结构动力学心得汇总
- 格式:doc
- 大小:451.50 KB
- 文档页数:21
结构力学感想篇一:结构力学感想感悟结构力学这学期开设土木工程专业基础课结构力学,给我第一印象是:难并且复杂,但是实用。
结构力学(S truct uralMecha nics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科,它是土木工程专业和机械类专业学生必修的学科。
我以后专业方向可能选择结构方向,那么未来的工作和学习很可能一直需要学习结构力学并且研究它。
下面谈谈对结构力学初步的感悟。
结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。
结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
这三种分析方法实用而且能把复杂的问题简单化,也就是简化实际工程中的问题。
在实际生活中,结构无处不在,结构体系是整个工程核心,结构一旦出问题,那么整个工程体系将会出现问题。
土建、水利等建筑工程首先考虑的就是建筑工程的结构,结构就是组成工程的灵魂。
任何复杂的工程体系都可以简化成一个个简单的结构体系来分析,进而强化改进整个建筑,使它们能够更安全、更经济、更耐久,满足工程需要。
结构力学在当前的实际中要靠建筑设计作为基础,在满足该设计的前提下进行结构分析与设计,单纯的从结构方面进行的建筑必定难以满足美观的要求,而在现在的建筑中,没有好的外观,纵使你的结构固若金汤也很难被接受。
结构动力学是一种研究结构在外部载荷下的动态响应和振动特性的学科。
它主要关注
的是结构在受到外部激励(如风、地震、交通等)时的振动响应,分析结构的稳定性、自然频率、振型和振幅等参数。
结构动力学的研究对于工程实践和安全评估具有重要
意义。
结构动力学研究的对象可以是各种类型的结构,如房屋、桥梁、塔楼、船舶、飞行器等。
在研究中,结构动力学通常采用数学模型来描述结构的振动响应,包括质点模型、连续体模型、有限元方法等。
在工程实践中,结构动力学的应用十分广泛。
例如,在建筑结构设计中,需要考虑地震、风荷载等外部载荷对结构的影响,通过结构动力学分析可以确定结构的合理构造
和材料选型;在航空航天领域,需要对飞行器结构进行动力学分析,以保证其安全性
和可靠性。
总之,结构动力学是一门研究结构在外部载荷下的动态响应和振动特性的重要学科,
对于工程实践和安全评估具有重要意义。
高等结构动力学学习心得体会1.这门课程独特的授课方式随着科学技术的进步,结构动力学越来越广泛地应用于建筑结构工程中的防震抗震,海洋平台设计,桥梁结构的抗震设计、桥梁结构故障诊断及桥梁结构健康状态监测等工程技术领域。
而工程界对结构系统进行动力分析的要求日益提高,我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是结构工程专业人员的基本任务,由于工程实际中大部分问题与动载荷有关,因此高等结构动力学无疑是一门十分重要的学科。
其实高等结构动力学对我们来说并不陌生,总的来说它是结构力学的基础上来研究动载荷的作用效果,并且与我们在大四时期所接触机械振动这门课程很相似。
它研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的一门课程。
若不结合工程实例,是很难理解这门课程的理论知识的,在大四时我学完机械振动这门课程后仍旧理解的不甚透彻。
针对这一现象老师开设的让同学们上台讲课这一环节无疑让我们受益匪浅,一方面来说对于上台讲课的同学,他们在积极准备的同时必然会去详细了解结构动力学在这一工程领域的应用,无形中促使了他们去学习这门课程,而对于台下听的同学,也这让我们对这门课程的工程应用有了更广泛和更深刻的理解,不再仅限于学习理论知识,这对深刻,学习这门课程也有很大的帮助。
老师的这种授课方式是极好的,讲主动权掌握在同学自己手中,无疑是让我们学会如何自主的学习,当各位同学讲述完自己准备的东西之后还开设了讨论环节,可以提出你自己不懂的问题,做进一步讨论,进一步加深对这一块知识的理解,除此以外你还可以提出自己的见解或者讲课同学的不足之处,大家互帮互助,共同进步。
2.对于这门课程的学习收获这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算等问题。
结构动力学 动力特性(天生就有的,爹妈给的,不随外界任何事物改变)自振频率ω:初速度或初位移引起自由振动的圆频率振型:结构按照某自振频率振动的位移形态阻尼:振动过程中的能量耗散(主要由结构内部的特征决定的)动力作用:周期荷载、冲击荷载、随机荷载(地震)动力反应(响应):动内力、动荷载、速度、加速度结构动力学是研究动力反应的规律的学问,一般思路是先研究自由振动(目的是搞清该结构的动力特性)再研究强迫振动(动力特性+动力作用)利用振型分解反应谱法,可以将每个基本振型的参与系数求出来,这样的最大好处是可以将耦联微分方程解耦。
