锐角三角函数复习教案
- 格式:docx
- 大小:37.32 KB
- 文档页数:6
中考锐角三角函数复习教案教案标题:中考锐角三角函数复习一、教学目标:1.复习三角函数的定义及性质;2.复习与锐角三角函数相关的公式和计算方法;3.提高学生的综合应用能力。
二、教学重点:1.锐角三角函数的定义;2.锐角三角函数的性质;3.锐角三角函数的计算。
三、教学难点:1.锐角三角函数的综合应用;2.解决与锐角三角函数相关的实际问题。
四、教学流程:1.复习预习:复习三角函数的定义及性质;2.引入新知识:引入锐角三角函数的定义;3.讲解锐角三角函数的性质;4.讲解与锐角三角函数相关的公式和计算方法;5.练习锐角三角函数的计算;6.进行综合应用练习;7.提问与解答;8.作业布置。
五、教学内容详细说明:1.复习预习:复习三角函数的定义及性质,包括正弦函数、余弦函数和正切函数的定义及其周期性、奇偶性、增减性等性质。
2.引入新知识:介绍锐角三角函数的定义,包括正弦定理、余弦定理和正切函数的定义。
通过几何图形的展示和实例的计算,让学生感受到锐角三角函数在实际问题中的应用。
3.讲解锐角三角函数的性质:详细讲解正弦、余弦和正切函数的周期性、奇偶性、增减性等性质。
通过图形展示和实例计算,让学生理解和掌握这些性质。
4.讲解与锐角三角函数相关的公式和计算方法:讲解正弦、余弦和正切函数之间的关系及计算方法,包括倍角、半角、和差等公式。
通过实例计算,让学生掌握这些公式和计算方法。
5.练习锐角三角函数的计算:提供一些锐角三角函数的计算题目,让学生进行练习和巩固。
教师可以给予指导和解答,让学生通过练习提高计算能力。
6.进行综合应用练习:提供一些与锐角三角函数相关的实际问题,让学生进行综合应用练习。
学生可以通过解决这些问题来巩固所学的知识,并培养解决实际问题的能力。
7.提问与解答:教师可以进行提问,引导学生回顾和总结所学内容,回答问题和解决疑惑。
8.作业布置:布置一些与锐角三角函数相关的作业,让学生巩固所学的知识。
作业可以包括计算题目、应用题目和综合问题。
课题:锐角三角函数(复习课)复习目标(1)知识与技能:1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。
2.通过复习牢记特殊角的三角函数值,并能进行有关计算。
3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。
(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。
(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。
复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。
复习难点:解直角三角形的知识应用。
教学方法:讲练结合法课型:复习课教具准备:多媒体课件教学过程一、锐角三角函数的定义在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c .则∠A 的正弦:sin A=_______________ ∠A 的余弦:cos A =________ ∠A 的正切:tan A =_______________、在Rt △ABC 中,∠C=90°,a =2,B自己动手:1、在等腰△ABC 中,AB=AC=5,BC=6,求sinB ,cosB ,tanB.2、求适合下列各式的锐角α3=α3tan二、特殊角的三角函数值60-例sin22⋅4530costan练习检测:求下列各式的值:211)(sin︒︒30-30cos30tantan(452)3︒︒+2-︒60sin三、解直角三角形1、解直角三角形的定义:利用已知元素,求出未知元素的过程。
2、解直角三角形的性质:①三边间关系:②两锐角间关系:③边角间关系:3、解直角三角形条件:已知两边,或已知一边一角。
自己动手:在Rt△ABC中,∠C=90°,a、b、c分别为∠A 、∠B、∠C的对边.根据已知条件,解直角三角形.c=8,∠A =60°四、拓展升华:锐角三角函数间的关系1、从定义可以看出sin A与cos B有什么关系?sin B与cos A呢?满足这种关系的A∠与B∠又是什么关系呢?2、利用定义及勾股定理你还能发现sin A与cos A的关系吗?3、再试试看tan A与sin A和cos A存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系:(1)若90A B∠+∠=那么sin A=cos B或sin B=cos A(2)22sin cos1A A+=(3)sincosA AA =4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢?通过一番讨论后得出:(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);(2)锐角的余弦值随角度的增加(或减小)而减小(或增加);(3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
锐角三角函数的教案【篇一:锐角三角函数教案】第二十八章锐角三角函数【篇二:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
锐角三角函数一、三角函数知识点归纳1.三角函数定义。
