(文科)本试卷分选择题和非选择题两部分。
第Ⅰ卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}20|{<<=x x A ,}1|{≥=x x B ,则=B A(A)}10|{≤<x x (B)}10|{<<x x (C)}21|{<≤x x (D)}20|{<<x x 2.复数i iiz (22-=为虚数单位)在复平面内对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.已知函数⎩⎨⎧>≤-=.0,ln 0|,1|)(x x x x x f ,则=))1((e f f(A)0 (B)1 (C)1-e (D)24.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部,教育部,团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高-(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日’’宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 若从随机数表第6行第9列的数开始向右读,则抽取的第5名学生的学号是 (A)17 (B)23 (C)35 (D)37 5.记函数)(x f 的导函数是)('x f .若2()cos x f x x π=-,则=)6('πf (A)61-(B)65 (C)6332- (D)6332+6. “3=k ”是“直线2+=kx y 与圆122=+y x 相切”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7.已知离心率为2的双曲线22221(0x y a a b -=>,)0>b 与椭圆22184x y +=有公共焦点,则双曲线的方程为(A)221412x y -=(B)221124x y -=(C)2213y x -=(D)2213x y -= 8.执行如图所示的程序框图,则输出的结果S 为(A)1- (C)0 (D)12--9.如图是某几何体的三视图.若三视图中的圆的半径均为2,则该几何体的表面积为 (A)π14 (B)π16 )(C π18 )(D π2010.在平面直角坐标系xOy 中,已知直线)1(:+=x k y l 与曲线θθθθ(cos sin 2sin 1:⎩⎨⎧+=+=y x C 为参数)在第一象限恰有两个不同的交点,则实数k 的取值范围为(A)(0,1) (B)1(0,)2 (C) (D)1)211.已知函数3||2)(2++-=x x x f .若)2(ln f a =,)3ln (-=f b ,)(e f c =,,则c b a ,,的大小关系为(A)c a b >> (B)a c b >> (C)c b a >> (D)b c a >>12.设R b k ∈,,若关于x 的不等式x b kx ln 1≥++在),0(+∞上恒成立,则kb的最小值是 (A)2e - (B)1e - (C)21e -(D)e -第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知呈线性相关的变量y x ,之间的关系如下表:由表中数据得到的回归直线方程为a x yˆ6.1ˆ+=.则当8=x 时,y ˆ的值为 . 14.函数32)(+-=x e x f 的图象在点))0(,0(f 处的切线方程为 .15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”,如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是 .16.已知点P 在椭圆22221(0)x y a b a b +=>>上,1F 是椭圆的左焦点,线段1PF 的中点在圆2222b a y x -=+上.记直线1PF 的斜率为k ,若1≥k ,则椭圆离心率的最小值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 2019年12月,《生活垃圾分类标志》新标准发布并正式实施,为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:各年龄段频数分布表(I)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中n m ,的值; (Ⅱ)现从年龄在)40,30[段中采用分层抽样的方法选取5名代表参加垃圾分类知识交流活动.应社区要求,从被选中的这5名代表中任意选2名作交流发言,求选取的2名发言者中恰有1名年龄在)40,35[段中的概率. 18.(本小题满分12分)已知函数12)(23-+++=a bx ax x x f 在1-=x 处取得极值0,其中a ,R b ∈. (I)求b a ,的值;(Ⅱ)当]1,1[-∈x 时,求)(x f 的最大值. 19.(本小题满分12分)如图①,在菱形ABCD 中,60=∠A 且2=AB ,E 为AD 的中点.将ABE ∆沿BE 折起使2=AD ,得到如图②所示的四棱锥BCDE A -. (I)求证:平面⊥ABE 平面ABC ;(Ⅱ)若P 为AC 的中点,求三棱锥ABD P -的体积.20.(本小题满分12分)在同—平面直角坐标系xOy 中,圆422=+y x 经过伸缩变换⎪⎩⎪⎨⎧==y y xx 21'':ϕ后,得到曲线C .(I)求曲线C 的方程;(Ⅱ)设曲线C 与x 轴和y 轴的正半轴分别相交于B A ,两点,P 是曲线C 位于第二象限上的一点,且直线PA 与y 轴相交于点M ,直线PB 与x 轴相交于点N .求ABM ∆与BMN ∆的面积之和.21.(本小题满分12分) 已知函数x x x f ln )1()(-=. (I)判断)(x f 的单调性;(Ⅱ)设1)1()(2+-+-=x a ax x g ,R a ∈.当],1[22e ex ∈时,讨论函数)(x f 与)(x g 图象的公共点个数. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为tt y t x (22221⎪⎪⎩⎪⎪⎨⎧=+=为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 6=. (I)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)已知点)0,1(P .若直线l 与曲线C 相交于B A ,两点,求22||1||1PB PA +的值.成都市2018级高中毕业班摸底测试数 学(文科)本试卷分选择题和非选择题两部分。
2018年四川省成都市高考数学二诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合P={x||x﹣1|<1},Q={x|﹣1<x<2},则P∩Q=()A.B.(﹣1,2)C.(1,2)D.(0,2)2.(5分)已知向量,,.若,则实数k的值为()A.﹣8B.﹣6C.﹣1D.63.(5分)若复数z满足(1+i)z=1﹣2i3,则|z|等于()A.B.C.D.4.(5分)设等差数列{a n}的前n项和为S n.若S4=20,a5=10,则a16=()A.﹣32B.12C.16D.325.(5分)已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是()A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m,n⊥m,则n⊥α6.(5分)在平面直角坐标系中,经过点且离心率为的双曲线的标准方程为()A.B.C.D.7.(5分)已知函数f(x)=A sin(ωx+φ)的部分图象如图所示.现将函数f(x)图象上的所有点向右平移个单位长度得到函数g(x)的图象,则函数g(x)的解析式为()A.B.C.g(x)=2cos2x D.8.(5分)若x为实数,则“”是“”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(5分)《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A.B.C.D.24π10.(5分)执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是()A.n≤7?B.n>7?C.n≤6?D.n>6?11.(5分)已知数列{a n}满足:当n≥2且n∈N*时,有a n+a n﹣1=(﹣1)n×3.则数列{a n}的前200项的和为()A.300B.200C.100D.012.(5分)已知函数f(x)=﹣1﹣nlnx(m>0,0≤n≤e)在区间[1,e]内有唯一零点,则的取值范围为()A.[,+1]B.[,+1]C.[,1]D.[1,+1]二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知,,则log2(ab)=.14.(5分)如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为.15.(5分)已知抛物线C:y2=2px(p>0)的焦点为F,准线l与x轴的交点为A,M是抛物线C上的点,且MF⊥x轴.若以AF为直径的圆截直线AM所得的弦长为2,则p =.16.(5分)已知函数f(x)=﹣x2﹣cos x,则不等式f(x+1)﹣f(1﹣3x)≥0的解集为三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数.(1)求函数f(x)的单调递减区间;(2)若△ABC的内角A,B,C所对的边分别为a,b,c,,,sin B=2sin C,求c.18.(12分)近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的2×2列联表如下:对优惠活动好评对优惠活动不满意合计对车辆状况好评10030130对车辆状况不满意403070合计14060200(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过APP向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过APP转赠给好友.某用户共获得了5张骑行券,其中只有2张是一元券.现该用户从这5张骑行券中随机选取2张转赠给好友,求选取的2张中至少有1张是一元券的概率.参考数据:参考公式:,其中n=a+b+c+d.19.(12分)如图,D是AC的中点,四边形BDEF是菱形,平面BDEF⊥平面ABC,∠FBD =60°,AB⊥BC,AB=BC=.(1)若点M是线段BF的中点,证明:BF⊥平面AMC;(2)求六面体ABCEF的体积.20.(12分)已知椭圆C:的左右焦点分别为F1,F2,左顶点为A,上顶点为B(0,1),△ABF1的面积为.(1)求椭圆C的方程;(2)设直线l:y=k(x+1)与椭圆C相交于不同的两点M,N,P是线段MN的中点.若经过点F2的直线m与直线l垂直于点Q,求|PQ|•|F1Q|的取值范围.21.(12分)已知函数f(x)=xlnx+ax+1,a∈R.(1)当时x>0,若关于x的不等式f(x)≥0恒成立,求a的取值范围;(2)当x∈(1,+∞)时,证明:<lnx<x2﹣x.选修4-4:极坐标与参数方程22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为,其中α为参数,α∈(0,π).在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P 的极坐标为,直线l的极坐标方程为=0.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点.求点M到直线l的距离的最大值.选修4-5:不等式选讲23.已知函数f(x)=|2x+1|+|x﹣1|.(1)解不等式f(x)≥3;(2)记函数f(x)的最小值为m,若a,b,c均为正实数,且,求a2+b2+c2的最小值.2018年四川省成都市高考数学二诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合P={x||x﹣1|<1},Q={x|﹣1<x<2},则P∩Q=()A.B.