刚度法通式:()()()()mY t cY t kY t F t ++=1、 单自由度无阻尼自由振动(分析自由振动的目的是确定体系的动力特性:周期、自振频率)()()0my t ky t += (()[()]y t my t δ=-) (令k m ω=) 解为:00()cos sin v y t y t t ωωω=+=sin()A t ωϕ+ (22002v A y ω=+,00tan y v ωϕ=) 重要结论:由微分方程的解可以知道,无阻尼振动是一个简谐振动,其周期和自振频率为2T πω=,k mω=周期和自振频率之和自己质量与刚度有关和外界因素无关。
2、单自由度有阻尼自由振动()()()0my t cy t ky t ++= (令=22c c mw mkξ=) 即微分方程为2()2()()0y t wy t w y t ξ++=(实际建筑结构的阻尼比1ξ<)解为000()[sin cos ]t d d dv y y t e t y t ξωξωωωω-+=+=sin()t d Ae t ξωωϕ-+(21d ωωξ=-) 221000000(),d d v y y A y tg v y ξωωϕωξω-+=+=+其中 重要结论:1)由方程的解看出弱阻尼情况下的自由振动是一种衰减振动,阻尼使振幅按指数规律衰减。
结构动力学课程总结与进展综述首先谈一下我对高等结构动力学课程的认识。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算。
我们是航空院校,当然我们所修的高等结构动力学主要针对的是飞行器结构。
这门课程很难,我通过课程和考试学到了不少东西,当然,也有很多东西不懂,我的研究方向是动力学结构优化设计,其中我对于目前的灵敏度分析研究比较感兴趣,这门课程是我以后学习的基础。
二十世纪中叶,计算机科学发展迅速,有限元方法得到长足进步,使得力学,特别是结构力学的研究方向发生了重大变化,研究范围也得以拓宽。
长期处于被动状态的结构分析,转化到主动的结构优化设计,早期的结构优化设计,考虑的是静强度问题。
但实践指出,许多工程结构,例如飞行器,其重大事故大多与动强度有关。
同理,在航天、土木、桥梁等具有结构设计业务的工作部门,运用结构动力学优化设计技术,必将带来巨大的经济效益。
20世纪60年代,动力学设计也称动态设计(dynamic design)开始兴起,但真正的发展则在八、九十年代,现正处于方兴未艾之际。
“动态设计”一词常易引起误解,逐被“动力学设计”所取代。
进入90年代以来,结构动力学优化设计的研究呈现出加速发展的态势,在许多方面取得了令人耳目一新的成果。
尽管如此,它的理论和方法尚有待系统和完善,其软件开发和应用与工程实际还存在着较大的距离,迄今尚存在着许多未能很好解决甚至尚未涉足的问题。
《结构动力学》读书报告结构动力学读书报告学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下:1.(1)结构动力学及其研究内容:结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
(2)主要理论分析结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。
对于绝大多数实际结构,在工程分析中主要采用数值方法。
作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。
(3)数学模型将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。
由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由度。
对于大部分质量集中在若干离散点上的结构,这种方法特别有效。
②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为:结构动力学(1) 式中的qj称为广义坐标,它表示相应位移函数的幅值。
这样,离散系统的运动方程就以广义坐标作为自由度。
对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。
③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。
重大工程结构动力模型实验学习心得
重大工程结构动力模型试验,旨在通过对重大工程在强地震动场和强、台风场动力作用下的损伤破坏演化过程的研究,揭示重大工程的损伤机理和破坏倒塌机制,建立重大工程动力灾变模拟系统,发展与经济和社会相适应的重大工程防灾减灾科学和技术,为保障重大工程的安全建设和运营提供科学支撑。