sinA=, cosA=, tanA=2.特殊锐角的三角函数值:求特殊角的三角函数值:1.在等腰直角三角形ABC 中,∠C =90º,则sin A 等于( )A .12B CD .12.求下列各式的值(1)sin 30°+cos30° (2)2sin 45°-21cos30°(3)045sin 30cos +tan60°-tan30° (4)2sin450-3tan300+4cos600-6tan4503、已知sinA=21(∠A 为锐角),则∠A=_________,cosA=_______,tanA=__________.求非特殊角的三角函数值:例、已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为练习: 1、已知cosA=23,且∠B=900-∠A ,则sinB=__________.2、在Rt △ABC 中,∠C 为直角,sin(900-A)=0.524,则cos(900-B)=_________.3、∠A 为锐角,已知sinA=135,那么cos (900-A)=___________ .4、在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 .二、解直角三角形在直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系:sinA=c a cosA=c b tanA=b a(2)三边之间关系:a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系:∠A+∠B=90°. (以上三点正是解直角三角形的依据)例1、如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 。
例2、如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD ,若AB=8,BD=5,则CD=1、在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、如果三角形的斜边长为4,一条直角边长为23,求斜边的高。
第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。
新人教版九年级数学锐角三角函数教案新人教版九年级数学锐角三角函数教案1一、复习巩固:1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。
2、在△ABC中,∠C=90°。
(1)已知∠A=30°,BC=8cm, (2)已知∠A=60°,AC= cm,求:AB与AC的长; 求:AB与BC的长。
二、例题学习:问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。
小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?思考与探索1:如图,东西两炮台A、B相距2000米,同时发现敌舰C,炮台A测得敌舰C在它的南偏东60°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离。
概念:仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
问题2:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?思考与探索(2):大海中某小岛的周围10km范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?三、板演练习1、如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?2、飞机在一定高度上飞行,先测得正前方某小岛的俯角为30°,飞行10km后,测得该小岛的俯角为60°,求飞机的高度。
24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.【情感态度】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.【教学重点】锐角三角函数的概念.【教学难点】锐角三角函数的概念的理解.※教学过程※一、情境导入如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.二、探索新知1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).2.做一做.(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义∠A的正弦:sinA=∠A的余弦:cosA=∠A的正切:tanA=∠A的正弦、余弦、正切统称为锐角∠A的三角函数.4.知识拓展(1)正弦与余弦三角函数值的取值范围.∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.(2)同角三角函数关系sin2α+cos2α=1;tanα=.(3)互余两角的三角函数值若α、β都是锐角,且α+β=90°,那么:sinα=cosβ,cosα=sinβ.三、巩固练习【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.解:AB==17,sinA=,cosA=,tanA=.【练习】1.如图,在Rt△MNP中,∠N=90°,则:∠P的对边是,∠P的邻边是;∠M的对边是,∠M的邻边是.第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.答案:1.MN PN PN MN2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.3.(1)sinB=,cosB=,tanB=.(2)sinB=,cosB=,tanB=.四、应用拓展【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.