(﹣1,2)C.(1,2)D.(0,2)【解答】解:集合P={x||x﹣1|<1}={x|﹣1<x﹣1<1}={x|0<x<2},Q={x|﹣1<x<2},则P∩Q={x|0<x<2}=(0,2).故选:D.2.(5分)已知向量,,.若,则实数k的值为()A.﹣8B.﹣6C.﹣1D.6【解答】解:∵向量,,.∴=(3,﹣1),∵,∴=,解得k=﹣6.∴实数k的值为﹣6.故选:B.3.(5分)若复数z满足(1+i)z=1﹣2i3,则|z|等于()A.B.C.D.【解答】解:由(1+i)z=1﹣2i3,得,∴|z|=.故选:A.4.(5分)设等差数列{a n}的前n项和为S n.若S4=20,a5=10,则a16=()A.﹣32B.12C.16D.32【解答】解:设等差数列{a n}的首项为a1,公差为d,由S4=20,a5=10,得,解得a1=d=2.∴a16=a1+15d=2+15×2=32.故选:D.5.(5分)已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是()A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m,n⊥m,则n⊥α【解答】解:不妨设α∩β=l,对于A,若m⊂α且m∥l,则m∥β,故A错误;对于B,若m,n与l相交且不垂直,交点分别为M,N,显然m与n不一定垂直,故B 错误;对于C,若m⊥β,则m⊂α或m∥α,又m⊄α,故m∥α,故C正确;对于D,由面面垂直的性质可知当n⊂β时才有n⊥α,故D错误.故选:C.6.(5分)在平面直角坐标系中,经过点且离心率为的双曲线的标准方程为()A.B.C.D.【解答】解:根据题意,双曲线的离心率为,即e==,即c=a,则b==a,若双曲线的焦点在x轴上,则双曲线的方程为﹣=1,又由双曲线经过点,则有﹣=1,解可得a2=1,则此时双曲线的方程为﹣=1,若双曲线的焦点在y轴上,则双曲线的方程为﹣=1又由双曲线经过点,则有﹣=1,解可得:a2=﹣2,(舍)故双曲线的方程为﹣=1,故选:B.7.(5分)已知函数f(x)=A sin(ωx+φ)的部分图象如图所示.现将函数f(x)图象上的所有点向右平移个单位长度得到函数g(x)的图象,则函数g(x)的解析式为()A.B.C.g(x)=2cos2x D.【解答】解:函数f(x)=A sin(ωx+φ)的部分图象如图所示.则:,A=2所以:T=π,解得:ω=2,当x=时,f()=0,即:2,解得:,(k∈Z),当k=1时,,故:f(x)=2sin(2x+),现将函数f(x)图象上的所有点向右平移个单位长度得到:函数g(x)=2sin(2x﹣)的图象.故选:D.8.(5分)若x为实数,则“”是“”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:,x>0时,,解得:1≤x≤2.∴“”是“”成立的必要不充分条件.故选:B.9.(5分)《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A.B.C.D.24π【解答】解:如图所示,该几何体为四棱锥P﹣ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB==.∴该阳马的外接球的体积:=.故选:C.10.(5分)执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是()A.n≤7?B.n>7?C.n≤6?D.n>6?【解答】解:模拟程序框图的运行过程,如下:s=0,a=2,n=1,进入循环,s=2,a=4;不满足条件,执行循环,n=2,s=2+4=6,a=6;不满足条件,执行循环,n=3,s=6+6=12,a=8;不满足条件,执行循环,n=4,s=12+8=20,a=10;不满足条件,执行循环,n=5,s=20+10=30,a=12;不满足条件,执行循环,n=6,s=30+12=42,a=14;不满足条件,执行循环,n=7,s=42+14=56,a=16;此时满足条件,终止循环,输出s=56;∴判断框内应填n>6?.故选:D.11.(5分)已知数列{a n}满足:当n≥2且n∈N*时,有a n+a n﹣1=(﹣1)n×3.则数列{a n}的前200项的和为()A.300B.200C.100D.0【解答】解:当n≥2且n∈N*时,有a n+a n﹣1=(﹣1)n×3.可得a2+a1=3,a4+a3=3,a6+a5=3,…,a200+a199=3,则数列{a n}的前200项的和为:(a1+a2)+(a3+a4)+…+(a199+a200)=3×100=300.故选:A.12.(5分)已知函数f(x)=﹣1﹣nlnx(m>0,0≤n≤e)在区间[1,e]内有唯一零点,则的取值范围为()A.[,+1]B.[,+1]C.[,1]D.[1,+1]【解答】解:∵f(x)=﹣1﹣nlnx(m>0,0≤n≤e),x∈[1,e],∴f′(x)=﹣﹣=<0,∴f(x)区间[1,e]上单调递减,∵f(x)=﹣1﹣nlnx(m>0,0≤n≤e)在区间[1,e]内有唯一零点,∴f(1)≥0,f(e)≤0,∴,画出约束条件的可行域,如图所示,则表示定点P(﹣1,﹣2)与可行域内点的斜率,当经过点A(1,e)时,斜率最大,最大为=1+,联立,解得m=e2+e,n=e当经过点B(e+e2,e),斜率最小,最小为,故的取值范围为[,1+],故选:A.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知,,则log2(ab)=﹣.【解答】解:,,ab=•=.则log2(ab)=﹣.故答案为:﹣.14.(5分)如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为24.【解答】解:根据等高条形图知,该年级喜欢篮球运动的男生有500×0.6=300(人),女生有500×0.2=100(人);从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为32×=24(人).故答案为:24.15.(5分)已知抛物线C:y2=2px(p>0)的焦点为F,准线l与x轴的交点为A,M是抛物线C上的点,且MF⊥x轴.若以AF为直径的圆截直线AM所得的弦长为2,则p=2.【解答】解:把x=代入y2=2px可得y=±p,不妨设M在第一象限,则M(,p),又A(﹣,0),∴直线AM的方程为y=x+,即x﹣y+=0,∴原点O到直线AM的距离d==,∵以AF为直径的圆截直线AM所得的弦长为2,∴=+1,解得p=2.故答案为:.16.(5分)已知函数f(x)=﹣x2﹣cos x,则不等式f(x+1)﹣f(1﹣3x)≥0的解集为{x|x≤0或x≥1}【解答】解:根据题意,函数f(x)=﹣x2﹣cos x,则f(﹣x)=﹣(﹣x)2﹣cos (﹣x)=﹣x2﹣cos x=f(x),则函数f(x)为偶函数,函数f(x)=﹣x2﹣cos x,则导数f′(x)=﹣x+sin x,当x≥0时,f′(x)≤0,则函数在(0,+∞)上为减函数;f(x+1)﹣f(1﹣3x)≥0⇒f(x+1)≥f(1﹣3x)⇒|x+1|≤|1﹣3x|,解可得:x≤0或x≥1,则不等式的解集为{x|x≤0或x≥1},故答案为:{x|x≤0或x≥1}.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数.(1)求函数f(x)的单调递减区间;(2)若△ABC的内角A,B,C所对的边分别为a,b,c,,,sin B=2sin C,求c.【解答】解:(1)=,由,k∈Z,解得,k∈Z;∴函数f(x)的单调递减区间为,k∈Z;(2)∵,A∈(0,π),∴;∵sin B=2sin C,∴由正弦定理,得b=2c;又由余弦定理a2=b2+c2﹣2bc cos A,,得,解得c=1.18.(12分)近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的2×2列联表如下:(1)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过APP向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过APP转赠给好友.某用户共获得了5张骑行券,其中只有2张是一元券.现该用户从这5张骑行券中随机选取2张转赠给好友,求选取的2张中至少有1张是一元券的概率.参考数据:P(K2≥k)0.1500.1000.0500.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828参考公式:,其中n=a+b+c+d.【解答】解:(1)由2×2列联表的数据,计算观测值===;因此,在犯错误的概率不超过0.001的前提下,不能认为优惠活动好评与车辆状况好评有关系;(2)把2张一元券分别记作A,B,其余3张券分别记作a,b,c;则从5张骑行券中随机选取2张的所有情况为:{A,a},{A,b},{A,c},{B,a},{B,b},{B,c},{A,B},{a,b},{a,c},{b,c}共10种;记“选取的2张中至少有1张是一元券”为事件M,则事件M包含的基本事件个数为7;∴;所以从5张骑行券中随机选取2张转赠给好友,选取的2张中至少有1张是一元券的概率为.19.(12分)如图,D是AC的中点,四边形BDEF是菱形,平面BDEF⊥平面ABC,∠FBD =60°,AB⊥BC,AB=BC=.(1)若点M是线段BF的中点,证明:BF⊥平面AMC;(2)求六面体ABCEF的体积.【解答】证明:(1)连接MD,FD.∵四边形BDEF为菱形,且∠FBD=60°,∴△DBF为等边三角形.∵M为BF的中点,∴DM⊥BF.∵AB⊥BC,,又D是AC的中点,∴BD⊥AC.∵平面BDEF∩平面ABC=BD,平面ABC⊥平面BDEF,AC⊂平面ABC,∴AC⊥平面BDEF.又BF⊂平面BDEF,∴AC⊥BF.由DM⊥BF,AC⊥BF,DM∩AC=D,∴BF⊥平面AMC.(2).已证AC⊥平面BDEF,则V四棱锥C﹣BDEF==.∴.20.(12分)已知椭圆C:的左右焦点分别为F1,F2,左顶点为A,上顶点为B(0,1),△ABF1的面积为.(1)求椭圆C的方程;(2)设直线l:y=k(x+1)与椭圆C相交于不同的两点M,N,P是线段MN的中点.若经过点F2的直线m与直线l垂直于点Q,求|PQ|•|F1Q|的取值范围.【解答】解:(1)由已知,椭圆的有上顶点为B(0,1),则b=1.又,∴.∵a2=b2+c2,∴.∴椭圆C的方程为.(2)根据题意,分2种情况讨论:①当k=0时,点P即为坐标原点O,点Q即为点F2,则|PQ|=1,|F1Q|=2.∴|PQ|•|F1Q|=2.②当k≠0时,直线l的方程为y=k(x+1).则直线m的方程为,即x+ky﹣1=0.设M(x1,y1),N(x2,y2).联立方程,消去y,得(1+2k2)x2+4k2x+2k2﹣2=0.此时△=8(k2+1)>0.∴,y1+y2=k(x1+x2+2)=.∴.∵|PQ|即点P到直线m的距离,∴=.又|F1Q|即点F1到直线m的距离,∴.∴.令1+3k2=t(t>1),则.∴=.即k≠0时,有0<|PQ|•|F1Q|<2.综上,可知|PQ|•|F1Q|的取值范围为(0,2].21.(12分)已知函数f(x)=xlnx+ax+1,a∈R.(1)当时x>0,若关于x的不等式f(x)≥0恒成立,求a的取值范围;(2)当x∈(1,+∞)时,证明:<lnx<x2﹣x.【解答】解:(1)由f(x)≥0,得xlnx+ax+1≥0(x>0).整理,得恒成立,即.令.则.∴函数F(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∴函数的最小值为F(1)=1.∴﹣a≤1,即a≥﹣1.∴a的取值范围是[﹣1,+∞).证明:(2)由(1),当a=﹣1时,有xlnx≥x﹣1,即.要证,可证,x>1,即证,x>1.构造函数G(x)=e x﹣ex(x≥1).则G'(x)=e x﹣e.∵当x>1时,G'(x)>0.∴G(x)在[1,+∞)上单调递增.∴G(x)>G(1)=0在(1,+∞)上成立,即e x>ex,证得.∴当x∈(1,+∞)时,成立.