第20讲 连续正整数的性质
- 格式:docx
- 大小:39.37 KB
- 文档页数:5
数字的连续整数关系与运算在数学中,连续整数关系与运算是指一系列正整数相继排列并进行数学运算的关系。
这种关系在数论、代数以及应用数学中有广泛应用。
本文将探讨数字的连续整数关系与运算的性质和应用。
一、连续整数的性质连续整数指的是以整数形式从小到大连续排列的一系列数。
连续整数之间的差值始终为1,例如1、2、3、4、5就是一组连续整数。
1. 连续整数的和连续整数的和可以通过求取首项与末项乘以项数再除以2来计算。
例如,求取整数1到5的和可以使用以下公式:(首项 + 末项) ×项数 ÷ 2 = (1 + 5) × 5 ÷ 2 = 152. 连续整数的乘积连续整数的乘积可以通过求取首项与末项的阶乘之商来计算。
例如,求取整数2到5的乘积可以使用以下公式:末项的阶乘 ÷首项的阶乘 = 5! ÷ 2! = 5 × 4 × 3 × 2 × 1 ÷ 2 × 1 = 120二、连续整数关系的应用1. 素数与连续整数素数是只能被1和本身整除的正整数。
在连续整数中,可以观察到一些特殊的素数关系。
例如,当连续整数的首项为1时,首项+1将得到2,这是最小的素数;首项+2将得到3,这是连续整数中的第二个素数。
类似地,首项+6将得到7,首项+30将得到31,它们都是素数。
这种关系被称为孪生素数(连续素数之间差距为2)与孪生素数对(如2和3,7和11)。
2. 连续整数与平方数平方数是某个整数的平方。
在连续整数中,可以发现一些平方数的特性。
例如,当连续整数的首项为1时,首项+2将得到3,首项+3将得到6,首项+4将得到10,这些都不是平方数。
然而,当连续整数的首项为1时,首项+4将得到5,首项+9将得到10,首项+16将得到17,它们都是平方数。
这种关系可以使用以下公式表达:一个连续整数序列中,从第二项开始,每一项的差值递增,所形成的数列即为平方数列。
数学教学备课正整数的特征和性质数学教学备课:正整数的特征和性质正整数是数学中的基本概念之一,它具有一些独特的特征和性质。
在数学教学中,了解和掌握正整数的特点对于学生的数学素养发展至关重要。
本文将从不同角度分析正整数的特征和性质,以期帮助教师更好地备课和教学。
一、正整数的定义正整数是指大于零且不带小数部分的整数,可以用自然数的形式表示为1、2、3、4...。
正整数是数学中最基本的数,也是数学研究以及其它数学概念与理论的基础。
二、正整数的特征1. 顺序性:正整数是按照自然数顺序依次递增的,每个正整数都有其前驱和后继。
例如,2是1的后继,1是2的前驱。
2. 包容性:正整数包含了所有大于零的整数,任何一个大于零的整数都可以由正整数表示。
3. 唯一性:每个正整数都有唯一的前驱和后继,不存在两个不同的正整数具有相同的前驱或后继。
三、正整数的性质1. 有限性:正整数是无穷多个的,但在给定的范围内是有限的。
例如,在0和100之间的正整数共有100个。
2. 奇偶性:正整数可以分为奇数和偶数。
一个正整数是奇数,当且仅当它不能被2整除;一个正整数是偶数,当且仅当它可以被2整除。
3. 因数分解:正整数可以分解为若干个素数的乘积形式,这种分解唯一性的证明是数论中的重要问题之一。
例如,12可以分解为2^2 * 3。
4. 约数性质:正整数的约数是能够整除该正整数的整数,包括1和它本身。
正整数的约数个数是有限的。
5. 除法性质:正整数除法的结果有唯一性,即给定一个正整数n和一个非零正整数m,存在唯一的商和余数,使得n=m*q+r,其中q是商,r是余数,满足0≤r<m。
结语正整数作为数学中的基础概念,具有丰富的特征和性质。
通过全面了解正整数的特性,我们能够更好地教授学生,帮助他们理解和掌握数学知识,培养他们的逻辑思维和数学思维能力。
教师在备课过程中,应该充分利用正整数的特点,设计合理的教学活动和教学资源,激发学生的学习兴趣和探索欲望。
正整数的特性及运算规律正整数是数学中最基本的数,它具有许多独特的特性和运算规律。
在初中数学学习中,掌握正整数的特性和运算规律对于学生们打下坚实的数学基础至关重要。
本文将从不同角度分析正整数的特性及运算规律,帮助中学生及其家长更好地理解和应用这些知识。
一、正整数的特性1. 正整数的无限性:正整数是无穷的,没有最大值。
无论我们取多大的正整数,总能找到比它更大的正整数。
2. 正整数的奇偶性:正整数可以分为奇数和偶数两类。
奇数是不能被2整除的正整数,例如1、3、5等;偶数则是可以被2整除的正整数,例如2、4、6等。
3. 正整数的因数和倍数:对于一个正整数,它的因数是能够整除它的正整数,而它的倍数是它能够整除的正整数。
例如,正整数8的因数有1、2、4、8,倍数有8、16、24等。
4. 正整数的质数和合数:正整数可以分为质数和合数两类。
质数是只有1和自身两个因数的正整数,例如2、3、5等;合数则是除了1和自身之外,还有其他因数的正整数,例如4、6、8等。
二、正整数的运算规律1. 正整数的加法:正整数的加法满足交换律和结合律。
即对于任意两个正整数a和b,有a+b=b+a,(a+b)+c=a+(b+c)。
例如,2+3=3+2=5,(2+3)+4=2+(3+4)=9。
2. 正整数的减法:正整数的减法满足减法的逆运算。
即对于任意两个正整数a和b,有a-b+a=b。
例如,5-2+2=5。
