省优秀课一等奖:锐角三角函数全章教案
- 格式:doc
- 大小:148.50 KB
- 文档页数:19
人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。
【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。
【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。
二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。
三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。
【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。
【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。
【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。
初中锐角三角函数教案一、教学目标:1.理解锐角的概念,并能够通过观察角度来判断锐角;2.掌握正弦、余弦和正切三角函数的定义及基本性质;3.能够在给定角度范围内计算正弦、余弦和正切的值;4.能够运用三角函数解决实际问题。
二、教学重点:1.正弦、余弦和正切三角函数的定义及基本性质;2.正弦、余弦和正切的计算方法;3.能够通过问题分析运用三角函数解决实际问题。
三、教学难点:1.正弦、余弦和正切的计算方法;2.运用三角函数解决实际问题的能力。
四、教学准备:教学课件、黑板、白板笔、直尺、三角板等。
五、教学过程:步骤一:引入新知识教师可以通过多媒体或实物等方式,引导学生观察角度,并介绍锐角的概念。
然后通过与学生的互动,让学生判断哪些角度是锐角。
步骤二:讲解三角函数的定义及基本性质1.定义:正弦函数:在直角三角形中,对于锐角A,以A的对边长度除以其斜边长度所得的比值,叫做A的正弦,记作sinA。
余弦函数:在直角三角形中,对于锐角A,以A的邻边长度除以其斜边长度所得的比值,叫做A的余弦,记作cosA。
正切函数:在直角三角形中,对于锐角A,以A的对边长度除以其邻边长度所得的比值,叫做A的正切,记作tanA。
2.基本性质:正弦函数的值域为[-1,1],在每个周期内呈周期性变化;余弦函数的值域为[-1,1],在每个周期内呈周期性变化;正切函数的定义域为全体锐角,值域为R。
步骤三:计算三角函数的值1.通过给定的角度,使用三角函数的定义及基本性质来计算正弦、余弦和正切的值。
例如:计算角度为30°的正弦、余弦和正切的值。
2.通过课堂练习,让学生灵活掌握计算三角函数的方法。
步骤四:解决实际问题通过一些实际问题的引入,让学生运用所学的三角函数知识解决问题。
例如:一根斜杆在水平地面上的倾斜角为60°,斜杆的长度为10米,求斜杆的垂直高度是多少?步骤五:课堂练习及小结设计一些课堂练习题,让学生巩固所学的知识,并在小结时进行复习。
1.1锐角三角函数[教学目标]知识与技能目标:通过实例,了解三角函数的概念,掌握正弦、余弦和正切的符号,会用符号表示一个锐角的三角函数。
掌握在直角三角形中锐角三角函数与边之比的关系,了解锐角的三角函数值都是正实数,会根据锐角三角函数的定义求锐角三角函数值;过程与方法目标:经历锐角的正弦、余弦和正切的探索过程,体验数学问题的分析与解决;情感、态度与价值观目标:培养多思考的学习习惯;学会用数学的眼光看世界,用数学来分析和解决生活中的问题。
[教学重点与难点]教学重点:锐角的正弦、余弦、正切和锐角三角函数的概念;教学难点:锐角三角函数的定义,正弦、余弦和正切三类函数的意义、符号、以及函数中以角为自变量是教学中的难点。
[教学过程]一、创设情境引入主题利用几何画板演示一垂直于地面的旗杆在一天阳光的照射下,影长发生了变化这一情境。
(设计意图:通过学生观察生活中实物影长变化这一自然现象,结合多媒体展示旗杆影长变化过程,可提高学生的兴奋点,激发学习兴趣和欲望,有利于引导学生进行数学思考。
导入主题:直角三角形中,边角之间的关系。
)二、师生互动探求新知1.从一个含30度角的直角三角形为例,通过回忆直角三角形中,30度角所对的直角边是斜边的一半,得到30度的对边与斜边比值固定,不随点的变化而变化;2.再从含45度角的直角三角形讨论45度的对边与斜边比值固定,不随点的位置而变化;2.任意角∠是否同样存在对边与斜边比值固定这一结论?通过猜测、验证、归纳的手段来分析和解决数学问题。