解:∵sinA=,∴AB=,∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.∴cosα=,tanα=.方法二:用公式求解∵α为锐角,∴cosα==,tanα=.五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.※课后作业※1.教材第111页习题24.3第1、2题.2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】培养学生观察、比较、分析、概括的思维能力.【情感态度】经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.【教学重点】特殊角的三角函数值.【教学难点】与特殊角的三角函数值有关的计算.※教学过程※一、复习引入在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.回顾锐角三角函数的定义;直角三角形的性质.二、探索新知在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得sin45°=,cos45°=,tan45°=1.【例1】求值:sin30°·tan30°+cos60°·tan60°.解:原式=.【例2】在Rt△ABC中,若sinA=,则cos的值是多少?解:由sinA=知A=60°.∴cos=cos30°=.三、巩固练习1.在△ABC中,若cosA=,tanB=,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.用特殊角的三角函数填空:= = ;= = ;1= ;= .3.化简= .4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.5.求下列各式的值:(1)sin260°+cos260°;(2)2cos60°+2sin30°+4tan45°;(3).6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.答案:1.A 2.sin60° cos30° sin45° cos45°tan45° tan60° 3. 4.5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,所以tan15°===2-.2.仿上面的解题方法,易求tan22.5°=-1.※课后作业※1.教材第111页习题24.3的第3题.2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.2.用计算器求锐角三角函数值※教学目标※【知识与技能】1.会使用计算器求锐角三角函数的值.2.会使用计算器根据锐角三角函数的值求对应的锐角.【过程与方法】在做题、计算的过程中,逐步熟练计算器的使用.【情感态度】经历计算器的使用过程,熟悉其按键顺序.【教学重点】利用计算器求锐角三角函数的值.【教学难点】计算器的按键顺序. ※教学过程※一、复习引入填表:由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?二、探索新知1.求锐角三角函数值【例1】求sin63°52′41″的值(精确到0.0001).解:如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897859012.∴sin63°52′41″≈0.8979.【例2】求tan19°15′的值(精确到0.0001).解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.3492156334.∴tan19°15′≈0.3492.2.由锐角三角函数值求锐角.【例3】若tanx=0.7410,求锐角x.(精确到1′)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.53844577.再按键,显示结果为36°32′18.4″.所以x≈36°32′.三、巩固练习1.利用计算器求下列三角函数值:(精确到0.0001)(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)(1)sinα=0.2476;(2)cosα=0.4174;(3)tanα=0.1890.答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.2.比较大小.cos25° cos32°,tan29° tan39°.3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.。
中考锐角三角函数复习教案【教案内容】一、教学目标1.知识与技能(1)复习锐角三角函数的定义;(2)掌握常见锐角三角函数的计算方法;2.过程与方法(1)通过讲解、分析和解题等学习方法,帮助学生全面复习锐角三角函数的相关知识;(2)通过练习题,巩固学生的计算能力和应用能力;3.情感态度价值观通过学习锐角三角函数,培养学生的数学思维能力,提高学生的逻辑思维和分析问题的能力,培养学生的合作意识和团队精神。
二、教学重点1.锐角三角函数的定义;2.常见锐角三角函数的计算方法。
三、教学难点1.锐角三角函数的综合运用;2.有关锐角三角函数的实际问题。
四、教学过程1.复习(1)复习锐角三角函数的定义;(2)回顾与锐角三角函数相关的练习题。
2.讲授(1)解析定义法解析定义法是指通过三角形的几何关系来定义锐角三角函数的方法。
其基本定义如下:- 正弦函数sinA:在一个锐角三角形中,对于任意锐角A,a/b就是其正弦函数。
- 余弦函数cosA:在一个锐角三角形中,对于任意锐角A,b/c就是其余弦函数。