3. 正整数的乘法:正整数的乘法满足交换律和结合律。
即对于任意两个正整数a和b,有a×b=b×a,(a×b)×c=a×(b×c)。
例如,2×3=3×2=6,(2×3)×4=2×(3×4)=24。
4. 正整数的除法:正整数的除法满足除法的逆运算。
即对于任意两个正整数a和b,有a÷b×b=a。
例如,8÷4×4=8。
整数的整除性整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则ba 不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数.若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |.否则,b | a .任何a 的非1,±±a 的约数,叫做a 的真约数. 0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数. 由整除的定义,不难得出整除的如下性质: (1)若.|,|,|c a c b b a 则(2)若.,,2,1,,|,|1n i Z c b c a b a i ni i i i =∈∑=其中则(3)若c a |,则.|cb ab 反之,亦成立.(4)若||||,|b a b a ≤则.因此,若b a a b b a ±=则又,|,|. (5)a 、b 互质,若.|,|,|c ab c b c a 则(6)p 为质数,若,|21n a a a p ⋅⋅⋅ 则p 必能整除n a a a ,,,21 中的某一个. 特别地,若p 为质数,.|,|a p a p n则(7)如在等式∑∑===mk kni i ba 11中除开某一项外,其余各项都是c 的倍数,则这一项也是c 的倍数.(8)n 个连续整数中有且只有一个是n 的倍数.(9)任何n 个连续整数之积一定是n 的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.Ⅱ. 最大公约数和最小公倍数定义二:设a 、b 是两个不全为0的整数.若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a .如果),(b a =1,则称b a 与互质或互素.定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数. b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a .最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a 表示n a a a ,,,21 的最大公约数,],,,[21n a a a 表示n a a a ,,,21 的最小公倍数.若1),,,(21=n a a a ,则称n a a a a ,,,,321 互质,若n a a a ,,,21 中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.Ⅲ.方幂问题一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题.特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题.能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论: (1)平方数的个位数字只可能是0,1,4,5,6,9. (2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1. (3)奇数平方的十位数字是偶数.(4)十位数字是奇数的平方数的个位数一定是6. (5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7. (6)平方数的约数的个数为奇数.(7)任何四个连续整数的乘积加1,必定是一个平方数.例1 (1987年北京初二数学竞赛题)x ,y ,z 均为整数,若11|(7x+2y-5z ),求证:11|(3x-7y+12z )。
《探寻连续性:consecutive在数学中的含义》第一部分:导论1. 主题概述连续性是数学中一个重要且神秘的概念,贯穿于各个领域的数学理论和实际应用中。
本文将深入探讨其中一个重要概念——consecutive在数学中的含义。
2. 对consecutive的理解我们需要明确consecutive这个词的含义。
在数学中,consecutive通常指的是紧邻、相邻或连续的意思。
在正整数中,连续的正整数指的是相邻的整数,如1、2、3、4等。
而在其他数学概念中,consecutive的含义可能会有所不同,接下来我们将一一探讨。
第二部分:consecutive在正整数中的应用3. 连续正整数的性质在正整数中,连续的数有着许多有趣的性质。
它们的和是一个等差数列,如1+2+3+4=10,可以表示为n(n+1)/2的形式。
连续的正整数之间有着特定的倍数关系,如3、4、5就是3的倍数,4的倍数和5的倍数。
4. 连续正整数的应用举例在实际生活中,连续正整数的应用也是非常广泛的。
比如在数学题中,常常会出现求连续正整数和的问题,或者是寻找满足特定条件的连续正整数序列。