构造函数H(x)=lnx﹣x2+x(x≥1).则==.∵当x>1时,H'(x)<0,∴H(x)在[1,+∞)上单调递减.∴H(x)<H(1)=0,即lnx﹣x2+x<0(x>1).∴当x∈(1,+∞)时,lnx<x2﹣x成立.综上,当x∈(1,+∞)时,有.选修4-4:极坐标与参数方程22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为,其中α为参数,α∈(0,π).在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P 的极坐标为,直线l的极坐标方程为=0.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点.求点M到直线l的距离的最大值.【解答】解:(1)∵直线l的极坐标方程为,即ρsinθ﹣ρcosθ+10=0.由x=ρcosθ,y=ρsinθ,可得直线l的直角坐标方程为x﹣y﹣10=0.将曲线C的参数方程消去参数α,得曲线C的普通方程为.(2)设(0<α<π).点P的极坐标化为直角坐标为(4,4).则.∴点M到直线l的距离=.当,即时,等号成立.∴点M到直线l的距离的最大值为.选修4-5:不等式选讲23.已知函数f(x)=|2x+1|+|x﹣1|.(1)解不等式f(x)≥3;(2)记函数f(x)的最小值为m,若a,b,c均为正实数,且,求a2+b2+c2的最小值.【解答】解:(1)f(x)=|2x+1|+|x﹣1|=.∴f(x)≥3等价于或或.解得x≤﹣1或x≥1.∴原不等式的解集为(﹣∞,﹣1]∪[1,+∞).(2)由(1),可知当时,f(x)取最小值,即.∴.由柯西不等式,有.∴.当且仅当,即,,时,等号成立.∴a2+b2+c2的最小值为.**==(**==(**==(**==(免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.**==(**==(**==(**==(**==(免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.**==(**==(**==(**==(免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.**==(**==(**==(**==(免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.**==(。
18届高三文科数学下学期二诊模拟考试数学试题(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则( )A. B. C. D.2. 已知复数为纯虚数,且,则( )A. B. C. D.3. 若向量,,则的面积为( )A. B. C. 1 D.4. 为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农民户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A. 是否倾向选择生育二胎与户籍有关B. 是否倾向选择生育二胎与性别无关C. 倾向选择生育二胎的人员中,男性人数与女性人数相同D. 倾向选择生育二的人员中,农村户籍人数少于城镇户籍人数5. 一个棱锥的三视图如图所示,则该棱锥的外接球的体积是( )A. B. C. D.6. 若,则( )A. B. C. D.7. 按照如图所示的程序框图,若输入的为2018,为8,则输出的结果为( )A. 2473B. 3742C. 4106D. 60148. 若实数满足,则的取值范围是( )A. B. C. D.9. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为( )A. B. C. D.10. 在中,角为,边上的高恰为边长的一半,则( )A. B. C. D.11. 等差数列各项都为正数,且其前项之和为45,设,其中,若中的最小项为,则的公差不能为( )A. 1B.C.D.12. 已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是( )A. B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若实数满足,则的最大值为_______.14. 若双曲线的渐近线与圆相切,则________________.15. 已知函数为奇函数,当时,,则曲线在点处的切线的斜率为____.16. 祖暅是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原理:“幂势既同,则积不容易.”这里的“幂”指水平截面的面积.“势”指高,这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。
普通高等学校2018年招生全国统一考试临考冲刺卷高三文科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1=1A x x ⎧⎫<⎨⎬⎩⎭,{}2=4B x y x =,则A B =( ) A .(),1-∞ B .()1,+∞ C .()0,1 D .()0,+∞【答案】B2.若复数z 满足()2i 17i z +=+,则z =( )A B .22C 5D .2【答案】A3.阅读程序框图,该算法的功能是输出( )A .数列{}21n -的第4项 B .数列{}21n -的第5项 C .数列{}21n -的前4项的和D .数列{}21n -的前5项的和【答案】B4.在ABC △中,AD AB ⊥,33CD DB ==,1AD =,则=AC AD ⋅( ) A .1 B .2C .3D .4【答案】D5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )A .932B .516C .38D .716【答案】C6.已知n S 是等差数列{}n a 的前n 项和,则“n n S na <对2n ≥恒成立”是“数列{}n a 为递增数列”的( ) A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必条件【答案】A7.将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片,选出每列标号最小的卡片,将这些卡片中标号最大的数设为a ;选出每行标号最大的卡片,将这些卡片中标号最小的数设为b .甲同学认为a 有可能比b 大,乙同学认为a 和b 有可能相等,那么甲乙两位同学的说法中( ) A .甲对乙不对 B .乙对甲不对C .甲乙都对D .甲乙都不对【答案】B8.某几何体的三视图如图所示,记A 为此几何体所有棱的长度构成的集合,则( )A .3A ∈B .5A ∈C .6AD .43A【答案】D 9.已知函数()1cos f x x x=+,下列说法中正确的个数为( ) ①()f x 在0,2π⎛⎫⎪⎝⎭上是减函数; ②()f x 在()0,π上的最小值是2π; ③()f x 在()0,π2上有两个零点. A .0个 B .1个 C .2个 D .3个【答案】C10.已知A ,B ,C ,D 54AC BD ==,11AD BC ==AB CD =,则三棱锥D ABC -的体积是( )A .B .47C .7D 7【答案】C11.已知函数()2ln xf x a x x a =+-,()01a a >且≠,对任意的1x ,[]20,1x ∈,不等式()()122f x f x a -≤-恒成立,则a 的取值范围为( )A .)2e ,⎡+∞⎣B .[)e,+∞C .[]2,eD .2e,e ⎡⎤⎣⎦【答案】A12.已知S 为双曲线()222210,0x y a b a b-=>>上的任意一点,过S 分别引其渐近线的平行线,分别交x 轴于点M ,N ,交y 轴于点P ,Q ,若()118OP OQ OM ON ⎛⎫+⋅+≥ ⎪ ⎪⎝⎭恒成立,则双曲线离心率e 的取值范围为( )A.(B .)5,⎡+∞⎣C .(2D .)2,⎡+∞⎣【答案】B第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知实数x ,y 满足:1310x y x y +≥⎧⎪≤⎨⎪-≥⎩,则3x y +的最大值为_______.【答案】1314.设函数()22,1lg ,1x x x f x x x ⎧+-≤=⎨->⎩,则()()4f f -=_______.【答案】1-15.抛物线28y x =的焦点为F ,弦AB 过F ,原点为O ,抛物线准线与x 轴交于点C ,2π3OFA ∠=,则tan ACB ∠=_______.【答案】4316.设有四个数的数列1a ,2a ,3a ,4a ,前三个数构成一个等比数列,其和为k ,后三个数构成一个等差数列,其和为15,且公差非零.对于任意固定的实数k ,若满足条件的数列个数大于1,则k 的取值范围为_______. 【答案】()()15,55,1515,4⎛⎫+∞⎪⎝⎭三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ()3cos 23cos a C b c A =. (1)求角A 的大小;(2)若2a =,求ABC △面积的最大值. 【答案】(1)6A π=;(2)23+. 【解析】(13cos 2sin cos 3cos A C B A C A =, ()3sin 2sin cos A C B A +=32sin cos B B A =,又B 为三角形内角,所以sin 0B ≠,于是3cos A = 又A 为三角形内角,所以6A π=. (2)由余弦定理:2222cos a b c bc A =+-得:2234223b c bc bc =+-≥-, 所以(423bc ≤+,所以1sin 232S bc A ==. 18.(12分)在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:(1)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人? (2)如果语文和数学两科都特别优秀的共有3人.①从(1)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.②根据以上数据,完成22⨯列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.【答案】(1)5人,4人;①15,②是.【解析】(1)我校共有100名文科学生参加考试,其中语文考试成绩低于130的有95%人,语文成绩特别优秀的概率为1=10.95=0.05P -,语文特别优秀的同学有1000.05=5⨯人,数学成绩特别优秀的概率为2=0.00220=0.04P ⨯,数学特别优秀的同学有1000.04=4⨯人.①语文数学两科都特别优秀的有3人,单科特别优秀的有3人,记两科都特别优秀的3人分别为1A ,2A ,3A ,单科特别优秀的3人分别为1B ,2B ,3B ,从中随机抽取2人,共有:()12A A ,,()13,A A ,()23,A A ,()12,B B ,()13,B B ,()23,B B ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()31,A B ,()32,A B ,()33,A B 共15种,其中这两人成绩都特别优秀的有()12,A A ,()13,A A ,()23,A A 这3种,则这两人两科成绩都特别优秀的概率为:31=155P =. ②,()2210039412245042.982 6.63549659557k ⨯⨯-⨯∴==≈>⨯⨯⨯,∴有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.(12分)如图,四棱锥E ABCD -中,AD BC ∥,112AD AB AE BC ====且BC ⊥底面ABE ,M 为棱CE 的中点.(1)求证:直线DM ⊥平面CBE ;(2)当四面体D ABE -的体积最大时,求四棱锥E ABCD -的体积.【答案】(1)见解析;(2)12. 