通过PPT,我们了解到大型建筑物并非建筑师画出图纸,施工单位建造完品这么简单,创新是要建立在实际可行的基础上的,所有大型建筑都需要通过结构动力模型来获取有效数据。
重大研究计划围绕以下4个核心科学问题,循序渐进地组织实施和开展研究:
(一)强地震动场和强/台风场的建模与预测。
(二)重大工程动力灾变的关键效应。
(三)重大工程动力灾变的全过程分析。
(四)重大工程动力灾变模拟系统的集成与验证。
PPT讲解完后,我们一行人参观了抗震大厅,并对部分器材进行猜想,求老师解答。
海上油气开发设施因为水深和生产方式的不同,有多种开发设施。
大致可以分为(1)固定平台:导管架平台和重力式,主要用于油气的生产。
(2)移动式平台:主要用于油气勘探,包括自升式和半潜式(3)单点系泊系统:作为海上油气集输装置,穿梭油轮定位(4)顺应式平台:研究开发中,国外已经开始应用,用于较大水深。
从结构上来分,一般将spar 平台分为三部分:平台上体,平台主体和系泊系统(包括锚固基础),其中平台上体和平台主体并称为平台本体。
TLP 由五大部分组成:平台上体、立柱(含横撑和斜撑)、下体(沉箱)、张力腿系泊系统和锚固基础第二章 确定性载荷卡门涡街:Reynolds 数较高的流体流经圆柱体时,在柱体断面宽度最大点附近发生分离。
在分离点之后沿柱体表面将发生逆流。
边界层在分离点脱离柱体表面,并形成向下游延展的自由剪切层。
上下两剪切层之间的区域即为尾流区。
在剪切层范围内,由于接近自由流区外侧部分的流速大于内侧部分,流体便有发生旋转并分散成若干个旋涡的趋势。
人们称在柱体后面的涡系为“卡门涡街”。
涡激升力:旋涡是在柱体后部两侧交替、周期性地发生的。
当在一侧的分离点处发生旋涡时,在柱体表面引起方向与旋涡旋转方向相反的环向流速 因此发生旋涡一侧沿柱体表面流速小于原有流速v ,而对面一侧的表面流速 则大于原有流速v ,从而形成沿与来流垂直方向作用在柱体表面上的压力差即升力。
当一个旋涡向下游泄放(即自柱体脱落并向下游移动)时,它对柱体的影响及相应的升力FL 也随之减小,直到消失,而下一个旋涡又从对面一侧发生,并产生同前一个相反方向的升力。
因此,每一“对”旋涡具有互相反向的升力。
涡激振动: 涡激升力周期变化,引起结构发生垂直于轴线方向的振动,称为涡激振动。
锁定现象(lock-in ): 当涡激升力频率与弹性结构的固有频率接近,结构的振动会驱使旋涡的泄放频率在一个较大的S 范围内固定在结构的自振频率,即振动固定在固有频率上,从而诱发结构剧烈颤振或抖振,这称之为锁定现象。
.《结构动力学》读书报告学院专业学号姓名指导老师2013 年 5月 28日摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。
既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。
主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。
侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。
1 概述1.1结构动力学的发展及其研究内容:结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。
作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。
质点力学的基本问题是用牛顿第二定律来建立公式的。
牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。
经典动力学的理论体系早在19世纪中叶就已建立,。
但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。
因此,在很长一段时间内,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的范畴内用静力学的方法来解决工程实际问题。
随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。
也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。
结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。
结构力学学习心得这门课程很能启发我去思考,课上所讲的诸多问题都很有趣,比如加约束、去约束问题,确实充满了哲学意味,欲夺之,先予之,以退为进,这是很耐人寻味的思维方法。
