结构动力学-6
- 格式:ppt
- 大小:1.24 MB
- 文档页数:17
结构动力学第6章分布参数体系本次课主要内容:振型的正交性梁的动力反应分析简支梁在移动荷载作用下的振动均直梁轴向振动分析分布参数结构振动分析(动力直接刚度法) 剪切梁振动分析6.3振型的正交性6.3振型的正交性z与多自由度体系相同,分布参数体系的振型也可以作为坐标变化的基底,以采用振型叠加法进行体系的动力反应分析,其原因同样是由于分布参数体系振型的正交性。
z本节介绍分布质量和刚度体系自振振型的正交性。
z为简便起见,仅考虑单个梁带有简支、固支或自由边界条件。
z不考虑梁中或梁端有集中质量以及支承弹簧情况,对于这些更复杂的情况也可以采用同样的方法加以分析。
6.4梁的动力反应分析首先进行模态分析,得到简支梁的自振频率和振型2sin,EI m n xLπ∞LL2mLdx L x =π444230)sin 2Ln x n EI dx LL ππ=∫)(ξn )(0ξφn p =Lxn x n πφsin)(=是一个单自由度体系在突加外力p 0φn (ξ)作用下的反应,由单自由度中给出的解法可以容易求解。
)(0ξφn p =)cos 1()(4t nn ωξ−)cos t n ω−L x n x n πφsin )(=Lxn t n πωsin)cos 1−Lxn t x t n nn πωφωsin)cos )()cos −′′时梁的动力反应代入相应方程可得梁中点的挠度和弯矩:分析以上给出的位移和弯矩的级数解可以发现,位移是收敛,因此,为保证内力的有效计算精度,必须取比位移更多的项计算。
,位移可以取前3项,而对于弯矩的共性。
)2401cos 175L +−+t t ωω)49cos 125cos 75L +−+t t ωω6.5简支梁在移动荷载作用下的振动移动质量作用下的简支梁模型当移动荷载作用下产生的变形曲率很小和移动速度较低时,考虑移动质量的简支梁动力平衡方程为:2112(,))d u x t Vt M g M dt ⎞⎛−−⎟⎜⎝⎠2222(,)(,)2u x t u x t V V x t x∂∂++∂∂∂22222(,)(,)(,)2u x t u x t u x t V V t x t x ⎤⎞∂∂++⎥⎟∂∂∂∂⎠⎦212(,)()u x t x Vt M g t δ⎞⎛∂=−−⎟⎜∂⎝⎠6.6均直梁轴向振动分析注意到梁的振动是沿轴向的,振型图仅为示意图。
tv t v ωsin )(0=Rayleigh 法的基本概念为能量守恒定律。
即认为如果没有阻尼力消耗能量的话,在自由振动体系中,能量应该保持常量。
用Rayleigh 法进行振动分析自由振动位移:tv t v ωωcos )(0=&自由振动速度:tkv kv V ω2202sin 2121==弹簧变形能:t mv v m T ωω22202cos 2121==&质量块动能:2max 21kv V =220max 21ωmv T =maxmax V T =Rayleigh 法的基本概念为能量守恒定律。
即认为如果没有阻尼力消耗能量的话,在自由振动体系中,能量应该保持常量。
最大动能等于最大位能:220202121ωmv kv =mk =2ω注意:这个表达式和以前所述的一样,但现在它是从最大变形能应等于最大动能的Rayleigh 法概念而得。
tZ x t x v ωψsin )(),(0=例子:简支梁,认为是无限自由度一般体系的近似分析)(),(x m x EI 体系变形能:dxx v x EI V L2022)(21⎰⎥⎦⎤⎢⎣⎡∂∂=dx x x x EI Z V L202220max )()(21⎰⎥⎦⎤⎢⎣⎡∂∂=ψtZ x t x v ωψsin )(),(0=例子:简支梁,认为是无限自由度)(),(x m x EI 动能:dxt v x m T L2022)(21⎰⎥⎦⎤⎢⎣⎡∂∂=dxx x m Z T L20220max )()(21⎰=ψω由Rayleigh 法:dx x x m dx x x EI LL2202)()()(")(⎰⎰=ψψωtZ x t x v ωψsin )(),(0=例子:简支梁,认为是无限自由度振动形状的选取)(),(x m x EI 假定振型为抛物线:⎪⎭⎫⎝⎛-=L x L x x 1)(ψ22)("Lx -=ψ3200220max 421)](")[(21LEI Z dx x x EI Z V L ⎰==ψ能量守恒:3021)]()[(212020022020max L m Z dx x x m Z T L ωψω⎰==maxmax T V =42120Lm EI=ω假定振型为正弦曲线:Lxx πψsin)(=LxLx ππψsin)("22-=34200220max 221)](")[(21LEI Z dx x x EI Z V Lπψ⎰==221)]()[(212020022020max L m Z dx x x m Z T L ωψω⎰==能量守恒:maxmax T V =444241.97Lm EIL m EI≈=πω假定振型为抛物线:42120Lm EI =ω假定振型为正弦曲线:444241.97Lm EIL m EI≈=πω原则上,只要满足梁的几何边界条件,形状函数可任意选取,亦即形状函数仅需和具体的支承条件一致。