3.通过以上探索,边角之间的关系是什么?4.学习锐角三角函数的概念,表示方法及自变量取值范围和函数值取值范围。
(设计意图:建立在学生原有认知的基础上,发现问题,从而寻求方法解决问题。
通过回忆熟悉的定理,让学生明白直角三角形中锐角与边比值存在关系,并大胆猜测直角三角形中任意角∠的对边与斜边比值是否固定?通过叠放含有∠的直角三角形,从而作出图形,易让学生用所学过的相似三角形的知识来解决问题,得到比值固定。
教学目标第一章直角三角形的边角关系第 1 课时§1.1.1 锐角三角函数1、经历探索直角三角形中边角关系的过程。
2、理解正切的意义及与现实生活的探索。
3、逐步学习利用数形结合的思想分析问题和解决问题。
4、提高解决实际问题的能力。
教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。
这一章,我们继续学习直角三角形的边角关系。
师生共同研究形成概念1、梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。
这就涉及到倾斜角的问题。
用倾斜角刻画倾斜程度是非常自然的。
但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。
1)(重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡;2)如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;3)如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。
2、想一想(比值不变)☆想一想书本P2想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。
当倾斜角确定时,其对边与邻边的比值随之确定。
这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。
3、正切函数(1)明确各边的名称B斜边∠A的对边(2)tan A A的对边A的邻边A∠A的邻边C(3)明确要求:1)必须是直角三角形;2)是∠ A的对边与∠ A 的邻边的比值。
A☆巩固练习a、如图,在△ ACB中,∠ C = 90 °,1)tanA = ;tanB = ;AC B2)若AC = 4 ,BC = 3 ,则tanA = ;tanB = ;3)若AC = 8 ,AB = 10 ,则tanA = ;tanB = B;Cb、如图,在△ACB中,tanA = 。
锐角三角函数[教学反思]课题锐角三角函数〔3〕授课时间课型新授二次修改意见课时1 授课人科目数学主备教学目标知识与技能⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。
⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式过程与方法能推导特殊角的三角函数值情感态度价值观培养学生的类比能力,通过画图,推导增强他们的学习兴趣教材分析重难点熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式教学设想教法三主互位导学法学法合作探究教具常规教具课堂设计一、目标展示⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。
⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式二、预习检测一个直角三角形中,一个锐角正弦是怎么定义的?一个锐角余弦是怎么定义的?一个锐角正切是怎么定义的?三、质疑探究两块三角尺中有几个不同的锐角?是多少度?你能分别求出这几个锐角的正弦值、余弦值和正切值码?.四、精讲点拨归纳结果30°45°60°siaAcosAtanA例3:求以下各式的值.〔1〕cos260°+sin260°.〔2〕cos45sin45︒︒-tan45°.五、当堂检测1.设α、β均为锐角,且sinα-cosβ=0,那么α+β=_______.2.cos45sin301cos60tan452︒-︒︒+︒的值是_______.3.,等腰△ABC•的腰长为4 3 ,•底为30•°,•那么底边上的高为______,•周长为______.4.在Rt△ABC中,∠C=90°,tanB=52,那么cosA=________.5.sin272°+sin218°的值是〔〕.A.1 B.0 C.12D.32六、作业布置习题28。