还有平衡问题,生活中无处不在,门把手装在远端是利用力矩的概念而发展出的以四两拨千斤的奇妙方法,就连我们离不了的自行车的行进也是利用了力矩。
平衡在我们的生活处处发挥着重要的作用。
原来我不太注意这些有趣的现象,上了这门课后,我也尝试着用力学观点来剖析这个世界,突然发觉好多平凡普通的事物中都蕴含了深刻的力学原理,这样的发现立刻让我对原本枯躁的理论学习有了兴趣,觉得多掌握一些了解世界的方法,多探究一些自然界的奥秘,确实是一件很不错很有趣的事情。
这门课程虽然短暂,但是它启迪我思考,教会我发现,我想这就是我最大的收获。
结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。
结构力学的任务是:研究在工程结构在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。
观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关,很多工程结构就是受到天然结构的启发而创制出来的。
结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。
结构力学的发展简史人类在远古时代就开始制造各种器物,如弓箭、房屋、舟楫以及乐器等,这些都是简单的结构。
随着社会的进步,人们对于结构设计的规律以及结构的强度和刚度逐渐有了认识,并且积累了经验,这表现在古代建筑的辉煌成就中,如埃及的金字塔,中国的万里长城、赵州安济桥、北京故宫等等。
《结构动力学读书报告》转眼间这个学期就快结束了,庆幸的是跟着张老师学习完本门课程我受益颇多,在此就主要根据上课所用的河海大学出版社出版的《结构动力学》课本以及我的导师参与编写的清华大学出版社出版的《结构动力学》课本并结合自身所学专业,对本门课程内容的理解和在各方面的应用总结如下,有什么不当之处还希望张老师批评指正:1.结构动力学及其研究内容:结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
学习结构动力学就应该了解结构动力学的任务、动力计算的特点、动力荷载的分类、动力分析的目的和方法。
本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、自振频率和振型的实用计算、结构地震响应分析。
最后,张老师还补充介绍了结构与水体的动力相互作用和结构与地基动力相互作用。
2.课程主要内容回望2.1 结构动力学概论本章首先介绍结构动力学计算的特点,动荷载与静荷载作用的区别,常见动力荷载的分类和结构动力学的研究目的、研究方法和任务。
然后分别对考虑动力系统惯性力的动力自由度和阻尼力的形式进行讨论;最后介绍建立运动方程式的常用方法,即基于达朗贝尔原理的直接平衡法和基于虚位移原理的虚功法并对轴向力的影响进行简单讨论。
结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。
做法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。
将结构离散化的方法主要有以下三种:①集聚质量法②广义位移法③有限元法。
建立运动方程式主要有达朗贝尔原理(直接平衡法)、虚位移原理(拉格朗日法),两者均可建立运动方程:()()()()...m y t c y t ky t F t ++=2.2单自由度系统的振动单自由度系统的动力分析是结构动力计算中非常重要的内容。
浅谈对构造动力学的认识摘要:简单地讲述了对构造动力学的整体认识,介绍了构造动力学的开展历程,构造动力问题的几大特点,构造动力问题的分类,构造系统的动力自由度及其离散方法〔包括集中质量法、广义坐标法和有限单元法〕,建立运动方程的方法〔包括利用达朗贝尔(d'Alermbert)原理的直接平衡法,虚位移原理建立振动方程,哈密顿(Hamilton)原理建立振动方程〕。
关键词:构造动力学;质量;阻尼;运动方程On understanding of structure dynamics Abstract: This paper simply tells the overall understanding of structure dynamics, andintroduces the development course of structure dynamics, a few big characteristics of structure dynamic problem ,the classification of structure dynamic problem, the structure of the system and its dynamic freedom discrete method (including focus on quality