【解析】(1)因为AE AB =,设N 为EB 的中点,所以AN EB ⊥, 又BC ⊥平面AEB ,AN ⊂平面AEB ,所以BC AN ⊥,又BC BE B =,所以AN ⊥平面BCE ,又DM AN ∥,所以DM ⊥平面BCE . (2)AE CD ⊥,设=EAB θ∠,=1AD AB AE ==,则四面体D ABE -的体积111sin sin 326V AE AB AD θθ=⨯⨯⋅⋅⋅=,当90θ=︒,即AE AB ⊥时体积最大,又BC ⊥平面AEB ,AE ⊂平面AEB ,所以AE BC ⊥,因为BC AB B =,所以AE ⊥平面ABC ,()1111211322E ABCD V -=⨯⨯+⨯⨯=.20.(12分)已知动点(),M x y ()()22221122x y x y ++-+=.(1)求动点M 的轨迹E 的方程;(2)设A ,B 是轨迹E 上的两个动点,线段AB 的中点N 在直线1:2l x =-上,线段AB 的中垂线与E 交于P ,Q 两点,是否存在点N ,使以PQ 为直径的圆经过点()1,0,若存在,求出N 点坐标,若不存在,请说明理由.【答案】(1)2212x y +=;(2)119,219N ⎛-± ⎝⎭. 【解析】(1)2212x y +=. (2)当直线AB 垂直于x 轴时,直线AB 方程为12x =-, 此时()2,0P -,)2,0Q,221F P F Q ⋅=-,不合题意;当直线AB 不垂直于x 轴时,设存在点()1,02N m m ⎛⎫-≠ ⎪⎝⎭,直线AB 的斜率为k , ()11,A x y ,()22,B x y ,由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩得:()()1212121220y y x x y y x x ⎛⎫-+++⋅= ⎪-⎝⎭,则140mk -+=, 故14k m=,此时,直线PQ 斜率为14k m =-, PQ 的直线方程为142y m m x ⎛⎫-=-+ ⎪⎝⎭,即4y mx m =--,联立22412y mx mx y =--⎧⎪⎨+=⎪⎩消去y ,整理得:()222232116220m x m x m +++-=,所以212216321m x x m +=-+,212222321m x x m -⋅=+, 由题意220F P F Q ⋅=,于是()()()()()22121212121211144F P F Q x x y y x x x x mx m mx m ⋅=--+=⋅-+++++ ()()()2221212116411m x x m x x m =+⋅+-+++()()()()()()22222222211622411619110321321321m m m m m mm m m +----=+++==+++, 1919m ∴=±,因为N 在椭圆内,278m ∴<,1919m ∴=±符合条件, 综上所述,存在两点N 符合条件,坐标为119,2N ⎛- ⎝⎭. 21.(12分)已知函数()ln f x ax x x =-在2e x -=处取得极值.(1)求实数a 的值;(2)设()()()21ln F x x x x f x a =+-++,若()F x 存在两个相异零点1x ,2x ,求证:122x x +>. 【答案】(1)1a =-;(2)见解析.【解析】(1)因为()ln f x ax x x =-,所以()ln 1f x a x '=--,因为函数()f x 在2e x -=处取得极大值,所以()2e 0f -'=,即()22e ln e 10f a --'=--=, 所以1a =-,此时()ln 2f x x '=--,经检验,()f x 在()20,e -上单调递增,在()2e ,-+∞单调递减, 所以()f x 在2e x -=处取得极大值,符合题意,所以1a =-.(2)由(1)知:函数()()()21ln F x x x x f x a =+-++,函数()F x 图像与x 轴交于两个不同的点()1,0C x ,()2,0D x ,()12x x <, 为函数()2ln 1F x x x x =---的零点,令()()()212112121x x x x F x x x x x-+--'=--==,()F x ∴在()0,1单调递减,在()1,+∞单调递增且()110F =-<,1x ∴,()21,x ∈+∞,欲证:122x x +>,即证:212x x >-,即证()()212F x F x >-,即证()()112F x F x >-, 构造函数()()()()()20,1x F x F x x ϕ=--∈,()()()22102x x x x ϕ--'=<-,()()10x ϕϕ∴>=,得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)选修4-4:坐标系与参数方程 在平面直角坐标系xoy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数,0α≤<π).以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为:2cos 4sin ρθθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于不同的两点A ,B ,若8AB =,求a 的值. 【答案】(1)sin cos cos 0x y ααα⋅-⋅+=,24x y =;(2)4απ=或34π. 【解析】(1)直线l 普通方程为sin cos cos 0x y ααα⋅-⋅+=,曲线C 的极坐标方程为2cos 4sin ρθθ=,cos x ρθ=,sin y ρθ=,则22cos 4sin ρθρθ=,24x y ∴=即为曲线C 的普通方程.(2)将cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数,0απ≤<)代入曲线2:4C x y =,22cos 4sin 40t t αα∴⋅-⋅-=,1224sin cos t t αα∴+=,1224cos t t α-⋅=, ()22121212224sin 4448cos cos AB t t t t t t ααα-⎛⎫=-=+-⋅=-⨯= ⎪⎝⎭, 2cos α∴=±4απ∴=或34π. 23.(10分)选修4-5:不等式选讲已知0a >,0b >,函数()2f x x a x b =++-的最小值为1. (1)证明:22a b +=;(2)若2a b tab +≥恒成立,求实数t 的最大值.【答案】(1)见解析;(2)92. 【解析】(1)证明:2b a -<,()3,,23,2x a b x a b f x x a b a x b x a b x ⎧⎪--+<-⎪⎪∴=-++-≤≤⎨⎪⎪+->⎪⎩,显然()f x 在,2b ⎛⎫-∞- ⎪⎝⎭上单调递减,在,2b ⎛⎫+∞⎪⎝⎭上单调递增,所以()f x 的最小值为122b b f a ⎛⎫=+= ⎪⎝⎭,即22a b +=.(2)因为2a b tab +≥恒成立,所以2a bt ab+≥恒成立, ()212112122925+222a b a b a b ab b a b a b a +⎛⎫⎛⎫≥+=++=+≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当23a b ==时,2a b ab +取得最小值92, 所以92t ≤,即实数t 的最大值为92.。
2018年四川省成都市双流中学高考数学考前模拟试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2+x﹣2≤0,x∈z},B={x|x=2k,k∈z},则A∩B等于()A. {0,1}B. {﹣4,﹣2}C. {﹣1,0}D. {﹣2,0}【答案】D【解析】【分析】先解A、B集合,再取并集。
【详解】先解,故选D【点睛】一般地,把不等式组放在数轴中得出解集。
2.复数z满足z•i=|﹣i|,则在复数平面内复数z对应的点的坐标为()A. (1,0)B. (0,1)C. (﹣1,0)D. (0,﹣1)【答案】D【解析】分析:先求出复数的模,两边同除以,从而可得结果.详解:,,在复数平面内复数对应的点的坐标为,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.某教育局为了解“跑团”每月跑步的平均里程,收集并整理了2017年1月至2017年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是()A. 月跑步平均里程的中位数为6月份对应的里程数B. 月跑步平均里程逐月增加C. 月跑步平均里程高峰期大致在8、9月D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳【答案】D【解析】由折线图知,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l0月份,故A,B,C错.本题选择D选项.4.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A. B. C. D.【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,所以概率.故选B.5.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标“为真命题的充要条件是()A. (¬p)∨(¬q)为真命题B. p∨(¬q)为真命题C. (¬p)∧(¬q)为真命题D. p∨q为真命题【答案】A【解析】命题是“第一次射击击中目标”,命题是“第二次射击击中目标”,则命题是“第一次射击没击中目标”,命题是“第二次射击没击中目标”,命题“两次射击至少有一次没有击中目标”是,故选A.6.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A. B. C. 10 D. 12【答案】B【解析】由题意可得:,解得:,则:.本题选择B选项.7.我国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩一,五五数之剩三,七七数之剩六,问物几何?”人们把此类题目称为“中国剩余定理”.若正整数N除以正整数m后的余数为n,则记为N≡n(modm),例如10≡2(mod4).现将该问题以程序框图给出,执行该程序框图,则输出的n等于()A. 13B. 11C. 15D. 8【答案】A【解析】【分析】按照程序框图的流程逐一写出前面有限项,最后得出输出的结果。