- 正切函数tanA:在一个锐角三角形中,对于任意锐角A,a/c就是其正切函数。
(2)练习题演练通过一些具体的练习题,帮助学生巩固解析定义法的运用。
3.拓展(1)锐角三角函数的性质-在锐角三角形中,锐角的对边是锐角三角函数的对边,锐角的邻边是锐角三角函数的邻边。
-在锐角三角形中,正弦函数的值总是小于等于1,余弦函数的值总是小于等于1,正切函数的值没有上界。
(2)常用锐角三角函数的计算- 根据锐角的大小和所在象限,计算sinA、cosA和tanA的值。
- 根据锐角的大小和所在象限,计算cscA、secA和cotA的值。
(3)练习题演练通过一些具体的练习题,帮助学生巩固常用锐角三角函数的计算方法。
4.整合与应用(1)综合运用通过一些综合的锐角三角函数计算题,帮助学生综合应用所学知识解答问题。
(2)实际问题通过一些与现实生活相关的锐角三角函数问题,帮助学生发现锐角三角函数在实际应用中的重要性和作用。
基本信息 课题:《锐角三角函数中考复习》 课型:复习课 教材:苏科版·数学(九年级下册) 课时:1课时教学目标1.通过复习进一步理解锐角三角形函数的概念,能熟练应用sinA ,cosA ,tanA 表示直角三角形中两边的比,熟记特殊角30°,45°,60°的三角函数值;2.理解直角三角形中边角之间的关系,会运用勾股定理,锐角三角函数的有关知识来解某些简单的实际问题,从而进一步把数和形结合起来,培养应用数学知识的意识;3.通过回顾与总结,培养并提高学生归纳、对比及分析问题和解决问题的能力。
教学重点 会用锐角三角函数的有关知识来解决某些简单的实际问题 教学难点 勾股定理及锐角三角形函数的综合运用教学方法利用多媒体课件,启发、谈论、互动式探究并讲练结合。
教学手段 多媒体辅助教学教学过程教 学 内 容教师活动内容、方式学生活动方式设计意图一、 考点聚焦、夯实基础 考点一:锐角三角函数的概念正弦:把锐角A 的__________的比叫做∠A 的正弦,记作 ;余弦:把锐角A 的__________的比叫做∠A 的余弦,记作 ; 正切:把锐角A 的__________的比叫做∠A 的正切,记作 .夯实基础1.如图,在Rt △ABC 中,∠C=90,AB=5,BC=4, 则sinA= ; cosA = ; tanA = .2.如图,直径为5的⊙A 经过点C(0,3)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为_______。
3.在正方形网格中,△ABC 的位置如图所示,则cos ∠ABC 的值为________。
师总结:求锐角三角函数值关键是构造直角三角形,圆中可以借助直角所对圆周角是直角得到直角三角形,网格纸中的直角三角形等,当然必要时需要转化角使得问题变得简单。
师补充:如何求sin ∠BAC ? 考点2 特殊角的三角函数值三角函数 30° 45° 60°sin αcos αtan α师生共同回忆锐角三角函数概念进入本节课主题给学生思考的时间: 1.指明个别学生口述 2.学生举手回答,在教师的引导下突出构造直角三角形以及角的转化思想;3.学生个别回答,构造直角三角形ABD4.学生A 回答,过点C 作CE ⊥AB ,构造直角三角形ACE;学生B 补充利用等积法计算CE 学生快速口答,全班纠错课堂以师生互动的方式拉开本节复习课的序幕给整节课铺垫了良好的情感基础针对锐角三角函数基本概念设计练习及时巩固学生对概念的掌握情况,并渗透转化的数学思想熟记特殊角三角函数值,并培养学生观察和总结能力ab c C BA CA Bx y OC A B C B A师提问:思考:锐角的三角函数值有何变化规律? 补充:若∠A+∠B=90°,那么:sinA = ;cosA = ;tanA = ;夯实基础1.已知角,求值:(1)2sin30°+3tan30°+tan45° (2)cos245°+ tan60°cos30° 2.已知值,求角:(1)已知 sin A = ,求锐角A .(2)已知 tan (∠A+20°)= ,求锐角A . (3)在△ABC 中, ∠A 、 ∠ B 均为锐角,且 ,求∠C 的度数。
第二十八章锐角三角函数(复习)一、教学目标::1、掌握锐角三角函数的概念,利用锐角三角函数的意义及直角三角形的边角关系解决一些数学问题。
2、通过运用勾股定理,直角三角形的边角关系以及锐角三角函数知识,培养学生分析问题、解决问题的能力。
3、渗透数形结合思想,培养学生良好的学习习惯。
二、教学重点:锐角三角函数及直角三角形有关知识的综合运用三、教学难点:实际问题转化成数学模型。
四、教学过程:(一)师生共同复习本章知识结构(1)锐角三角函数及特殊角的三角函数值:①如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.那么∠A的正弦:sin A=∠A的余弦:cos A=∠A的正切:tan A=∠B的正弦:sin A=∠B的余弦:cos B=∠B的正切:tan B=思考:通过边角关系,你发现了什么规律?②特殊角的三角函数值:③三角函数的增减性:当0°< α < 90°时对于sinα与tanα,角度越大,函数值越;对于cosα,角度越大,函数值越 .(2). 解直角三角形①在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:三角关系:边角关系:(3). 三角函数的应用 ①仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. ② 坡度,坡角如图:坡面的铅垂高度(h )和水平长度(l ) 的比叫做坡面坡度.记作i ,即i= h l.坡面与水平面的夹角叫做坡角,记作α,有 i = tan α. 坡度通常写成1∶m 的形式,如i =1∶6.显然,坡度越大,坡角α就越大,坡面就越陡. ③ 方位角:以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角. 