method, generalized coordinates method and finite element method), the method for establishing the equations of motion (including the use of d'Alermbert principle direct balance method, vibration equation with imaginary displacement principle, establish vibration equation withHamilton principle).Key words:structure dynamics;quality; damping;equations of motion1构造动力学开展简介构造动力学是研究构造体系的动力特性,及其在动力荷载作用下动力响应分析原理和方法的一门技术学科。
作为一名教师,我有幸接触到结构学这一领域,它不仅丰富了我的专业知识,更让我深刻理解了教育的真谛。
以下是我在学习结构学过程中的一些心得体会。
一、理论与实践相结合在学习结构学之初,我对其概念和原理感到陌生。
但随着时间的推移,我逐渐认识到理论与实践相结合的重要性。
在教学过程中,我将结构学的知识融入课程,引导学生运用所学解决实际问题。
例如,在讲解桥梁结构时,我带领学生实地考察,让他们直观感受结构学的魅力。
这种结合实践的教学方式,使学生更加深刻地理解理论知识,提高了他们的实践能力。
二、激发学生学习兴趣结构学是一门涉及数学、物理、化学等多个学科的综合性学科。
为了激发学生的学习兴趣,我在课堂上采用多种教学方法。
首先,注重启发式教学,引导学生主动思考问题;其次,结合实际案例,让学生了解结构学在工程领域的应用;最后,鼓励学生参与课堂讨论,提高他们的表达能力和团队合作精神。
通过这些方法,我发现学生的学习兴趣明显提高,课堂氛围也变得活跃。
三、培养学生的创新意识结构学不仅要求学生掌握基础知识,更注重培养学生的创新意识。
在教学过程中,我鼓励学生大胆质疑,勇于探索。
例如,在讲解建筑结构时,我会提出一些具有挑战性的问题,引导学生思考。
此外,我还组织学生参加各类学科竞赛,锻炼他们的创新能力和实践能力。
通过这些努力,我发现学生的创新意识得到了显著提升。
四、关注学生的个性发展每个学生都有自己的特点和优势。
在结构学教学中,我注重关注学生的个性发展,因材施教。
针对不同学生的学习水平,我制定个性化的教学计划,帮助他们克服学习中的困难。
同时,我还鼓励学生发挥自己的特长,在结构学领域展现自己的才华。
通过这些努力,我看到了学生在结构学方面的进步,也为他们的未来发展奠定了基础。
五、以身作则,树立榜样作为一名教师,我深知自己的一言一行对学生的影响。
因此,我在教学过程中以身作则,努力成为学生的榜样。
首先,我在学术上严谨治学,不断提高自己的专业素养;其次,在生活中关心学生,关注他们的身心健康。
结构动力学学习总结通过对本课程的学习,感受颇深。
我谈一下自己对这门课的理解:一.结构动力学的基本概念和研究内容随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。
我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。
二.动力分析及荷载计算1.动力计算的特点动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。
如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。
但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。
如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。
荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。
在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。
另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。
结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。
结构动力学学习总结通过对本课程的学习,感受颇深。
我谈一下自己对这门课的理解:一.结构动力学的基本概念和研究内容随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。
我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。