2018高考仿真卷²文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从 1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.(p)∧(q)C.(p)∧qD.p∧(q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元)与销售额y(单位:万元)的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A²x-ay-c=0与bx+sin B²y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V 正四棱锥P-ABCD=,则球O的表面积是()A.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)²cos x 的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C 上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2018高考仿真卷²文科数学(二)1.B解析 (方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C 的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以(p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以²2R2²R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知PA2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时PA=,AC=.所以该几何体的体积V=³1³.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x²cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n= 解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解 (1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2³(3c)³c³=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解 (1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40³0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40³0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),( A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种, 则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB²DD1=³2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|PA|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|PA|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解 (1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解 (1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
四川省成都市2018届第二次模拟考试
文科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}|8U x x =≤,集合{}
2|80A x x x =-≤,则U C A =( ) A .(),8-∞ B .(],0-∞ C .(),0-∞ D .∅
2.下列命题正确的是( )
A .命题“若αβ=,则sin sin αβ=”的逆否命题为真命题
B .命题“若a b <,则22
ac bc ≤”的逆命题为真命题
C .命题“0,50x x ∀>>”的否定是“000,50x x ∃≤≤”
D .“1x <-”是“()ln 20x +<”的充分不必要条件 3.已知tan 3α=,则
sin 21cos 2αα
=+( ) A .-3 B .13- C .13 D .3 4.已知向量b 在向量a 方向上的投影为2,且1a = ,则a b = ( ) A .-2 B .-1 C. 1 D .2
5.若点P 为圆22
1x y +=上的一个动点,点()()1,0,1,0A B -为两个定点,则PA PB +的最大值是 ( )
A .2
B .22 C. 4 D .42
6.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是 ( )。
普通高等学校2018年招生全国统一考试临考冲刺卷高三文科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1=1A x x ⎧⎫<⎨⎬⎩⎭,{}2=4B x y x =,则A B =( ) A .(),1-∞ B .()1,+∞C .()0,1D .()0,+∞【答案】B2.若复数z 满足()2i 17i z +=+,则z =( )A B .C D .2【答案】A3.阅读程序框图,该算法的功能是输出( )A .数列{}21n -的第4项 B .数列{}21n -的第5项 C .数列{}21n -的前4项的和D .数列{}21n -的前5项的和【答案】B4.在ABC △中,AD AB ⊥,33CD DB ==,1AD =,则=AC AD ⋅( ) A .1 B .2C .3D .4【答案】D5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )A .932B .516C .38D .716【答案】C6.已知n S 是等差数列{}n a 的前n 项和,则“n n S na <对2n ≥恒成立”是“数列{}n a 为递增数列”的( ) A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必条件 【答案】A7.将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片,选出每列标号最小的卡片,将这些卡片中标号最大的数设为a ;选出每行标号最大的卡片,将这些卡片中标号最小的数设为b .甲同学认为a ( )A .甲对乙不对B .乙对甲不对C .甲乙都对D .甲乙都不对【答案】B8.某几何体的三视图如图所示,记A 为此几何体所有棱的长度构成的集合,则( )A .3A ∈B .5A ∈C .AD .A【答案】D 9.已知函数()1cos f x x x=+,下列说法中正确的个数为( ) ①()f x 在0,2π⎛⎫⎪⎝⎭上是减函数; ②()f x 在()0,π上的最小值是2π; ③()f x 在()0,π2上有两个零点. A .0个 B .1个C .2个D .3个【答案】C10.已知A ,B ,C ,D 且4AC BD ==,AD BC ==AB CD =,则三棱锥D ABC -的体积是( )A .B .C .D【答案】C11.已知函数()2ln xf x a x x a =+-,()01a a >且≠,对任意的1x ,[]20,1x ∈,不等式()()122f x f x a -≤-恒成立,则a 的取值范围为( )A .)2e ,⎡+∞⎣B .[)e,+∞C .[]2,eD .2e,e ⎡⎤⎣⎦【答案】A12.已知S 为双曲线()222210,0x y a b a b-=>>上的任意一点,过S 分别引其渐近线的平行线,分别交x 轴于点M ,N ,交y 轴于点P ,Q ,若()118OP OQ OM ON ⎛⎫+⋅+≥ ⎪ ⎪⎝⎭恒成立,则双曲线离心率e 的取值范围为( ) A.(B.)+∞C.(D.)+∞【答案】B第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知实数x ,y 满足:1310x yx y +≥⎧⎪≤⎨⎪-≥⎩,则3x y +的最大值为_______.【答案】1314.设函数()22,1lg ,1x x x f x x x ⎧+-≤=⎨->⎩,则()()4f f -=_______.【答案】1-15.抛物线28y x =的焦点为F ,弦AB 过F ,原点为O ,抛物线准线与x 轴交于点C ,2π3OFA ∠=,则tan ACB ∠=_______.【答案】16.设有四个数的数列1a ,2a ,3a ,4a ,前三个数构成一个等比数列,其和为k ,后三个数构成一个等差数列,其和为15,且公差非零.对于任意固定的实数k ,若满足条件的数列个数大于1,则k 的取值范围为_______. 【答案】()()15,55,1515,4⎛⎫+∞⎪⎝⎭三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c,且()cos 2cos C b A =.(1)求角A 的大小;(2)若2a =,求ABC △面积的最大值.【答案】(1)6A π=;(2)2+.【解析】(1cos 2sin cos cos A C B A C A =-,()2sin cos A C B A +=2sin cos B B A =,又B 为三角形内角,所以sin 0B ≠,于是cos 2A =, 又A 为三角形内角,所以6A π=.(2)由余弦定理:2222cos a b c bc A =+-得:22422b c bc =+-≥,所以(42bc ≤+,所以1sin 22S bc A ==. 18.(12分)在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:(1)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有3人.①从(1)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.②根据以上数据,完成22⨯列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.【答案】(1)5人,4人;①15,②是.【解析】(1)我校共有100名文科学生参加考试,其中语文考试成绩低于130的有95%人,语文成绩特别优秀的概率为1=10.95=0.05P -,语文特别优秀的同学有1000.05=5⨯人,数学成绩特别优秀的概率为2=0.00220=0.04P ⨯,数学特别优秀的同学有1000.04=4⨯人.①语文数学两科都特别优秀的有3人,单科特别优秀的有3人,记两科都特别优秀的3人分别为1A ,2A ,3A ,单科特别优秀的3人分别为1B ,2B ,3B ,从中随机抽取2人,共有:()12A A ,,()13,A A ,()23,A A ,()12,B B ,()13,B B ,()23,B B ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()31,A B ,()32,A B ,()33,A B 共15种,其中这两人成绩都特别优秀的有()12,A A ,()13,A A ,()23,A A 这3种,则这两人两科成绩都特别优秀的概率为:31=155P =. ②,()2210039412245042.982 6.63549659557k ⨯⨯-⨯∴==≈>⨯⨯⨯,∴有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.(12分)如图,四棱锥E ABCD -中,AD BC ∥,112AD AB AE BC ====且BC ⊥底面ABE ,M 为棱CE 的中点. (1)求证:直线DM ⊥平面CBE ;(2)当四面体D ABE -的体积最大时,求四棱锥E ABCD -的体积.【答案】(1)见解析;(2)12. 【解析】(1)因为AE AB =,设N 为EB 的中点,所以AN EB ⊥, 又BC ⊥平面AEB ,AN ⊂平面AEB ,所以BC AN ⊥,又BC BE B =,所以AN ⊥平面BCE ,又DM AN ∥,所以DM ⊥平面BCE . (2)AE CD ⊥,设=EAB θ∠,=1AD AB AE ==,则四面体D ABE -的体积111sin sin 326V AE AB AD θθ=⨯⨯⋅⋅⋅=, 当90θ=︒,即AE AB ⊥时体积最大,又BC ⊥平面AEB ,AE ⊂平面AEB ,所以AE BC ⊥,因为BC AB B =,所以AE ⊥平面ABC ,()1111211322E ABCD V -=⨯⨯+⨯⨯=.20.(12分)已知动点(),M x y =(1)求动点M 的轨迹E 的方程;(2)设A ,B 是轨迹E 上的两个动点,线段AB 的中点N 在直线1:2l x =-上,线段AB 的中垂线与E 交于P ,Q 两点,是否存在点N ,使以PQ 为直径的圆经过点()1,0,若存在,求出N 点坐标,若不存在,请说明理由.【答案】(1)2212x y +=;(2)1,219N ⎛-± ⎝⎭. 