如图所示 (二)、双基练习1、若∠A 为锐角,sinA=13,则:cosA=_____,tanA=______2、比较大小:sin530_____ sin540 sin270______ cos7203、(2014·凉山州)在△ABC 中,若|cos A -12|+(1-tan B)2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4、(2015·兰州)如图,△ABC 中,∠B =90°,BC =2AB ,则cos A =( )A .52B .12C .255D .555、如图,在菱形ABCD 中,DE ⊥AB ,cos A =35,BE =2,则tan ∠DBE的值是_ __. (三)、能力提升练习 6、(2015·巴中)计算:|2-3|-(2015-π)0+2sin 60°+(13)-1.7、(2015·丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos ∠α的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC8、(2015·太原)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C .55 D .129、如图在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠BDC=34,则线段AB 的长为( ) A 、 4 B 、5 C 、6 D 、1010、如图,在□ABCD 中,对角线AC ,BD 相交所成的锐角为α,若AC=a ,BD=b ,则:S □ABCD=( )A 、12absinaB 、absinaC 、abcosaD 、 12abcosa11、如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .4512、(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .10 3 海里C .20 2 海里D .30海里13、(2015·曲靖)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则cos D =____. 14、(2015·宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的俯角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__________m (结果保留根号)15、(2015·牡丹江)在△ABC 中,AB =122,AC =13,cos B =22,求BC 的长。
数学个性化教学教案授课时间:年月日备课时间年月日年级九学科数学课时 2 h 学生姓名授课主题锐角三角函数授课教师教学目标1、使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。
教学重点 1.三角形全等的条件;三角形全等条件的综合运用教学难点1、解直角三角形教学过程一、【历次错题讲解】二、【基础知识梳理】1、锐角三角函数定义在直角三角形ABC中,∠C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1) 正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A =ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A =cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A =ba,这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角∠A必须在直角三角形中,且∠C=900;(2)在直角三角形ABC 中,每条边均用所对角的相应的小写字母表示。
否则,不存在上述关系2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。
3、锐角三角函数关系(1)平方关系:sin2A + cos2A = 1;4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB ,cosA=sinB.学习札记5、特殊角的三角函数三角函数 锐角α 300 450 600sin α cos α tan α6、勾股定理1、勾股定理的概念:直角三角形斜边的平方等于两直角边的平方和。
2、勾股定理的数学表达;若∆ABC 为直角三角形∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且∠C=∠90,则222c b a =+,反之,已知a ,b ,c 为三角形ABC 的边。