对于这类问题,掌握连续正整数的性质和特点是非常有帮助的。
第三部分:consecutive在其他数学概念中的应用5. 连续函数的定义除了在正整数中的应用,consecutive在数学中还有着更广泛的应用。
在微积分中,我们常常会接触到连续函数的概念。
连续函数是指在一定区间内,函数图像没有突变或跳跃,而是平滑连续的。
这里的连续同样体现了consecutive的含义。
6. 连续概率分布在概率论与数理统计中,连续概率分布是一个重要的概念。
它描述了一组连续变量的可能取值及其取到这些值的概率。
连续概率分布的研究对于理解随机变量的性质和规律具有重要意义。
第四部分:consecutive的个人理解与总结7. 个人观点和理解对于我个人而言,consecutive在数学中的含义不仅仅是一种概念或性质,更是一种思维方式和方法。
§2连续函数的性质Ⅰ. 教学目的与要求1.理解连续函数的局部有界性、局部保号性、保不等式性.2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨论函数的连续性.3.掌握闭区间上连续函数的性质,会利用其讨论相关命题.4.理解函数一致连续性的概念.Ⅱ. 教学重点与难点:重点: 闭区间上连续函数的性质.难点:. 闭区间上连续函数的性质,函数一致连续性的概念.Ⅲ. 讲授内容一 连续函数的局部性质若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据函数极限的性质能推断出函数f 在()0x U 的性态.定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界.定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或().注 在具体应用局部保号性时,常取()021x f r =则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()021x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,⋅±(这里()00≠x g )也都在点0x 连续.以上三个定理的证明,都可从函数极限的有关定理直接推得.对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数()n n n n a x a x a x a x P +++=--1110 和有理函数()()()x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的.同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点都连续.关于复合函数的连续性,有如下定理:定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点0x 连续.证 由于g 在0u 连续,对任给的0>ε,存在01>δ,使得当10δ<-u u 时有()()ε<-0u g u g . ()1又由()00x f u =及()x f u =在点0x 连续,故对上述01>δ,存在0>δ,使得当δ<-0x x 时有()()100δ<-=-x f x f u u .联系(1)得:对任给的0>ε,存在0>δ,当δ<-0x x 时,有()()()()ε<-0x f g x f g . 所以 f g 在点0x 连续.注 根据连续性的定义,上述定理的结论可表为()()()()0))(lim (lim 00x f g x f g x f g x x x x ==→→. ()2 例1 求()211sin lim x x -→.解 ()21sin x -可看作函数()u u g sin =与()21xx f -=的复合.由(2)式得 ()()()00sin 1lim sin 1sin lim 2121==-=-→→x x x x . 注 若复合函数f g 的内函数f 当0x x →时极限为a ,而()0x f a ≠或f 在0x 无定义(即0x 为f 的可去间断点),又外函数g 在a u =连续,则我们仍可用上述定理来求复合函数的极限,即有 ))(lim ())((lim 00x f g x f g x x x x →→= ()3 还可证明:()3式不仅对于0x x →这种类型的极限成立,而且对于→x ∞+,-∞→x 或±→0x x 等类型的极限也是成立的.例2 求极限: ()x x x sin 2lim 10-→;()xx x sin 2lim 2-∞→. 解 ()112s i n lim 2sin 2lim 100=-=-=-→→xx x x x x ; ()202s i n lim 2sin 2lim 2=-=-=-∞→∞→xx x x x x . 二 闭区间上连续函数的基本性质设f 为闭区间[]b a ,上的连续函数,本段中我们讨论f 在[]b a ,上的整体性质.定义1 设f 为定义在数集D 上的函数.若存在D x ∈0,使得对一切D x ∈有()()()()()x f x f x f x f ≤≥00,则称f 在D 上有最大(最小)值,并称()0x f 为f 在D 上的最大(最小)值.