【解析】(1)2212x y +=. (2)当直线AB 垂直于x 轴时,直线AB 方程为12x =-,此时()P ,)Q,221F P F Q ⋅=-,不合题意;当直线AB 不垂直于x 轴时,设存在点()1,02N m m ⎛⎫-≠ ⎪⎝⎭,直线AB 的斜率为k , ()11,A x y ,()22,B x y ,由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩得:()()1212121220y y x x y y x x ⎛⎫-+++⋅= ⎪-⎝⎭,则140mk -+=, 故14k m=,此时,直线PQ 斜率为14k m =-, PQ 的直线方程为142y m m x ⎛⎫-=-+ ⎪⎝⎭,即4y mx m =--,联立22412y mx mx y =--⎧⎪⎨+=⎪⎩消去y ,整理得:()222232116220m x m x m +++-=,所以212216321m x x m +=-+,212222321m x x m -⋅=+, 由题意220F P F Q ⋅=,于是()()()()()22121212121211144F P F Q x x y y x x x x mx m mx m ⋅=--+=⋅-+++++()()()2221212116411m x x m x x m =+⋅+-+++ ()()()()()()22222222211622411619110321321321m m m m m mm m m +----=+++==+++,m ∴=N 在椭圆内,278m ∴<,m ∴=符合条件, 综上所述,存在两点N符合条件,坐标为1,2N ⎛- ⎝⎭. 21.(12分)已知函数()ln f x ax x x =-在2e x -=处取得极值.(1)求实数a 的值;(2)设()()()21ln F x x x x f x a =+-++,若()F x 存在两个相异零点1x ,2x ,求证:122x x +>.【答案】(1)1a =-;(2)见解析.【解析】(1)因为()ln f x ax x x =-,所以()ln 1f x a x '=--,因为函数()f x 在2e x -=处取得极大值,所以()2e 0f -'=,即()22e ln e 10f a --'=--=, 所以1a =-,此时()ln 2f x x '=--,经检验,()f x 在()20,e -上单调递增,在()2e ,-+∞单调递减, 所以()f x 在2e x -=处取得极大值,符合题意,所以1a =-. (2)由(1)知:函数()()()21ln F x x x x f x a =+-++,函数()F x 图像与x 轴交于两个不同的点()1,0C x ,()2,0D x ,()12x x <, 为函数()2ln 1F x x x x =---的零点,令()()()212112121x x x x F x x x x x-+--'=--==, ()F x ∴在()0,1单调递减,在()1,+∞单调递增且()110F =-<,1x ∴,()21,x ∈+∞,欲证:122x x +>,即证:212x x >-,即证()()212F x F x >-,即证()()112F x F x >-, 构造函数()()()()()20,1x F x F x x ϕ=--∈,()()()22102x x x x ϕ--'=<-,()()10x ϕϕ∴>=,得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)选修4-4:坐标系与参数方程 在平面直角坐标系xoy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数,0α≤<π).以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为:2cos 4sin ρθθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于不同的两点A ,B ,若8AB =,求a 的值.【答案】(1)sin cos cos 0x y ααα⋅-⋅+=,24x y =;(2)4απ=或34π. 【解析】(1)直线l 普通方程为sin cos cos 0x y ααα⋅-⋅+=,曲线C 的极坐标方程为2cos 4sin ρθθ=,cos x ρθ=,sin y ρθ=,则22cos 4sin ρθρθ=,24x y ∴=即为曲线C 的普通方程.(2)将cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数,0απ≤<)代入曲线2:4C x y =,22cos 4sin 40t t αα∴⋅-⋅-=,1224sin cos t t αα∴+=,1224cos t t α-⋅=,128AB t t =-===, cos α∴=,4απ∴=或34π. 23.(10分)选修4-5:不等式选讲已知0a >,0b >,函数()2f x x a x b =++-的最小值为1. (1)证明:22a b +=;(2)若2a b tab +≥恒成立,求实数t 的最大值. 【答案】(1)见解析;(2)92. 【解析】(1)证明:2b a -<,()3,,23,2x a b x a b f x x a b a x b x a b x ⎧⎪--+<-⎪⎪∴=-++-≤≤⎨⎪⎪+->⎪⎩,显然()f x 在,2b ⎛⎫-∞- ⎪⎝⎭上单调递减,在,2b ⎛⎫+∞⎪⎝⎭上单调递增,所以()f x 的最小值为122b b f a ⎛⎫=+= ⎪⎝⎭,即22a b +=.(2)因为2a b tab +≥恒成立,所以2a bt ab+≥恒成立, ()212112122925+222a b a b a b ab b a b a b a +⎛⎫⎛⎫≥+=++=+≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当23a b ==时,2a b ab +取得最小值92, 所以92t ≤,即实数t 的最大值为92.。
2018年四川省高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|x≤1},B={x|0≤x≤4},则A∩B=()A.{x|x≤4}B.{x|0≤x≤4}C.{x|0≤x≤1}D.{x|1≤x≤4}2. 设复数z1,z2在复平面内的对应点关于虚轴对称,z1=3+i,则z1z2=()A.10B.−10C.−9+iD.−9−i3. 已知等差数列{a n}中,a1=1,a3=−5,则a1−a2−a3−a4=()A.−14B.−9C.11D.164. 在同一坐标系中,函数y=2−x与y=−log2x的图象都正确的是()A.B.C.D.5. 为了从甲、乙两人中选一人参加数学竞赛,老师将二人最近的6次数学测试的分数进行统计,甲、乙两人的得分情况如茎叶图所示,若甲、乙两人的平均成绩分别是x甲,x,则下列说法正确的是()乙A.x 甲>x 乙,乙比甲成绩稳定,应选乙参加比赛B.x 甲>x 乙,甲比乙成绩稳定,应选甲参加比赛C.x 甲<x 乙,甲比乙成绩稳定,应选甲参加比赛D.x 甲<x 乙,乙比甲成绩稳定,应选乙参加比赛6. 已知数列{a n }满足a 1=0,a n+1=n √3√3a +1∈N ∗),则a 56=( )A.−√3B.0C.√3D.√327. 直线y =ax +1与曲线x 2+y 2+bx −y =1交于两点,且这两个点关于直线x +y =0对称,则a +b =( )A.5B.4C.3D.28. 执行如图所示的程序框图,输出的S 值为( )A.3B.10C.−6D.−159. 已知函数f(x)在定义域(0,+∞)上是单调函数,若对于任意x ∈(0, +∞),都有f(f(x)−1x )=2,则f(15)的值是( ) A.5 B.6 C.7 D.810. 在三棱锥A −BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为√22,√32,√62,则该三棱锥的体积为( ) A.√6B.√66C.6D.2 11. 已知函数f(x)=x 33+12ax 2+2bx +c 的两个极值分别为f(x 1),f(x 2),若x 1,x 2分别在区间(0, 1)与(1, 2)内,则b −2a 的取值范围是( )A.(−4, −2)B.(−∞, 2)∪(7, +∞)C.(2, 7)D.(−5, 2)12. 已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2作平行于C 的渐近线的直线交C 于点P ,若PF 1⊥PF 2,则C 的渐近线方程为( )A.y =±xB.y =±√2xC.y =±2xD.y =±√5x 二、填空题(每题5分,满分20分,将答案填在答题纸上)已知AB →∗AC →=0,|AB →|=3,|AC →|=2,则|BC →|=________.已知函数f(x)={2−x −2,x ≤0f(x −2)+1,x >0,则f(2018)=________.已知斜率为2的直线l 过抛物线y 2=ax 的焦点F ,且与y 轴相交于点A ,若△OAF (O 为坐标原点)的面积为4,则a =________.在数列{a n }中,若a n 2−a n+12=p (n ≥1,n ∈N ∗,p 为常数),则称{a n }为“等方差数列”,下列是对“等方差数列”的判断:①若{a n }是等方差数列,则{a n 2}是等差数列;②{(−1)n }是等方差数列;③若{a n }是等方差数列,则{a kn }(k ∈N ∗,k 为常数)也是等方差数列.其中真命题的序号为________(将所有真命题的序号填在横线上).三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知c −b =2bcosA .(Ⅰ)若a =2√6,b =3,求边c 的长;(Ⅱ)若C =π2,求角B 的大小.汽车业是碳排放量比较大的行业之一,欧盟规定,从2012年开始,将对二氧化碳排放量超过130g/km 的M 1型汽车进行惩罚,某检测单位对甲、乙两类M 1型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km )经测算发现,乙品牌M 1型汽车二氧化碳排放量的平均值为 x =120g/km(Ⅰ)从被检测的5辆甲类M 1型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过130g/km 的概率是多少?(Ⅱ)求表中x 的值,并比较甲、乙两品牌M 1型汽车二氧化碳排放量的稳定性.(s 2=1n [(x −x 1)2+(x −x 2)2+⋯+(x −x n )2]其中,x 表示的平均数,n 表示样本的数量,x i 表示个体,s 2表示方差)如图,四边形ABCD中,AB⊥AD,AD // BC,AD=6,BC=2AB=4,E、F分别在BC、AD上,EF // AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC.(1)若BE=1,是否在折叠后的线段AL上存在一点P,且AP→=λPD→,使得CP // 平面ABEF?若存在,求出λ的值;若不存在,说明理由.(2)求三棱锥A−CDF的体积的最大值,并求此时点F到平面ACD的距离.已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点F(−2, 0)左顶点A1(−4, 0).(Ⅰ)求椭圆C的方程;(Ⅱ)已知P(2, 3),Q(2, −3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.若∠APQ=∠BPQ,试问直线AB的斜率是否为定值?请说明理由.设函数,f(x)=lnx+kx,k∈R.(1)若曲线y=f(x)在点(e, f(e))处的切线与直线x−2=0垂直,求f(x)的单调递减区间和极小值(其中e为自然对数的底数);(2)若对任意x1>x2>0,f(x1)−f(x2)<x1−x2恒成立,求k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号[选修4-4:坐标系与参数方程]已知曲线C的极坐标方程是ρ−4sinθ=0.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l过点M(1, 0),倾斜角为3π4.(1)求曲线C的直角坐标方程与直线l的参数方程;(2)设直线l与曲线C交于A、B两点,求|MA|+|MB|.[选修4-5:不等式选讲]已知函数f(x)=|x−2|.(Ⅰ)解不等式f(x)+f(x+1)≥5;(Ⅱ)若|a|>1,且f(ab)>|a|⋅f(ba),证明:|b|>2.