第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
《结构动力学》课后习题1试确定图示各体系的动力自由度,忽略弹性杆件自身的质量和轴向变形。
(a)4个动力自由度(b)2个动力自由度(c)2个动力自由度(d)2个动力自由度m(e )3个动力自由度(f )3个动力自由度(g)2个动力自由度(h)3个动力自由度(i)2个动力自由度(j)1个动力自由度m(k )2个动力自由度(l )2个动力自由度2试比较下列图式结构(a )、(b)固有频率的大小,并说明理由。
解:(a )结构滑动铰支座刚度无穷大,而(b )结构由于二力杆可以轴向变形,所以(a )结构刚度大于(b )结构刚度;而两结构质量相等,根据ω=可以知道,(a )结构故固有频率大于(b)结构固有频率。
m(a )(b )3下图为刚性外伸梁,C 处为弹性支座,刚度系数为k ,梁端A ,D 处分别有m 和质量m /3,同时梁受集中荷载F P (t )的作用,试建立刚性梁的运动方程。
解:单自由度体系,设刚性梁转角为ϕm(t)(my )(y )3A A D D F ϕϕϕϕδδδ=-⋅+-⋅+ (1)其中A y l ϕ=2D y l ϕ= 设刚梁顺时针转动为正①当在A 处作用单位力F=1时,2()3C F =↓234329A l k klϕδ=+÷=+②当在D 处作用单位力F=1时,4()3C F =↑438329A l k klϕδ=+÷=+③当作用F p (t )时,(t)()3p C F F =↑(t)2(t)3329p p FF F l k kl ϕδ=÷=代入(1)式得:2(t)4m 8(m )((2)9399p F l l kl kl klϕϕϕ=-⋅+-⋅⋅+整理得:2(t)28279p F m k klϕϕ+=4求图示结构的自振频率ωEI =∞kθlθm解:如图所示,该体系只有一个自由度。
设固定支座处出为原点,距离原点x处的质点(mdx )位移为x θ,惯性力为()mdx x mx dx θθ''-=- 。
结构动力学Dynamics of Structures第六章分布参数体系Chapter 6 Continuous Systems华南理工大学土木工程系马海涛/陈太聪结构动力学第六章分布参数体系0of 24华南理工大学土木与交通学院土木工程系本章主要目的及内容目的:了解具有分布质量弹性连续体的动力分析方法;初步掌握一维结构的运动方程的建立和简单问题求解.内容:•梁的偏微分运动方程•梁的自振频率和振型•振型的正交性•用振型叠加法计算梁的动力反应结构动力学第六章分布参数体系1of 24华南理工大学土木与交通学院土木工程系§6.1 梁的偏微分运动方程剪切变形-Euler梁、Timoshenko梁转动惯量阻尼影响§6.1.1弯曲梁(欧拉梁)的横向振动方程结构动力学第六章分布参数体系2of 24华南理工大学土木与交通学院土木工程系§6.1 梁的偏微分运动方程Euler梁静力平衡方程:∂2∂x2⎡∂u(x,t)⎤⎢EI(x)⎥=P(x,t)2∂x⎣⎦2惯性力-分布强度:∂u(x,t)fI(x)=m(x)2∂t2Euler梁动力平衡方程:∂2∂x结构动力学2⎡∂u(x,t)⎤∂u(x,t)⎢EI(x)⎥=P(x,t)−m(x)22∂x∂t⎣⎦223of 24华南理工大学土木与交通学院土木工程系第六章分布参数体系§6.1 梁的偏微分运动方程等截面梁的运动方程:∂u(x,t)∂u(x,t)m+EI=P(x,t)24∂t∂x24运动方程:2⎡∂u(x,t)∂∂u(x,t)⎤m(x)+2⎢EI(x)⎥=P(x,t)22∂t∂x⎣∂x⎦22Euler梁动力平衡方程:∂2∂x结构动力学2⎡∂u(x,t)⎤∂u(x,t)⎢EI(x)⎥=P(x,t)−m(x)22∂x∂t⎣⎦224of 24华南理工大学土木与交通学院土木工程系第六章分布参数体系§6.1 梁的偏微分运动方程等截面梁的运动方程:∂u(x,t)∂u(x,t)m+EI=P(x,t)24∂t∂x24四阶偏微分方程(A fourth order partial differential equation)(1) 比较静力情形:du(x)EI=P(x)4dx4(2) 