第一章直角三角形的边角关系锐角三角函数》教学设计(第1 课时)一、教材分析直角三角形中边角之间的关系在实际生活中应用广泛. 这节先从实际问题:梯子的倾斜程度引入了锐角三角函数——正切. 它是刻画物体的倾斜程度,山的坡度一个重要的量. 本节从现实情境出发,让学生在经历探索直角三角形边角关系的过程中,理解锐角三角函数正切的意义:直角三角形中边的比值与角的大小之间的一种内在数量关系,并能通过实际举例来说明;并能够根据直角三角形的边角关系进行计算. 本节的重点就是通过角度的变化和边的比值之间的关系理解tan A 的几何意义.并能够根据它们的数学意义进行直角三角形边角关系的计算,难点是对三角函数意义的深层次理解. 所以在教学中要注重创设符合学生实际的问题情境,引出正切三角函数的概念,使学生感受到数学与现实世界的联系,鼓励他们有条理地进行表达和思考,特别关注他们对概念的理解.二、教学目标知识目标1. 经历探索直角三角形中边的比值和角大小关系的过程;理解正切三角函数的意义和与现实生活的联系.2. 能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.能力目标1. 经历观察、猜想等数学活动过程,发展学生的思维推理能力,能有条理地,清晰地阐述自己的观点.2. 进一步理解函数的概念:边与边比值与角大小之间的变化关系.3. 体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题. 会用化归思想对问题进行转换,从而解决问题,提高解决实际问题的能力情感与价值观要求体会客观现实世界中量与量之间的相互联系和变化关系.教学重点1. 从现实情境中探索直角三角形的边角关系.2. 理解正切、倾斜程度、坡度的数学意义,并能进行简单的计算.教学难点:理解正切的意义,并用它来表示两边的比.三、教学过程:一、创设问题情境,引入新课1、通过对课件封面图片的观察,提出问题:[ 问题1] :以前我们学习了直角三角形中的勾股定理,在直角三角形中给出两条边的长度可以求出第三边的长度,大家也知道直角三角形的两个锐角互余,哪组梯子较陡 .根据其中一个锐角的度数可以求另外一个内角 . 那么请问,在直角三角形中,知 道一边和一个锐角,你能求出其他的边和角吗 ?[ 问题 2] :随着改革开放的深入,深圳的城市建设正日新月异地发展,幢幢 大楼拔地而起 . 上个世纪的地王大厦一直是深圳最高的大厦,但经过几十年的城 市发展,“深圳最高大厦”的桂冠早已被其他高楼取代,你们知道目前深圳最高 的大厦叫什么名字吗 ?你能应用数学知识和适当的途径得到京基大厦的实际高 度吗?通过本章的学习,相信大家一定能够解决 . 这节课,我们学习锐角三角函数 .( 板书课题:锐角三角函数 ).二、新课讲授1、用多媒体演示如下内容:梯子是我们日常生活中常见的物体 . 我们经常听人们说这个梯子放的“陡” 那个梯子放的“平缓” ,人们是如何判断的 ?“陡”或“平缓”是用来描述梯子 什么的 ?为了描述梯子的这种倾斜程度, 先给大家介绍三个简单的概念: 倾斜角, 铅垂高,水平宽 .请同学们看下图,并回答问题 (用多媒体演示 )(1)梯子在上升变陡过程中,倾斜角的大小有无变化?如何变 ?结论:倾斜角越大——梯子越陡AB甲组乙组结论:当铅直高度一样,水平宽度越小,梯子越陡;当水平宽度一样,铅直高度越大,梯子越陡(3)如图,梯子AB和EF哪个更陡?你是怎样判断的?方法:在保持倾斜程度不变的情况下,将两部梯子的水平宽变成一样,比较铅垂高,或者将铅垂高变成一样,比较水平宽.这种比较方法还是很麻烦,需要找到更简便的方法,(4)如图,三部梯子的倾斜程度一样,通过测量发现其中两部梯子的数据如下,请你用上面的方法分析当倾斜角相等时,铅直高度和水平宽度之间有何关系.结论:铅垂高和水平宽的比值一样(5)回头看前面几个梯子,铅垂高和水平宽的比值与梯子的强些程度有无 一点的关系?