例如,x sin 在[]π,0上有最大值1,最小值0.但一般而言,函数f 在其定义域D 上不一定有最大值或最小值(即使f 在D 上有界).如()x x f =在()1,0上既无最大值也无最小值.又如()()⎪⎩⎪⎨⎧=∈=,与,10,21,0,1x x x x g ()4它在闭区间[]1,0上也无最大、最小值.下述定理给出了函数能取得最大、最小值的充分条件.定理4.6 (最大、最小值定理) 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有最大值与最小值.推论 (有界性定理) 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界.由()4式给出的函数g 在闭区间[]1,0上无界,什么对函数g 上述推论的结论不成立. 定理4.7 (介值性定理) 设函数f 在闭区间[]b a ,上连续,且()≠a f ()b f .若μ为介于()a f 与()b f 之间的任何实数()()b f a f <<μ(或()μ>a f ()b f >),则至少存在一点()b a x ,0∈,使得().0μ=x f这个定理表明,若f 在[]b a ,上连续,又不妨设()()b f a f <,则f 在[]b a ,上必能取得区间()()[]b f a f ,中的一切值,即有()()[][]()b a f b f a f ,,⊂,其几何意义如图4—2所示. 推论(根的存在定理) 若函数f 在闭区间[]b a ,上连续,且()a f 与()b f 异号(即()()0<b f a f ),则至少存在一点()b a x ,0∈,使得()00=x f ,即方程()0=x f 在()b a ,内至少有一个根.这个推论的几何解释如图4—3所示:若点()()a f a A ,与()()b f b B ,分别在x 轴的两侧,则连接A 、B 的连续曲线()x f y =与x 轴至少有一个交点.应用介值性定理,我们还容易推得连续函数的下述性质:若f 在区间I 上连续且不是常量函数,则值域()I f 也是一个区间;特别,若I 为闭区间[]b a ,,f 在[]b a ,上的最大值为M ,最小值为m ,则[]()[]M m b a f ,,=;又若f 为,[a ]b 上的增(减)连续函数且不为常数,则[]()()()[]()()[]()b f a f b f a f b a f ,,,=.下面举例说明介值性定理的应用.例3 证明:若0>r ,n 为正整数,则存在唯一正数0x ,使得00(x r x n =称为r 的n 次正根(即算术根),记作n r x =0).证 先证存在性.由于当+∞→x 时有+∞→n x ,故必存在正数a ,使得n a r >.因()n x x f =在[]a ,0上连续,并有()()a f r f <<0,故由介值性定理,至少存在一点()a x ,00∈,使得()r x x f n ==00. 再证唯一性.设正数1x 使得r x n =1,则有()()011120101010=+++-=----n n n n n x x x x x x x x , 由于第二个括号内的数为正,所以只能010=-x x ,即01x x =.例4 设f 在[]b a ,上连续,满足[]()[]b a b a f ,,⊂. ()5证明:存在[]b a x ,0∈,使得()00x x f =. ()6证 条件()5意味着:对任何[]b a x ,∈有()b x f a ≤≤,特别有()a f a ≤ 以及 ()b b f ≥.若()a f a =或()b b f =,则取a x =0或b ,从而()6式成立.现设()a f a <与()b b f <.令()()x x f x F -=,则()(),0>-=a a f a F ,()()0<-=b b f b F .故由根的存在性定理,存在∈0x ()b a ,,使得()00=x F ,即().00x x f =从本例的证明过程可见,在应用介值性定理或根的存在性定理证明某些问题时,选取合适的辅助函数(如在本例中令()()x x f x F -=),可收到事半功倍的效果.三 反函数的连续性定理4.8 若函数f 在[]b a ,上严格单调并连续,则反函数1-f 在其定义域()()[]b f a f ,或()()[]a f b f ,上连续.证 不妨设f 在[]b a ,上严格增.此时f 的值域即反函数1-f 的定义域为()a f [,()]b f .任取()()()b f a f y ,0∈,设=0x ()01y f -,则()b a x ,0∈.于是对任给的>ε0,可在()b a ,内0x 的两侧各取异于0x 的点()20121,x x x x x <<,使它们与0x 的距离小于ε(图4—4).设与21,x x 对应的函数值分别为1y ,2y ,由f 的严格增性知201y y y <<令()1002,m in y y y y --=δ,则当()δ;0y U y ∈时,对应的()y f x 1-=的值都落在1x 与2x 之间,故有()()ε<-=---0011x x y f y f ,所以1-f在点0y 连续,从而1-f 在()()()b f a f ,内连续. 类似地可证1-f 在其定义区间的端点()a f 与()b f 分别为右连续与左连续.所以1-f 在()()[]b f a f ,上连续.