二.动力分析及荷载计算1.动力计算的特点动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。
如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。
但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。
如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。
荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。
在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。
另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。
结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。
而且,除了需要知道结构质量分布、几何形态外,还应知道反应其动力性能的参数,如动弹性模量E、动切边模量G等。
2.动力荷载的分类动力荷载按其是否具有随机性,可分为确定性和非确定性两类。
确定性动力荷载系指当时间给定后其量值是唯一确定的,故亦称为数定的动力荷载。
常见的确定性动力荷载,其方向、作用点位置不变,其大小随时间变化。
例如,周期荷载,其中以简谐荷载最为常见;集度大,作用时间短暂的冲击荷载;持续时间长的非周期一般荷载。
非确定性动力荷载的量值随时间的变化规律不是唯一确定的,而是一个随机过程,故亦称为随机荷载,也称非数定的动力荷载。
虽然非确定性动力荷载不能用时间t的确定性函数来描述,但它受概率统计规律所制约。
地震荷载、海浪荷载和风荷载都可视为具有随机性质的非确定性动力荷载。
3.动力分析的目的和方法结构动力分析的目的是确定结构在动力荷载下的响应,为结构设计、保证结构的经济与安全提供科学依据。
研究结构的受迫振动是结构动力分析的基本任务。
动力分析的研究方法有:理论计算法、试验量测法和计算、试验混合法三种。
随着计算技术的发展,结构动力系统的数值模拟显得越来越越重要,尤其是复杂结构,如水坝、地基和水库系统的三维动力分析、核电站结构系统的地震响应和振动控制等。
结构试验时检验数学模型的正确性,为理论计算提供可靠地重要途径。
试验量测的方法已由最初的机测和电测发展到光测,大大提高了试验量测的范围和精度。
重要结构的动力研究常常需要将数值计算和试验结合起来,一方面利用数值计算为结构试验提供依据,另一方面,根据试验结果,不断修正模型,以使数学模型能更好地反映实际情况。
高老师主要介绍确定荷载作用下结构动力响应计算的基本理论和方法,最后介绍系统参数识别、动态子结构法、随机振动主控制等问题。
三.运动方程式的建立建立运动方程式的原理和方法有很多种,高老师主要给我们介绍了以下三种。
1.达朗贝尔原理——直接平衡法利用达朗贝尔原理引进惯性力,根据作用在体系或其微元体上全部力的平衡条件,按静力平衡计算,直接写出运动方程。
2.虚位移原理根据作用在体系上全部力在虚位移上所作虚功总和为零的条件,即根据虚功原理导出以广义坐标表示的运动方程。
对于复杂系统,应用最广的是第二种方法。
3.哈密顿原理利用广义坐标写出系统的动能、势能、阻尼耗散函数及广义力表达式,根据哈密顿原理或其等价形式的拉格朗日方程导出以广义坐标表示的运动方程。
通常,结构的运动方程是一个二阶常微分方程组,写成矩阵形式为:Μ(t)+D(t)+Kq(t)=Q(t),式中q(t)为广义坐标矢量,是时间t 的函数,其上的点表示对时间的导数;Μ、D、K分别为对应于q (t)的结构质量矩阵、阻尼矩阵和刚度矩阵;Q (t)是广义力矢量。
以上三种方法中,直接平衡法应用最为广泛,因为它的物理概念清楚,而且简便,只要熟悉静力计算中建立方程的方法就不难写出运动方程。
虚位移原理本身等价于力的平衡条件,这是静力计算中已为大家所熟悉,所不同的是要引入惯性力和阻尼力。
哈密顿原理计算能量的变分,不需要引入惯性力,适用于连续质量分布系统,但计算较为麻烦,在工程结构中应用很少。
四.结构动力学在抗震设计中的应用1.序言:地震时地面运动是一个复杂的时间-空间过程。
结构地震响应应取决于地震动特性和结构特性,特别是结构的动力特性。
结构地震响应分析的水平也是随着人们对这两方面认识的逐步深入而提高的。
近几十年来,人们对地震动的谱成分和各类结构的动力特征有了深入认识。
因此,结构的分析也随之有了相应的进展。
结构地震反应分析的发展经过了静力法、反应谱法、动力法三个阶段。
反应谱法根据单自由度系统的地震响应,既考虑了结构动力特性与地震动特性之间的动力关系,又保持了静力法的形式,在各国结构抗震设计规范中已被广泛采用。