章末复习1.进一步理解并掌握锐角三角形函数的意义,能用定义进行相关的计算;2.熟记特殊角的三角函数值,能用计算器求任意锐角的三角函数值或利用锐角的三角函数值求相应角的度数;3.能用解直角三角形知识解决实际应用问题.4.进一步增强学生分析问题、解决问题的能力,掌握数形结合的思想方法.5.进一步增强学生的数学应用意识,感受数学的转化思想方法,增强学生对数学学习的热情.【教学重点】通过对本章知识的回顾,巩固所学知识,能熟练运用所学知识解决具体问题.【教学难点】运用锐角三角函数解决实际应用问题.一、知识框图,整体把握【教学说明】教学前,教师应根据本章知识内容设计一个适合要求的知识结构框图,教学时,与学生一道回顾本章知识,按自己的设计思路展示出结构图,让学生加深对本章知识的系统理解.二、释疑解惑,加深理解问题 1 请用计算器探索出锐角函数的函数值随自变量锐角从小到大的变化而变化的情况,你有什么发现?【教学说明】教师可引导学生利用计算器求出0°〜10°,10°〜20°,20°〜30°,……,80°〜90° 之间的某一锐角的三角函数值,通过分析得到的函数值,可获得锐角三角函数的一些简单性质.【归纳结论】对于锐角A,它的正弦函数 (sinA)的函数值随自变量锐角A的增大而增大,且sinA必满足0< sinA<1;它的余弦函数(cosA)的函数值随锐角A的增大而减小,且 cosA必满足0<COSA<1;它的正切函数(tanA) 的函数值随锐角A的增大而增大,且tanA满足tanA >0.试一试若锐角A的余弦值cosA = 3,则锐角A的取值范围是()A. 60°<A<90°B. 45°<A<60°C. 30°<A<45°D. 0°<A<30°分析与解由于cos30°=≈0. 866,cos45°= ≈0.707 ,cos60° =12,且 cosA = 34= 0.75,知 cos45°<cosA<cos30°,结合余弦函数的性质,其函数值随角度的增大而减小,从而可知 30°<A <;45°,故应选 C.问题 2 利用锐角三角函数定义及勾股定理,你能证明sin2A + cos2A = 1吗?你有何发现?问题3 若∠A + ∠B =90,你能探索出 tanA与tanB之间有什么关系吗?与同伴交流.【教学说明】教师应引导学生构建直角三角形,利用直角三角形的边角关系及相应锐角的三角函数的意义不难得出结论.经历由问题1的感性认识到问题2、3的理性思考可进一步开拓学生的思维能力,增强解题技能.【结论】 1.对于任意锐角A ,总有sin 2A + cos 2A = 1 ;2.若两个锐角∠A ,∠B 满足∠A + ∠B = 90°, 则必有 tanA • tanB = 1.试一试 化简 22sin 232sin 231cos 23︒-︒+-︒-tan1°·tan11°· tan21°·tan31°·tan89°·tan79°·tan69°·tan59°.分析与解 由2sin 232sin 23︒-︒ = 2sin 231︒-()= |sin 231︒-| = 1 - sin23°,21cos 23-︒ = 2sin 23︒ = sin23°,及tan1°·tan89°=1 等可得到原式 = 1 - sin23°+ sin23°- 1 = 0.三、典例精析,复习新知例1 在Rt △ABC 中,∠C=90°,已知cosA=13,求cosB 和tanA的值.分析与解 结合图形及已知条件,由cosA= 13 =AC AB ,故不妨设AC=m ,则AB=3m ,由勾股定理易得BC=22m ,从而cosB =BC AB= 223m m = 223, tanA =BC AC = 22m m = 22.例2 如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O经过点C ,E 是⊙O 上一点,且∠BEC=45°.(1)试判断CD与⊙O的位置关系,并说明理由.(2)若BE=8 cm,sin∠BCE = 45,求⊙O的半径.分析与解本例是一道圆、平行四边形、锐角三角函数的小综合问题,在(1)中可直接由∠BEC=45°得到∠BOC=90°(添加辅助线OC),再利用平行四边形性质,可得到∠OCD=∠BOC=90°,从而CD是⊙O的切线;在(2)中,应先连AE,利用圆的性质可得∠BAE=∠BCE,又AB为⊙O直径,故△ABC为直角三角形,这样由sin∠BCE= 45,得到sin∠BAE=4 5 = BEAB,又BE=8,从而得AB=10,故⊙O的半径为5.通过上面的分析可以发现,对于不是直角三角形中的锐角三角函数问题,常常需通过添加辅助线,将这一锐角三角函数转化为直角三角形中某个角的三角函数来解决问题.例3 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形,已知吊车吊臂的支点O距离地面的高OO'=2米,当吊臂顶端由A点抬升至点A'(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B'处,紧绷着的吊缆A B''=AB.AB垂直地面O'B于点B,A B''垂直地面O'B于点C,吊臂长度O A'=OA=10 m,且cosA = 35,sin A' = 12.(1)求此重物在水平方向移动的距离BC;(2)求此重物在竖直方向移动的距离B'C.(结果保留根号)分析与解过O作OF⊥AB于F,交A B''于点E(如图),这样可在Rt△AOF中,利用OA=10, cosA= 35,求出AF=6,从而得OF=8,在Rt△A'OE中,由O A'=10,sin A'=12,得OE=5,从而BC=EF=OF-OE=8-5=3 m,即重物在水平方向移动的距离为3 m;同样,可求出AB=AF+BF=AF+OO' =6+2=8,在Rt△A'OE中,可得A'E=53.故A'C=A'E+EC =53+2,这样B'C= A'C-A B''=A'C-AB=53+2-8=53-6,即此重物在竖直方向移动的距离为(53-6) m.例 4 某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A 点的高度AB 为2 m ,台阶AC 的坡度为1∶3 (即AB ∶BC=1∶3,且B 、C 、E 三点在同一直线上,请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).分析与解 如图,过点A 作AF ⊥DE 于F ,则四边形ABEF 为矩形.∴AF=BE ,EF=AB=2.设DE=x ,在Rt △CDE 中,CE=tan DCE DE ∠ = tan 60?DE = 33x . 