- 例5 由于x y sin =在区间⎥⎦⎤⎢⎣⎡-2,2ππ上严格单调且连续,故其反函数=y x arcsin 在区间[]1,1上连续.同理可得其它反三角函数也在相应的定义区间上连续.如x y arccos =在[]1,1-上连续,x y arctan =在()+∞∞-,上连续等.例6 由于n x y =(n 为正整数)在),0[+∞上严格单调且连续,故n x y 1=在),0[+∞上连续.又若把n xy 1-=(n 为正整数)看作由n u y 1=与x u 1=复合而成的函数,则由复合函数的连续性,n x y 1-=在()+∞,0上连续.综上可知,若g 为非零整数,则q x y 1=是其定义区间上的连续函数.例7 证明:有理幂函数αx y =在其定义区间上连续. 证 设有理数qp =α,这里()0,≠q p 为整数.因为q u y 1=与p x u =均在其定义区间上连续,所以复合函数 ()αx xy q p ==1也是其定义区间上的连续函数.四 一致连续性 函数f 在区间上连续,是指f 在该区间上每一点都连续.本段中讨论的一致连续性概念反映了函数在区间上更强的连续性.定义2 设f 为定义在区间I 上的函数.若对任给的0>ε,存在()>=εδδ0,使得对任何x 'I x ∈'',只要:δ<''-'x x ,就有()()ε<''-'x f x f ,则称函数f 在区间I 上一致连续.直观地说,f 在I 上一致连续意味着:不论两点x '与x ''在I 中处于什么位置,只要它们的距离小于δ,就可使()()ε<''-'x f x f .例8 证明()()0≠+=a b ax x f 在()+∞∞-,上一致连续.证 任给0>ε,由于()()x x a x f x f ''-'=''-',故可选取a εδ=,则对任何(),,,+∞∞-∈'''x x 只要δ<''-'x x ,就有()()ε<''-'x f x f .所以 ()b ax x f +=在()+∞∞-,上一致连续.例9 证明函数xy 1=在()1,0内不一致连续(尽管它在()1,0内每一点都连续).§4.2连续函数的性质证 按一致连续性的定义,为证函数f 在某区间I 上不一致连续,只须证明:存在某00>ε,对任何正数δ(不论δ多么小),总存在两点I x x ∈''',,尽管δ<''-'x x ,但有()()0ε≥''-'x f x f .对于函数x y 1=,可取10=ε,对无论多么小的正数⎪⎭⎫ ⎝⎛<21δ,只要取δ='x 与2δ=''x (图4-5),则虽有 δδ<=''-'2x x ,但1111>=''-'δx x , 所以xy 1=在()1,0内不一致连续. 函数在区间上连续与一致连续这两个概念有着重要的差别.f 在区间I 上连续,是指任给0>ε,对每一点I x ∈,都存在相应的正数()x ,εδδ=,只要I x ∈'且δ<'-x x ,就有()()ε<'-x f x f .一般来说,对于I 上不同的点,相应的正数δ是不同的.换句话说,δ的取值除依赖于ε之外,还与点x 有关,由此我们写()x ,εδδ=以表示δ与ε和x 的依赖关系.如果能做到δ只与ε有关,而与x 无关,或者说存在适合于I 上所有点x 的公共的δ,即()εδδ=,那么函数就不仅在I 上连续,而且是一致连续了.所以,f 在区间I 上一致连续是f 的又一个整体性质,由它可推出f 在I 上每一点都连续的这一局部性质(只要在定义2中把x '看作定点,把x ''看作动点,即得f 在点x '连续).而从例9可见,由f 在区间I 上每一点都连续,并不能推出f 在I 上一致连续.然而,对于定义在闭区间上的函数来说,由它在每一点都连续却可推出在区间上的一致连续性,即有如下重要定理:定理4.9 (一致连续性定理) 若函数f 在闭区间[]b a ,上连续,则f 在,[a b ]上一致连续.例10 设区间1I 的右端点为1I c ∈,区间2I 的左端点也为212,(I I I c ∈可分别为有限或无限区间).试按一致连续性的定义证明:若f 分别在1I 和2I 上一致连续,则f 在21I I I =上也一致连续.x'§4.2连续函数的性质证 任给0>ε,由f 在1I 和2I 上的一致连续性,分别存在正数1δ和2δ,使得对任何,,2I x x ∈''',只要1δ<''-'x x ,就有()()ε<''-'x f x f ; ()7又对任何2,I x x ∈''',只要2δ<''-'x x ,也有(7)式成立.点c x =作为1I 的右端点,f 在点c 为左连续,作为2I 的左端点,f 在点c 为右连续,所以f 在点c 连续.故对上述0>ε,存在03>δ,当3δ<-c x 时有()()2ε<-c f x f . ()8令()321,,min δδδδ=,对任何I x x ∈''',,δ<''-'x x ,分别讨论以下两种情形:(i)x x ''',同时属于1I 或 2I ,则()7式成立;(ii )x x ''',分属1I 与2I ,设21,I x I x ∈''∈'则3δδ≤<'-''<'-=-'x x x c c x ,故由()8式得()()2ε<-'c f x f .同理得()()2ε<-''c f x f 从而也有()7式成立.这就证明了f 在I 上一致连续.Ⅳ 小结与提问:本节要求理解函数一致连续性的概念,掌握续函数的局部性质、闭区间上连续函数的性质,并利用其讨论相关命题. 掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续.Ⅴ 课外作业: 80P 2、3、4、6、7、8、9、10、12、14、18、19、20.。