参考答案与试题解析2018年四川省高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【考点】交集及其运算【解析】利用交集定义直接求解.【解答】∵集合A={x|x≤1},B={x|0≤x≤4},∴A∩B={x|0≤x≤1}.2.【答案】B【考点】复数的运算【解析】由已知条件看求出z2,然后代入z1z2计算得答案.【解答】∵复数z1,z2在复平面内的对应点关于虚轴对称,z1=3+i,∴z2=−3+i,则z1z2=(3+i)(−3+i)=−10.3.【答案】D【考点】等差数列的通项公式【解析】设等差数列{a n}的公差为d,结合已知条件求出d,然后代入等差数列的通项公式求解.【解答】设等差数列{a n}的公差为d,由a1=1,a3=−5,得d=a3−a13−1=−5−12=−3,则a1−a2−a3−a4=−d−(a1+2d)−(a1+3d)=3+5+8=16.4.【答案】C【考点】函数的图象变化【解析】函数y=2−x=(12)x,函数为减函数,y=−log2x与y=log2x的图象关于x轴对称.【解答】因为y=2−x=(12)x,所以函数单调递减,排除B,D.y=−log2x与y=log2x的图象关于x轴对称.排除A.5.【答案】D【考点】众数、中位数、平均数【解析】由甲、乙两人的得分情况茎叶图得到甲的得分位于茎叶图的左上方,乙的得分位于茎叶图的右下方,甲的成绩相对分散,乙的成绩相对集中,由此能求出结果.【解答】解:由甲、乙两人的得分情况茎叶图得到甲的得分位于茎叶图的左上方,乙的得分位于茎叶图的右下方,甲的成绩相对分散,乙的成绩相对集中,甲、乙两人的平均成绩分别是x甲=82,x乙=87,∴x甲<x乙,乙比甲成绩稳定,应选乙参加比赛.故选D.6.【答案】A【考点】数列递推式【解析】计算数列的前几项,可得数列{a n}是周期为3的数列,即可得到所求值.【解答】a1=0,a n+1=n√3√3a+1∈N∗),可得a2=1√3√3a+1=−√3,a3=2√3√3a+1=−√3−√3−3+1=√3,a4=√3−√33+1=0,可得数列{a n}是周期为3的数列,即有a56=a54+2=a2=−√3,7.【答案】D【考点】与直线关于点、直线对称的直线方程【解析】由题意可得圆心(−b2, 12)在直线x+y=0上,可得b,由两直线垂直的条件:斜率之积为−1,可得a,即可得到所求和.【解答】直线y=ax+1与曲线x2+y2+bx−y=1交于两点,且这两个点关于直线x+y=0对称,可得圆的圆心(−b2, 12)在直线x+y=0上,可得b=1,又a=1,可得a+b=2,8.【答案】B【考点】程序框图【解析】根据已知中的程序框图可得:该程序的功能是计算出输出S=−12+22−32+42的值,代入运算可得答案.【解答】模拟程序的运行,可得该程序的功能是计算并输出S=−12+22−32+42的值,可得:S=−12+22−32+42=10.9.【答案】B【考点】求函数的值【解析】由函数f(x)在定义域(0, +∞)上是单调函数,且f(f(x)−1x )=2,知f(x)−1x为一个常数,令这个常数为n,则有f(x)−1x =n,f(n)=2,所以n+1n=2,解得n=1,由此能求出f(15)=6.【解答】解:∵函数f(x)在定义域(0, +∞)上是单调函数,且f(f(x)−1x)=2,∴f(x)−1x为一个常数,令这个常数为n,则有f(x)−1x=n,①f(n)=2,②由①得f(x)=n+1x,③②代入③,得n+1n=2,解得n=1,因此f(x)=1+1x ,所以f(15)=6.故选B .10.【答案】B【考点】柱体、锥体、台体的体积计算【解析】通过三个△ABC ,△ACD ,△ADB 的面积,求出侧棱AB ,AC ,AD 的长,然后求出体积.【解答】12AB ⋅AC =√22,12AD ⋅AC =√32,12AB ⋅AD =√62, ∴ AB =√2,AC =1,AD =√3.∴ V =13⋅12⋅1⋅√2⋅√3=√66. 11.【答案】C【考点】利用导数研究函数的极值【解析】先根据导函数的两个根的分布建立a 、b 的约束条件,然后利用线性规划的方法求出目标函数的取值范围即可.【解答】∵ 函数f(x)=x 33+12ax 2+2bx +c ∴ f′(x)=x 2+ax +2b =0的两个根为x 1,x 2,∵ x 1,x 2分别在区间(0, 1)与(1, 2)内∴ {f ′(0)>0f ′(2)>0f ′(1)<0⇒{b >0a +b +2>0a +2b +1<0画出区域图得∴ b −2a ∈(2, 7),12.【答案】C【考点】双曲线的渐近线双曲线的特性【解析】设P(x, y),通过联立直线PF 2的方程、直线PF 1的方程及双曲线方程,计算即可.【解答】解:设P(x, y),根据题意可得F 1(−c, 0)、F 2(c, 0),双曲线的渐近线为:y =±b a x ,直线PF 2的方程为:y =b a (x −c),①直线PF 1的方程为:y =−a b (x +c),②又点P(x, y)在双曲线上,∴x 2a 2−y 2b 2=1,③ 联立①③,可得x =a 2+c 22c , 联立①②,可得x =b 2−a 2a 2+b 2⋅c =b 2−a 2c , ∴ a 2+c 22c =b 2−a 2c ,∴ a 2+a 2+b 2=2b 2−2a 2,∴ b 2=4a 2,∴ b =2a ,∴ C 的渐近线方程为y =±2x .故选C .二、填空题(每题5分,满分20分,将答案填在答题纸上)【答案】 √13【考点】平面向量数量积的性质及其运算律【解析】根据AB →∗AC →=0,可知角A 是直角.根据勾股定理即可求解|BC →|.【解答】由题意,AB →∗AC →=0,∴ ∠A =90∘,三角形ABC 是直角三角形.∴ |BC →|=√|AB|2+|AC|2=√13.【答案】1008【考点】分段函数的应用函数的求值【解析】推导出f(2018)=f(0)+1009=20−2+1009,由此能求出结果.【解答】解:∵ 函数f(x)={2−x −2,x ≤0f(x −2)+1,x >0, ∴ f(2018)=f(1009×2)=f(0)+1009×1=20−2+1009=1008.故答案为:1008.【答案】±8【考点】抛物线的求解【解析】由题意得,在直角△OAF 中,AO =20F ,且OF =|a 4|,代入三角形的面积公式,求解即可.【解答】∵ 斜率为2的直线l 过抛物线y 2=ax 的焦点F ,且与y 轴相交于点A ,∴ AO =20F ,且OF =|a 4|,∴ △OAF 的面积为12×|a 4|×|a 2|=4,解得a =8或−8,【答案】①②③【考点】命题的真假判断与应用【解析】①利用“等方差数列”的定义,可知{a n+12−a n2=−p ,再利用等差数列的定义可判断{a n 2}是等差数列,即①正确;②由(−1)2n −(−1)2(n+1)=0可判断出{(−1)n }是等方差数列,即②正确; ③若{a n }是等方差数列,利用累加法可判断出数列{a kn }(k ∈N ∗,k 为常数)是等方差数列,即③正确.【解答】对于①,因为a n 2−a n+12=p ,所以a n+12−a n 2=−p ,于是数列{a n2}为等差数列,故①正确,对于②,因为(−1)2n −(−1)2(n+1)=0为常数,于是数列{(−1)n }是等方差数列,故②正确;对于③,因为a kn 2−a kn+k 2=(a kn 2−a kn+12)+(a kn+12−a kn+22)+(a kn+22−a kn+32)+...+(a kn+k−12−a kn+k 2)=kp ,则{a kn }(k ∈N ∗,k 为常数)也是等方差数列,故③正确.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.【答案】(1)∵ c −b =2bcosA .∴ 由余弦定理可得:c −b =2b ×b 2+c 2−a 22bc ,整理可得:a 2=b 2+bc , ∵ a =2√6,b =3,∴ 24=9+3c ,解得:c =5.(2)∵ C =π2,∴ A +B =π2,可得sinA =cosB ,cosA =sinB ,∴ c −b =2bcosA ,由正弦定理可得:sin(A +B)=2sinBcosA +sinB ,可得:sinAcosB +cosAsinB =2sinBcosA +sinB ,解得:cos 2B +sin 2B =2sin 2B +sinB =1,即:2sin 2B +sinB −1=0,可得:sinB =12或−1(舍去).即B =π6.【考点】正弦定理余弦定理【解析】(Ⅰ)由余弦定理化简已知等式,整理可得:a2=b2+bc,代入已知即可解得c的值.(Ⅱ)由题意A+B=π2,可得sinA=cosB,cosA=sinB,由正弦定理化简已知等式可得:2sin2B+sinB−1=0,解得sinB,即可求B=π6.【解答】(1)∵c−b=2bcosA.∴由余弦定理可得:c−b=2b×b2+c2−a22bc,整理可得:a2=b2+bc,∵a=2√6,b=3,∴24=9+3c,解得:c=5.(2)∵C=π2,∴A+B=π2,可得sinA=cosB,cosA=sinB,∴c−b=2bcosA,由正弦定理可得:sin(A+B)=2sinBcosA+sinB,可得:sinAcosB+cosAsinB=2sinBcosA+sinB,解得:cos2B+sin2B=2sin2B+sinB=1,即:2sin2B+sinB−1=0,可得:sinB=12或−1(舍去).即B=π6.【答案】(1)从被检测的5辆甲品牌汽车中任取2辆,共有10种不同的二氧化碳排放量结果,分别为:(80, 110),(80, 120),(80, 140),(80, 150),(110, 120),(110, 140),(110, 150),(120, 140),(120, 150),(140, 150),设“至少有1辆二氧化碳排放量超过130g/km”为事件A事件A包含7种不同结果:(80, 140),(80, 150),(110, 140),(110, 150),(120, 140),(120, 150),(140, 150),所以P(A)=710=0.7(2)由题可知100+120+x+100+1605=120,所以x=120,又∵x=80+110+120+140+1505=120,所以x=x,s2=15[(80−120)2+(110−120)2+(120−120)2+(140−120)2+(150−120)2]=600,s2=15[(100−120)2+(120−120)2+(120−120)2+(100−120)2+(160−120)2]=480,所以s2>s2,x=x,所以乙品牌汽车二氧化碳排放量的稳定性好. 【考点】极差、方差与标准差 众数、中位数、平均数 【解析】(Ⅰ)分别计算出从被检测的5辆甲品牌汽车中任取2辆的取法总数及至少有1辆二氧化碳排放量超过130g/km 的取法,代入古典概型概率公式,可得答案.(Ⅱ)分别计算两种品牌汽车二氧化碳排放量的平均数和方差,可得答案. 【解答】(1)从被检测的5辆甲品牌汽车中任取2辆,共有10种不同的二氧化碳排放量结果,分别为:(80, 110),(80, 120),(80, 140),(80, 150),(110, 120),(110, 140),(110, 150),(120, 140),(120, 150),(140, 150), 设“至少有1辆二氧化碳排放量超过130g/km ”为事件A 事件A 包含7种不同结果:(80, 140),(80, 150),(110, 140),(110, 150), (120, 140),(120, 150),(140, 150), 所以P(A)=710=0.7 (2)由题可知100+120+x+100+1605=120,所以x =120, 又∵ x =80+110+120+140+1505=120,所以x =x ,s 2=15[(80−120)2+(110−120)2+(120−120)2+(140−120)2+(150−120)2]=600,s 2=15[(100−120)2+(120−120)2+(120−120)2+(100−120)2+(160−120)2]=480, 所以s 2>s 2,x =x ,所以乙品牌汽车二氧化碳排放量的稳定性好. 【答案】存在P ,使得CP // 平面ABEF ,此时λ=32. 