在Rt △AFD 中,DF = DE - EF = x - 2,∴AE=tan DAF DF ∠ = 2tan 30?x - = 3(x 2)-. ∵AF = BE = BC + CE ,∴3(x 2)- = 23 + 33x .解得.例5 图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F ,C-D 是CD 〖T ,AB=FE=5 cm ,∠ABC=∠FED=149°.请通过计算判断这个水桶提手是否合格.(参考数据:314≈17.72,tan73.6°≈3.40,sin75.4°≈0.97,)分析与解要判断图丙中所示提手是否合格,可过O作OM⊥BC 于M,只须比较OM与OA的大小即可.这时再连OB,在Rt△ABO中,由tan ∠ABO = OAOB= 3.4及tan73.6°=3.4可知∠ABO=73.6°,又∠ABC=149°,从而= 175∠MBO=75.4°,又OB = 22+ =314≈17.72,且sin+ = 25289AB OA,∴OM=OB·sin∠MBO=17.72×sin75.4°=17.72×0.97≈17.2,∠MBO=OMOB由OM>OA知,这个提手是合格的.【教学说明】上述所选四道题中的例1,例2可由学生自主探究,独立完成,然后相互交流,互相检查.例3、例4文字叙述较长,教师应作好引导,帮助学生分析,找出解决问题的突破口,让学生在理解的基础上探寻结论,进一步体验用锐角三角函数知识解决实际问题的过程、方法,加深对本章知识的理解.四、师生互动,课堂小结通过这节课的学习,你有哪些收获?【教学说明】师生相互交流,让学生谈谈自己的想法,提出来与大家分享,也可帮助学生进行知识、方法的提炼,形成完整的知识结构.1.布置作业:从教材P84~85复习题28中选取.2.完成创优作业中本课时的练习.本课时为复习课,首先要让学生了解本章的知识体系,教学的展开以问题的解决为中心,指导学生自主理清由实际问题转化为三角函数模型的思路,增强学生数学问题的转化意识.。
课题:锐角三角函数
(复习课)
复习目标
(1)知识与技能:
1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。
2.通过复习牢记特殊角的三角函数值,并能进行有关计算。
3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。
(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。
(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。
复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。
复习难点:解直角三角形的知识应用。
教学方法:讲练结合法课型:复习课教具准备:多媒体课件教学过程
一、锐角三角函数的定义在△中,/ C= 90°,/ A,/ B,/ C的对边分别为a, b, c.则
人 b 4£2 22 K a 2
V 2 cos A - --- ----- ,tan A -- ------ ----
c 6 3 b 472 4
自己动手:1、在等腰△中,5, 6,求,,
2、求适合下列各式的锐角a
3tan 3
、特殊角的三角函数值
30°
45° 60°
2
范例
1、在 Rt △ ABC 中,/ C=90 ° , a=2 , sinA= 1,求 cosA 和tanA 的值。
c 解:
sin 3
A 旦, c c a sin A 根据勾股定理得:
1 A
2 — 6。
3 c 2 a 2 62 22
4 2 b
例 2 sin 30 cos 45 tan 60
求下列各式的值:
(11 2sin30 cos30
(23ta n30 tan45 2sin60
三、 解直角三角形
1、 解直角三角形的定义:利用已知元素,求出未知元素的过程。
2、 解直角三角形的性质:
① 三边间关系:
② 两锐角间关系:
③ 边角间关系:
3、 解直角三角形条件:已知两边,或已知一边一角。
自己动手:在△中,/ 90°, a 、b 、c 分别为
/ A 、/ B 、 / C 的对边.根据已知条件,
解直角三角形8,Z A =60°
四、 拓展升华:锐角三角函数间的关系
1、从定义可以看出si nA 与cosB 有什么关系? si nB 与cos A 呢?满足这种关 系的A 与B 又是什么关系呢?
2、 利用定义及勾股定理你还能发现 si nA 与cosA 的关系吗?
3、 再试试看tanA 与sinA 和cosA 存在特殊关系吗?经过教师引导学生探索之后 总结出如下几种关系:
(1)若 A B 90o 那么 sinA=cosB 或 sin B =cosA
4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余 弦呢?正切呢?
通过一番讨论后得出: (2) sin 2 A cos 2 A
1 (3) tanA sin A cosA
(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);
(2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加 (或减小)而增加(或减小)。
小结
厂 「⑴、正弦;
1、锐角三角函数的定义 〈⑵、余弦;
I ⑶、正切。
作业:《课时练》89页—— 节末综合训练”1 — 0小题必做,11、12 小题选作
板书设计
锐角三角函数(复习课)
1、 锐角三角函数意义
2、 特殊角的三角函数值
3、 解直角三角形
锐
角一
二
角
函
数 2、30 °、45 °、 60°特殊角的三角函数值。
3、解直角三角形 广⑴、定义; 广
①、三边间关系;
⑵、直角三角形的性质 V ②、锐角间关系; .③、边
角间关系。
J ⑶、解直角三角形在实际问题中的应用。