数字的连续性数字的连续性是数学中的一个基本概念,指的是整数之间存在着一个无限的连续序列。
数字的连续性在数学中有着广泛的应用,不仅是数学领域的基础,也在其他学科中有重要的地位。
本文将从数字连续性的定义、性质及应用等方面进行阐述。
1. 定义数字的连续性是指在整数之间,总是存在一个中间数。
比如,对于任意两个整数a和b,存在无穷多个整数位于它们之间。
例如,整数1和整数2之间有整数1.5,整数2和整数3之间有整数2.5,以此类推。
2. 性质数字的连续性具有以下几个性质:1) 无穷性:整数序列是无穷的,没有最大或最小的整数。
2) 密集性:在任意两个不同的整数之间,存在无穷多个整数。
这意味着整数序列是不间断的,没有“空隙”。
3) 有序性:整数序列按照从小到大的顺序排列,每个整数都有一个唯一的后继和前驱。
3. 应用数字的连续性在数学中具有广泛的应用,主要体现在以下几个方面:3.1 数列和级数在数学中,数列是由一系列数字按照特定规律排列而成的序列。
数列可以是无穷递增或无穷递减的,而数字的连续性保证了数列的存在和顺序。
数列的求和称为级数,通过将数列中的每一项相加,依赖于数字的连续性才能进行。
3.2 极限数字的连续性在定义和计算极限时发挥着关键作用。
极限是一种数学概念,用于描述数列或函数在某个点或趋近于某个数值时的行为。
在极限的计算和证明中,数字的连续性可用来辅助推导和确认结果的正确性。
3.3 实数和数轴实数是包括所有整数、有理数和无理数的数集。
数轴是用来表示实数的一条直线,每个实数在数轴上有一个唯一的位置。
数字的连续性保证了数轴上的每个点都对应着一个实数,实现了实数的可视化。
3.4 微积分微积分是数学中的一个重要分支,研究函数的变化率和曲线的面积等。
在微积分中,数字的连续性用于定义和计算导数和积分。
导数描述了函数在某一点的变化率,而数字的连续性保证了导数的定义和计算的有效性。
4. 结论数字的连续性是数学中一个重要的概念,有着广泛的应用。
整数的性质及其应用(1)基础知识整数的性质有很多,这里我们着重讨论整数的整除性、整数的奇偶性,质数与合数、完全平方数及整数的尾数等几个方面的应用。
1.整除的概念及其性质在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
定义:设是给定的数,,若存在整数,使得则称整除,记作,并称是的一个约数(因子),称是的一个倍数,如果不存在上述,则称不能整除记作。
由整除的定义,容易推出以下性质:(1)若且,则(传递性质);(2)若且,则即为某一整数倍数的整数之集关于加、减运算封闭。
若反复运用这一性质, 易知及,则对于任意的整数有。
更一般,若都是的倍数,则。
或着,则其中;(3)若,则或者,或者,因此若且,贝Q;(4)互质,若,则;(5)是质数,若,则能整除中的某一个;特别地,若是质数,若,则;(6)(带余除法)设为整数,,则存在整数和,使得,其中,并且和由上述条件唯一确定; 整数被称为被除得的(不完全)商,数称为被除得的余数。
注意:共有种可能的取值:0,1,……,。
若,即为被整除的情形;易知,带余除法中的商实际上为(不超过的最大整数),而带余除法的核心是关于余数的不等式:。
证明的基本手法是将分解为与一个整数之积,在较为初级的问题中,这种数的分解常通过在一些代数式的分解中取特殊值而产生,下面两个分解式在这类论证中应用很多,见例1、例2。
若是正整数,则宀h = a 一刃〔於"+产*...+%严+严);若是正奇数,则;(在上式中用代)(7)如果在等式中取去某一项外,其余各项均为的倍数,则这一项也是的倍数;(8)/7个连续整数中,有且只有一个是77的倍数;(9)任何个连续的整数之积一定是加的倍数,特别地,三个连续的正整数之积能被6 整除;2.奇数、偶数有如下性质:(1)奇数奇数二偶数,偶数偶数=偶数,奇数偶数=奇数,偶数偶数=偶数,奇数偶数=偶数,奇数奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差仍为奇数,偶数个奇数的和、差为偶数,奇数与偶数的和为奇数,和为偶数;(2)奇数的平方都可以表示成的形式,偶数的平方可以表示为或的形式;(3)任何一个正整数,都可以写成的形式,其中为负整数,为奇数。
小学数学认识正整数正整数是我们日常生活中经常遇到的数,也是小学数学学习的基础。
正整数具有很多特性和应用,下面将从整体认识正整数、正整数的性质和正整数的应用三个方面对小学数学中正整数的认识进行探讨。
一、整体认识正整数正整数是指大于零的整数,用符号“+”表示,例如1、2、3等。
正整数是自然数的一部分,自然数是从1开始的数。
在我们的日常生活中,用正整数进行计数、测量和排列等,起到十分重要的作用。
正整数在数轴上表示为右侧的数,可以无限延伸。
数轴上的每个正整数都有它的前一个数和后一个数,这种连续的关系可以帮助我们进行进一步的数学推理和运算。
二、正整数的性质1. 正整数的比较我们可以用“大于”、“小于”以及“等于”来比较正整数的大小。
例如,我们可以说3大于2,4小于5等。