假设条件:Euler梁理论忽略转动惯量影响结构动力学第六章分布参数体系∂ux,t() P(x,t)=P(x)−m(x)2∂t25of 24华南理工大学土木与交通学院土木工程系§6.1.5考虑阻尼影响的梁的振动方程结构动力学第六章分布参数体系6of 24华南理工大学土木与交通学院土木工程系§6.1.5考虑阻尼影响的梁的振动方程横向阻尼力(分布线密度)∂u(x,t)fD(x)=−c(x)∂t梁内阻尼弯矩∂ε阻尼应力σD=cs∂t∂ε(x,η,t)MD(x)=∫σDηdA=∫csηdA∂tAA32∂u(x,t)∂⎛∂u⎞=∫csη⎜−2η⎟dA=−csI(x)2∂t⎝∂x⎠∂t∂xA第六章分布参数体系7of 24华南理工大学土木与交通学院土木工程系结构动力学§6.1.5考虑阻尼影响的梁的振动方程无阻尼梁的震动方程∂u(x,t)∂m(x)+22∂t∂x22⎡∂u(x,t)⎤⎢EI(x)⎥=P(x,t)2∂x⎣⎦2考虑阻尼力的贡献后,有∂u(x,t)∂u(x,t)m(x)+c(x)+2∂t∂t232∂u(x,t)∂u(x,t)⎤∂⎡EI(x)+csI(x)⎥=P(x,t)2⎢22∂x⎣∂x∂x∂t⎦2结构动力学第六章分布参数体系8of 24华南理工大学土木与交通学院土木工程系§6.2 梁的自振频率和振型§6.2.1 弯曲梁的自振频率和振型欧拉梁的横向自由振动运动方程m或写成∂u(x,t)2∂t2+EI∂u(x,t)4∂x4=0∂()∂()()=,()′=∂t∂xiEI +u′′′′=0u mu(x,t)=φ(x)q(t)使用分离变量法(the method of separation of variables)代入方程后,可得结构动力学第六章分布参数体系EI (t)=−φ′′′′(x)q(t)φ(x)qm9of 24华南理工大学土木与交通学院土木工程系§6.2.1 弯曲梁的自振频率和振型于是有(t)φ′′′′(x)mq=−φxEIqt命 (t)EIφ′′′′(x)q2=ω=−mφxqt2 q(t)+ωq(t)=0 4′′′′φ(x)−aφ(x)=0可得两个常微分方程分别求解式中a=结构动力学4ωmEI10of 24华南理工大学土木与交通学院土木工程系2第六章分布参数体系§6.2.1 弯曲梁的自振频率和振型方程 (t)+ωq(t)=0q2通解为q(t)=A1sinωt+B1cosωt对给定初始条件,有q(t)= (0)qωsinωt+q(0)cosωt结构动力学第六章分布参数体系11of 24华南理工大学土木与交通学院土木工程系§6.2.1 弯曲梁的自振频率和振型方程φ′′′′(x)−aφ(x)=04设解为φ(x)=Cesx代入方程后,有特征方程(s解方程得4−a)Ce=04sxs1,2,3,4=±a,±ia方程的通解−iax−axiaxaxφ(x)=C1e+C2e+C3e+C4e结构动力学第六章分布参数体系12of 24华南理工大学土木与交通学院土木工程系§6.2.1 弯曲梁的自振频率和振型方程φ′′′′(x)−aφ(x)=04用三角函数和双曲函数可将通解表示为φ(x)=Asinax+Bcosax+Csinhax+Dcoshax其中双曲函数e−esinhax=2ax−axe+e,coshax=2ax−ax(1)A, B, C, D为待定常数,通过边界条件确定位移、斜率、剪力或弯矩的自由边界条件(2)齐次代数方程由非零解条件得频率方程,可确定频率参数a,再确定振型参数A, B, C,D结构动力学第六章分布参数体系13of 24华南理工大学土木与交通学院土木工程系§6.2.1弯曲梁的自振频率和振型例6.1简支梁简支条件:x=0:φ(0)=0;M(0)=EIφ′′(0)=0x=L:φ(L)=0;M(L)=EIφ′′(L)=014of 24华南理工大学土木与交通学院土木工程系结构动力学第六章分布参数体系§6.2.1弯曲梁的自振频率和振型由左端边界条件(x = 0) 得:φ(0)=Asin0+Bcos0+Csinh0+Dcosh0=B+D=022′′φ(0)=a(−Asin0−Bcos0+Csinh0+Dcosh0)=a(−B+D)=0⇒B=D=0右端边界条件,有:AsinaL+CsinhaL=0−AsinaL+CsinhaL=0⎡sinaLsinhaL⎤⎧A⎫⎧0⎫=⎨⎬⎨⎬⎢−sinaLsinhaL⎥C⎣⎦⎩⎭⎩0⎭为保证有非零解,系数矩阵行列式必等于零sinaLsinhaL−sinaLsinhaL结构动力学第六章分布参数体系=0⇒频率方程sinaLsinhaL=0sinaL=015of 24华南理工大学土木与交通学院土木工程系§6.2.1弯曲梁的自振频率和振型根据正弦函数特性,由sinaL=0我们有:anL=nπ,n=1,2, ,∞aEI注意到ω=频率为:m22ωn=nπ(n=1,2, ,∞)24将sinaL=0代回到右端点边界条件方程,可得C = 0。