现行的抗震设计方法包括反应谱法和时程分析法。
2.方法比较:根据《建筑结构抗震规范》,对单自由度体系,给定场地条件以及结构的自振周期和阻尼比,便可以从反应谱中获得结构的最大地震响应(位移、速度和加速度),进而可求出结构的地震力。
对于多自由度体系,首先采用多自由度体系的反应谱理论,即先利用模态分析法将多自由度体系分解为一系列广义单自由度体系,最后将各振型的最大值用一定的振型组合方法组合出结构的最大地震反应[。
由于反应谱方法基本正确地反映了地震动特性,并考虑了结构的动力特性,所以对于一般的结构而言,具有良好的精度,且概念明确,计算方便。
静力法(static method)假设结构各部分水平加速度与地面运动水平加速度完全一样。
因此,若以W表示结构某一部分的重力,则由于地震作用使这一部分重力产生的最大水平惯性力的绝对值为==KW式中:为地震时地面运动最大水平加速度;g为重力加速度;K=,称为地震系数或震度。
这一公式的物理意义是:结构为绝对刚体,其最大加速度就等于地震最大加速度。
由地震作用引起的惯性力,可以当做静力作用于结构上,然后按静力学方法计算结构的响应。
上式表示的惯性力通常称为惯性力。
用这样的公式计算地震荷载的方法对于刚性结构是适用的。
但对于柔性结构,如烟囱、多层钢架、高桥墩、工业与民用建筑物以及高而薄的挡水坝等,就会产生较大的误差。
因为该方法将结构当做绝对刚体,忽略了结构弹性性质的动力性能,所以称它为静力理论。
地震地面运动是一个非平稳随机过程,而随机振动法充分考虑了地震发生的概率特性,所以普遍认为随机振动法是一种合理的分析方法。
但是,随机振动法的缺点是它的计算量庞大而且对于非线性问题可能引起较大的误差,在处理罕遇地震下的强非线性问题时有其局限性。
时程分析法是确定性动力分析方法的一种,是发展较为成熟、应用较多的一种方法。
由于这种分析方法是在离散时间点上一步一步地求响应的数值解,所以该法可以在任一时间点上随时修改结构参数,很适合于处理参数随时间变化的非线性问题。
它既可虑地震波的多维多点输入,还可以考虑结构几何非线性、物理非线性、非比例阻尼和桩土-结构相互作用等的地震反应。
常用的积分方法有线性加速度法。
3.这里主要介绍比较先进的时程分析法:逐步积分数值方法特别适用于计算大型结构在地震作用下的动力响应,其无需像振型叠加法那样要预先花费很多的工作量计算频率和振型。
此外,由于计算中考虑几何非线性大变形的影响,本文中采用Newmark 逐步积分方法求解。
时间步内增量形式的振动平衡方程为:++=f (1) 式中为质量;为比例阻尼矩阵;为刚度矩阵;分别为时间内加速度向量、速度向量和位移向量;f为地面运动向量。
时间内位移、速度与加速度向量增量关系可表示为:++=f(2)假定在内微小时段内加速度均为线性变化,则式(1)与(2)相减得动力方程的增量形式++=f (3)时程分析法就是将简谐力作用划分为一系列微小时段,利用(3)求解在0、、2······等各个时刻的近似解。
Wilson-法由于计算精度高、稳定性好而在时程分析中广泛采用。
4.注意:(1)在进行时程分析过程中,利用上述方法计算结构反应关键的是地震动的描述,即恰当地输入地震波。
(2)分析和结果存在一定的局限性,即计算结果仅仅是选择地震波的反应,若选择另外一条地震波,计算结果差别很大。
(3)为得到结构反应的统计结果,必须对多条地震波进行分析,工作量较大。
五.学后感言通过本课程的学习,我了解到:结构的动力计算与静力计算有很大的区别。
静力计算是研究静荷载作用下的平衡问题。
这时结构的质量不随时间快速移动,因而无惯性力。
动力计算研究的是动荷载作用下的运动问题,这时结构的质量随时间快速运动,惯性力的作用成为必须考虑的重要问题。
根据达朗贝尔原理,动力计算可以转化为静力平衡问题来处理。
但是,这是一种形式上的平衡。
也就是说,动力计算中,虽然形式仍是是在列平衡方程,但是这里要注意两个问题:所考虑的力系中要包括惯性力这个新力,考虑的是瞬间的平衡,荷载、内力等都是时间的函数。
我们首先学习了单自由度系统自由振动和受迫振动的概念,所以在学习多自由度系统和弹性体的振动分析时,则重点学习后者的振动特点以及前者的联系和区别,这样既节省了时间,又抓住了重点。
由于多自由度系统振动分析的公式推导是以矩阵形式表达为基础的,我们开始学习时感到有点不适应,但是随着课程的进展,加上学过矩阵论这门课后,我们自觉地体会到矩阵形式表达非常有利于数值计算时的编程,从中也感受到数学知识的魅力和现代技术的优越性,这样就大大增强了我们学习的兴趣。
但是,我在学习过程中也遇到了许多问题:傅里叶变换和常微分方程的求解等,很多知识在大一学习的《高等数学》中就因为是难点而对我们不作过高要求,所以也没有深入的学习,现在学习《结构动力学》时我们普遍感到数学知识的生疏与不足。