正整数的比较可以通过数轴上的位置来进行判断,靠右侧的数值更大。
2. 正整数的运算正整数之间可以进行加法、减法、乘法和除法等运算。
例如,2 + 3 = 5,4 - 2 = 2,3 × 2 = 6,6 ÷ 2 = 3等。
在进行正整数的运算时,需要注意加法和乘法满足交换律和结合律,即a + b = b + a和a × b = b × a,以及a + (b + c) = (a + b) + c和a × (b × c) = (a × b) × c。
3. 正整数的整除关系当一个正整数a可以被另一个正整数b整除时,我们可以说a是b的倍数,b是a的因数或除数。
例如,6是3的倍数,3是6的因数。
在进行正整数的除法运算时,需要注意除法的两个基本性质:带余除法和整除性质。
带余除法指的是对于任意两个正整数a和b,存在唯一的整数q和r,使得a = bq + r,并且0 ≤ r < b。
整除性质指的是如果a能被b整除,那么a的所有因数也都能被b整除。
三、正整数的应用正整数在我们的日常生活和学习中有着广泛的应用,下面列举几个典型的例子。
整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a <b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习十六1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习十六1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。
第20讲 连续正整数的性质
一.两个连续正整数
1.两个连续正整数一 定是互质的,其商是既约分数。
2.两个连续正整数的积是偶数,且个位数只能是0,2,6。
3.两个连续正整数的和是奇数,差是1。
4.大于1的奇数都能写成两个连续正整数的和。
例如3=1+2,79=39+40, 111=55+56。
二.计算连续正整数的个数
例如:不同的五位数有几个?这是计算连续正整数从10000到99999的个数,它是 99999
-10000+1=90000(个)
1. n 位数的个数一般可表示为 9×10n-1(n 为正整数,100=1)
例如一位正整数从1到9共9个(9×100),
二位数从10到99共90个 (9×101)
三位数从100到999共900个(9×102)……
2.连续正整数从n 到m 的个 数是 m -n+1
把它推广到连续奇数、连续偶数、除以模m 有同余数的连续数的个数的计算,举例如下:
3. 从13到49的连续奇数的个数是
2
1349-+1=19 从13到49的连续偶数的个数是2
1448-+1=18 4. 从13到49能被3整除的正整数的个数是3
1548-+1=12 从13到49的正整数中除以3余1的个数是31349-+1=13 你能从中找到计算规律吗?
三.计算连续正整数的和
1. 1+2+3+……+n =(1+n )
2
n (n 是正整数) 连续正整数从a 到b 的和 记作(a+b)21+-a b 把它推广到计算连续奇数、连续偶数、除以模m 有同余数的和,举例如下:
2. 11+13+15+…+55=(11+55)×
2
23=759 (从11到55有奇数21155-+1=23个) 3. 11+14+17+…+53=(11+53)×2
15=480 (∵从11到53正整数中除以3余2的数的个数共31153-+1=15) 四. 计算由连续正整数连写的整数,各数位上的数字和
1. 123456789各数位上的数字和是(0+9)+(1+8)+…+(4+5)=9×5=45
2. 1234...99100计算各数位上的数字和可分组为:(0,99),(1,98),(2,97) (48)
51),(49,50)共有50个18,加上100中的1
∴各数位上的数字和是18×50+1=901
五. 连续正整数的积
从1开始的n 个正整数的积1×2×3×…×n 记作n !,读作n 的阶乘
1. n 个连续正整数的积能被n !整除,
如11×12×13能被1×2×3整除;97×98×99×100能被4!整除;
a (a+1)(a+2)…(a+n)能被(n+1)!整除。
2. n !含某因质数的个数。
举例如下:
① 1×2×3×…×10的积中含质因数2的个数共8个
其中2,4,6,8,10都含质因数2 暂各计1个,共5个
其中4=22 含两个质因数2 增加了1个
其中8=23 含三个质因数2 再增加2个
② 1×2×3×…×130的积中含质因数5的个数的计算法
5,10,15,…125,130 均含质因数5 暂各计1个,共26个
其中25,50,75,100均含52有两个5 各加1个, 共4个
其中125=53 含三个5 再增加2个
∴积中含质因数5的个数是32
例1. 写出和等于100的连续正整数
解:∵100=2×50=4×25=5×20=10×10
其中2个50和10个10都不能写成连续正整数
而4个25:12+13,11+14,10+15,9+16
得第一组连续正整数9,10,11,12,13,14,15,16。
5个20可由20,19+21,18+22
得第二组连续正整数18,19,20,21,22。
例2. 一本书共1990页用0到9十个数码给每一页编号共要多少个数码?