证明:当λ=32,此时APAD =35,过P 作MP // FD ,与AF 交M ,则MPFD =35,又FD =5,故MP =3,∵ EC =3,MP // FD // EC ,∴ MP // EC ,且MP =EC ,故四边形MPCE 为平行四边形, ∴ PC // ME ,∵ CP 平面ABEF ,ME ⊂平面ABEF ,∴ CP // 平面ABEF 成立.(Ⅱ)∵ 平面ABEF ⊥平面EFDC ,ABEF ∩平面EFDC =EF ,AF ⊥EF , ∴ AF ⊥平面EFDC ,∵ BE =x ,∴ AF =x ,(0<x < ,FD =6−x ,故三棱锥A −CDF 的体积V =13x ×12×2×(6−x)=13x(6−x)≤13×(x+6−x 2)2=3,∴ x =3时,三棱锥A −CDF 的体积V 有最大值,最大值为3. 建立如图所示的空间直角坐标系,则F(0, 0, 0),A(0, 0,(1),C(2, 1, 0),D(0, 3, 0). AD →=(0, 3, −(2),CD →=(−2, 2, 0),FA →=(0, 0,(3). 设平面ACD 的法向量为n →=(x, y, z),则{n →∗AD →=0n →∗CD →=0,∴ {3y −3z =0−2x +2y =0,取y =1,则x =1,z =1,∴ n →=(1, 1,(4). ∴ 点F 到平面ACD 的距离d =|n →∗FA →||n →|=√3=√3.【考点】柱体、锥体、台体的体积计算 直线与平面平行点、线、面间的距离计算 【解析】(1)存在P ,使得CP // 平面ABEF ,此时λ=32.当λ=32,此时AP AD =35,过P 作MP // FD ,与AF 交M ,则MP FD =35,可证:四边形MPCE 为平行四边形,得到PC // ME ,因此CP // 平面ABEF 成立.(Ⅱ)利用面面垂直的性质定理可得:AF ⊥EF ,因此AF ⊥平面EFDC ,设BE =x ,则AF =x ,(0<x <4),FD =6−x ,故三棱锥A −CDF 的体积V =13x ×12×2×(6−x),利于基本不等式的性质即可得出.建立如图所示的空间直角坐标系,设平面ACD 的法向量为n →=(x, y, z),则{n →∗AD →=0n →∗CD →=0,点F 到平面ACD 的距离d =|n →∗FA →||n →|. 【解答】存在P ,使得CP // 平面ABEF ,此时λ=32. 证明:当λ=32,此时APAD =35,过P 作MP // FD ,与AF 交M ,则MPFD =35,又FD =5,故MP =3,∵ EC =3,MP // FD // EC ,∴ MP // EC ,且MP =EC ,故四边形MPCE 为平行四边形, ∴ PC // ME ,∵ CP 平面ABEF ,ME ⊂平面ABEF , ∴ CP // 平面ABEF 成立.(Ⅱ)∵ 平面ABEF ⊥平面EFDC ,ABEF ∩平面EFDC =EF ,AF ⊥EF , ∴ AF ⊥平面EFDC ,∵ BE =x ,∴ AF =x ,(0<x < ,FD =6−x ,故三棱锥A −CDF 的体积V =13x ×12×2×(6−x)=13x(6−x)≤13×(x+6−x 2)2=3,∴ x =3时,三棱锥A −CDF 的体积V 有最大值,最大值为3. 建立如图所示的空间直角坐标系,则F(0, 0, 0),A(0, 0,(1),C(2, 1, 0),D(0, 3, 0). AD →=(0, 3, −(2),CD →=(−2, 2, 0),FA →=(0, 0,(3). 设平面ACD 的法向量为n →=(x, y, z),则{n →∗AD →=0n →∗CD →=0,∴ {3y −3z =0−2x +2y =0,取y =1,则x =1,z =1,∴ n →=(1, 1,(4). ∴ 点F 到平面ACD 的距离d =|n →∗FA →||n →|=√3=√3.【答案】(Ⅰ)由题意可得,a =4,c =2由a 2=b 2+c 2,得b 2=42−22=12, 所以椭圆C 的方程为x 216+y 212=1. (Ⅱ)当∠APQ =∠BPQ 时,AP ,BP 的斜率之和为0,设直线PA 的斜率为k ,则直线PB 的斜率为−k ,设A(x 1, y 1)B(x 2, y 2),PA 的方程为y −3=k(x −2). 联立{y −3=k(x −2)x 216+y 212=1消y 得(3+4k 2)x 2+8(3k −k 2)x +4(4k 2+9−12k)−48=0所以2+x 1=8k(2k−3)3+4k 2, 同理2+x 2=8k(2k+3)3+4k 2,所以x 1+x 2=16k 2−123+4k 2,x 1−x 2=−48k3+4k 2,所以k AB =y 2−y1x 2−x 1=k(x 1+x 2)−4kx 2−x 1=12,所以AB 的斜率为定值12.【考点】 椭圆的定义 【解析】(Ⅰ)由题意可得,a =4,c =2由a 2=b 2+c 2,得b 2=42−22=12,问题得以解决. (Ⅱ)当∠APQ =∠BPQ 时,PA 、PB 的斜率之和为0,设直线PA 的斜率为k ,则PB 的斜率为−k ,将PA 、PB 的直线方程分别代入椭圆方程,然后运用韦达定理,求出x 1,x 2,再由斜率公式化简即可得到定值. 【解答】(Ⅰ)由题意可得,a =4,c =2由a 2=b 2+c 2,得b 2=42−22=12, 所以椭圆C 的方程为x 216+y 212=1.(Ⅱ)当∠APQ =∠BPQ 时,AP ,BP 的斜率之和为0, 设直线PA 的斜率为k ,则直线PB 的斜率为−k ,设A(x 1, y 1)B(x 2, y 2),PA 的方程为y −3=k(x −2). 联立{y −3=k(x −2)x 216+y 212=1消y 得(3+4k 2)x 2+8(3k −k 2)x +4(4k 2+9−12k)−48=0所以2+x 1=8k(2k−3)3+4k 2, 同理2+x 2=8k(2k+3)3+4k 2,所以x 1+x 2=16k 2−123+4k 2,x 1−x 2=−48k3+4k 2,所以k AB =y 2−y1x 2−x 1=k(x 1+x 2)−4kx 2−x 1=12,所以AB 的斜率为定值12. 【答案】由已知得f ′(x)=1x −kx 2(x >0).∵ 曲线y =f(x)在点(e, f(e))处的切线与直线x −2=0垂直,∴ 此切线的斜率为0. 即f′(e)=0,有1e −k e 2=0,解得k =e . ∴f ′(x)=1x −ex 2=x−e x 2(x >0),由f′(x)<0得0<x <e ,由f′(x)>0得x >e .∴ f(x)在(0, e)上单调递减,在(e, +∞)上单调递增,当x =e 时f(x)取得极小值f(e)=lne +ee =2.故f(x)的单调递减区间为(0, e),极小值为2.条件等价于对任意x 1>x 2>0,f(x 1)−x 1<f(x 2)−x 2(∗)恒成立. 设ℎ(x)=f(x)−x =lnx +kx −x(x >0). ∴ (∗)等价于ℎ(x)在(0, +∞)上单调递减. 由ℎ(x)=1x −kx 2−1≤0在(0, +∞)上恒成立,得k ≥−x 2+x =−(x −12)2+14(x >0)恒成立. 所以k ≥14 ( 对k =14,ℎ′(x)=0仅在x =12时成立), 故k 的取值范围是[14, +∞).【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的最值 【解析】(1)先利用导数的几何意义求出k 的值,然后利用导数求该函数单调区间及其极值; (2)由题意可知,函数f(x)−x 在(0, +∞)上递增,即该函数的导数大于等于零在(0, +∞)恒成立,然后转化为导函数的最值问题来解. 【解答】由已知得f ′(x)=1x −k x 2(x >0).∵ 曲线y =f(x)在点(e, f(e))处的切线与直线x −2=0垂直,∴ 此切线的斜率为0. 即f′(e)=0,有1e −k e 2=0,解得k =e . ∴f ′(x)=1x −ex 2=x−e x 2(x >0),由f′(x)<0得0<x <e ,由f′(x)>0得x >e .∴ f(x)在(0, e)上单调递减,在(e, +∞)上单调递增,当x =e 时f(x)取得极小值f(e)=lne +ee =2.故f(x)的单调递减区间为(0, e),极小值为2.条件等价于对任意x 1>x 2>0,f(x 1)−x 1<f(x 2)−x 2(∗)恒成立. 设ℎ(x)=f(x)−x =lnx +kx −x(x >0). ∴ (∗)等价于ℎ(x)在(0, +∞)上单调递减. 由ℎ(x)=1x −kx 2−1≤0在(0, +∞)上恒成立, 得k ≥−x 2+x =−(x −12)2+14(x >0)恒成立. 所以k ≥14 ( 对k =14,ℎ′(x)=0仅在x =12时成立), 故k 的取值范围是[14, +∞).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号[选修4-4:坐标系与参数方程]【答案】由ρ−4sinθ=0得ρ=4sinθ⇒ρ2=4ρsinθ⇒x 2+y 2−4y =0⇒x 2+(y −2)2=4, 即曲线C 的直角坐标方程为x 2+(y −2)2=4, ∵ 直线l 过点M(1, 0),倾斜角为3π4. ∴ 直线l 的参数方程为{x =1+tcos 3π4=1−√22t y =tsin 3π4=√22t,(t 是参数),设A ,B 对应的参数分别为t 1,t 2,把直线的参数方程代入曲线方程得(1−√22t)2+(√22t −2)2=4,整理得t 2−3√2t +1=0, 则t 1+t 2=3√2,t 1t 2=1, ∴ t 1>0,t 2>0,则|MA|+|MB|=|t 1|+|t 2|=|t 1|+|t 2|=3√2. 【考点】圆的极坐标方程参数方程与普通方程的互化 【解析】(1)根据极坐标和参数方程的定义进行求解即可.(2)设A ,B 对应的参数分别为t 1,t 2,联立方程求出结合|MA|+|MB|=|t 1|+|t 2|进行计算即可. 【解答】由ρ−4sinθ=0得ρ=4sinθ⇒ρ2=4ρsinθ⇒x 2+y 2−4y =0⇒x 2+(y −2)2=4, 即曲线C 的直角坐标方程为x 2+(y −2)2=4, ∵ 直线l 过点M(1, 0),倾斜角为3π4. ∴ 直线l 的参数方程为{x =1+tcos 3π4=1−√22t y =tsin 3π4=√22t,(t 是参数),设A ,B 对应的参数分别为t 1,t 2,把直线的参数方程代入曲线方程得(1−√22t)2+(√22t −2)2=4,整理得t 2−3√2t +1=0, 则t 1+t 2=3√2,t 1t 2=1, ∴ t 1>0,t 2>0,则|MA|+|MB|=|t 1|+|t 2|=|t 1|+|t 2|=3√2. [选修4-5:不等式选讲]【答案】(1)|x −2|+|x −1|≥5,当x >2时,(x −2)+(x −1)≥5,x ≥4; 当1≤x ≤2时,(2−x)+(x −1)≥5,无解; 当x <2时,(2−x)+(1−x)≥5,x ≤−1. 综上,不等式的解集为:{x|x ≥4或x ≤−1}.(2)证明:f(ab)>|a|⋅f(ab )⇔|ab −2|>|a|⋅|ba −2|⇔|ab −2|>|b −2a|⇔(ab −2)2>(b −2a)2,⇔a 2b 2+4−b 2−4a 2>0⇔(a 2−1)(b 2−4)>0, 因为|a|>1,所以a 2−1>0, 所以b 2−4>0,即|b|>2. 【考点】绝对值不等式的解法与证明 不等式的证明【解析】(I)讨论x的范围,去绝对值符号解不等式;(II)根据绝对值的性质得出不等式的等价不等式,再根据a的范围得出b的范围.【解答】(1)|x−2|+|x−1|≥5,当x>2时,(x−2)+(x−1)≥5,x≥4;当1≤x≤2时,(2−x)+(x−1)≥5,无解;当x<2时,(2−x)+(1−x)≥5,x≤−1.综上,不等式的解集为:{x|x≥4或x≤−1}.(2)证明:f(ab)>|a|⋅f(ab )⇔|ab−2|>|a|⋅|ba−2|⇔|ab−2|>|b−2a|⇔(ab−2)2>(b−2a)2,⇔a2b2+4−b2−4a2>0⇔(a2−1)(b2−4)>0,因为|a|>1,所以a2−1>0,所以b2−4>0,即|b|>2.。