解:页数编码中,一位数1到9共9个
两位数10-99,共90个,用数码90×2=180个
三位数100-999,共900个,用数码900×3=2700个
四位数1000-1990,共991个,用数码991×4=3964个
∴共用数码9+180+2700+3964=6853
例3.用连续正整数1到100这100个数顺次连接成的正整数:1234……99100。
问:
①它是一个几位数?
②它的各位上的数字和是多少?
③如果从这个数中划去100个数字,使剩下的数尽可能地大,那么剩下的数的前十位
数是多少?
解:①这个数的位数=9×1+90×2+3=192
②各位上的数字和=18×50+1=901(见上页第四点)
③划去100个数,从最高位开始并留下所有的9:
包括1――8,10――18,19中的1,20――28,29中的2,……,50到56这里共有8+19+19+19+19+14=98个,再划去57,58中的两个5,
剩下的数的前十位是9999978596。
例4.算术平方根的整数部分等于11的连续正整数共有几个?
解:∵121=11,144=12
∴算术平方根的整数部分等于11的正整数x是112≤x<122
∴符合条件的连续正整数是121,122,123,…,143。
共23个。
例5. 已知两个连续正整数的积等于由同一个数码组成的三位数的2倍,求这两个连续正整数。
解:设连续正整数为x,x+1,相同数码的三位数为100a+10a+a
根据题意,得x(x+1)=2(100a+10a+a) 即x(x+1)=222a (1)
把222分解质因数得x(x+1)=2×3×37a(2)
∵连续正整数的积的个位数只能是0,2,6且0<a≤9
由(1)可知a 可能是1,3,5,6,8 分别代入(2)只有6适合
x(x+1)=36×37
答所求的连续正整数是36和37
练习
1. 除以3余2的两位数共有___个,三位数有____个,n 位数有____个。
2. 从50到1000的正整数中有奇数___个,3的倍数___个。
3. 由连续正整数连写的正整数123…9991000是_____位数,它的各位上的数字和是_____。
4. 把由1开始的正整数 依次写下去,直写到第198位为止,
位
198123 那么这个数的末三位数是______,这个数的各位上的数字和是_____
这个数除以9的余数是_____
5. 已知a= 1199011111个, b=
9
199099999个 那么①ab=______________
②ab 的各位上的数字和是___________(可用经验归纳法)
6. 计算连续正整数的平方和的个位数:
① 12+22+32+……+92和的个位数是_______
② 12+22+32+……+192和的个位数是______
③ 12+22+32+……+292和的个位数是______
④ 12+22+32+……+392和的个位数是______
⑤ 12+22+32+……+1234567892和的个位数是______
7. 写出所有和能等于120的连续正整数(仿例1)它们共有三组:
____________,_________________,_____________________。
8. 连续正整数的积1×2×3×4×…×100
这积中含质因数5的个数有____,积的末尾的零连续____个。
9. 恰有35个连续正整数的算术平方根的整数部分相同这个相同的整数 是多少?
10. .设a,b,c 是三个连续正整数且a 2=14884,c 2=15376,那么b 2是( )
(A)15116 (B)15129 (C)15144 (D)15376
11. 计算:① 2+4+6+...+100= ②1+4+7+10+ (100)
③ +10+15+ (100)
12.有11个正整数都是小于20,那么其中必有两个是互质数,这是为什么?
如果有(n+1)个正整数,它们都小于2n,那么必有两个是互质数,试说明理由。
13.一串数1,4,7,10,…,697,700的规律是第一个数是1,以后的每一个数等于它
前面的一个数加,直到700为止。
将这些数相乘,试求所得的积的尾部的零的个数。
(提示:先求积中含质因数5的个数)。