结论:梯子越陡,比值越大,从而也得出前斜角越到,比值越大 . (让学生 体会直角三角形中的锐角 A 大小,它的对边与邻边之比之间的内在关系 . )练习:通过这个结论比较课件中四部梯子的倾斜程度 .6、 正切的定义如图,在 Rt △ABC 中,如果锐角 A 确定,那么∠ A 的 对边与邻边之比便随之确定,这个比叫做∠ A 的正切 (tangent ) ,记作 tanA ,即注意:1.tanA 是在直角三角形中定义的 ,目前∠ A 是一个锐角(注意数形结合,构 造直角三角形)tanA=A 的对边 A 的邻边2.tanA 是一个完整的符号,表示∠ A的正切,省去“∠”号(注意tanA 不表示tan 乘以A).3. tanA 没有单位,它表示一个比值,即直角三角形中∠ A 的对边与邻边的比..4. tanA 的大小只与∠ A的大小有关, 而与直角三角形的边长无关.5. 角相等, 则正切值相等;两锐角的正切值相等, 则这两个锐角相等.思考:1. ∠B的正切如何表示?它的数学意义是什么?2. 前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tanA 有关系吗?总结:梯子越陡,tanA 的值越大;反过来,tanA 的值越大,梯子越陡练习:请你用不同的符号表示下列图形中两个锐角的正切三、例题讲解[ 例1] :如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan α、tan β的值,比较大小,越大,扶梯就越陡.四、、坡度、坡角的定义正切在日常生活中的应用很广泛,例如建筑,工程技术等. 正切经常用来描述山坡的坡度、堤坝的坡度.如图,有一山坡在水平方向上每前进100m,就升高60 m,那么山坡的坡度(即坡角α的正切——tan α)就是60 3 tan α= .100 5(这里要注意区分坡度和坡角.)坡面的铅直高度与水平宽度的比即坡角的正切称为坡度. 坡度越大,坡面就越陡.拓展:如图,为拦水坝的横截面,其中AB面的坡度i =1: 3,若坝高BC=20米,求坝面AB的长.分析:现根据坡度的概念,知道 BC 的长,求出 AC ,在利用勾股定理求 的长度五、课时小结本节课从梯子的倾斜程度谈起,经历了探索直角三角形中的边角关系,得 出了在直角三角形中的锐角与它的对边与邻边之比之间的数量关系,并以此为接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了 解了正切在现实生活中是一个具有实际意义的一个很重要的概念 .六、课后作业1. 习题 1.1 第 1、 2、4.2. 观察学校及附近商场的楼梯,哪个更陡 .D BAAB基础,在“ Rt △”中定义了 tanA =A 的对边 A 的邻边。
初三锐角三角函数教案一、教学目标:1. 理解什么是锐角和直角;2. 熟练掌握三角函数中的正弦、余弦和正切的概念;3. 能够利用三角函数求解简单的几何问题;4. 培养学生的观察力和逻辑思维能力。
二、教学重难点:1. 掌握三角函数中的正弦、余弦和正切的概念;2. 能够正确应用三角函数求解几何问题。
三、教学准备:课件、教学文具、同步练习题。
四、教学过程:Step 1:导入新知识通过展示一些常见的几何图形,引导学生思考并回答以下问题:- 这个角是否是锐角?- 是否存在角的边长与斜边之间的关系?- 是否能够利用角的知识求解几何问题?Step 2:引入概念与学生互动,引入正弦、余弦和正切三角函数的概念。
解释正弦函数、余弦函数和正切函数的定义,并说明它们与锐角三角形之间的关系。
通过课件和实例,让学生理解这些函数的定义和使用方法。
Step 3:学习三角函数的性质解释三角函数中的一些基本性质,如:- 正弦函数的值域是[-1,1];- 余弦函数的值域是[-1,1];- 正切函数的值域是实数集。
Step 4:应用三角函数求解几何问题通过几个例题,让学生在课堂上应用所学的三角函数知识,解决实际的几何问题。
充分利用课堂互动,引导学生思考问题的解决方法,并在黑板上进行详细的解答过程。
Step 5:巩固练习根据学生的学习情况,分配一定数量的练习题,巩固所学的知识。
教师可以设计多种类型的题目,包括选择题、填空题和计算题等,以满足不同学生的学习需求。
在学生完成练习后,对答案进行讲解,帮助学生发现并解决问题。
五、教学总结:通过本节课的学习,学生理解了锐角三角函数的概念,掌握了正弦、余弦和正切的定义及其性质,并能够运用所学知识解决简单的几何问题。
教师可以对本节课内容进行总结,并提醒学生继续复习和巩固所学的知识,为下一节课的学习做好准备。
六、作业布置:要求学生完成课堂练习题,并预习下一节课的内容。
七、教学反思:在教学过程中,教师应注意与学生的互动,引导学生思考和讨论问题。
教学设计:§28.1 锐角三角函数授课人:和金平编号: 48号§28.1 锐角三角函数(一)一、教学目标:1、理解直角三角形中锐角正弦函数的意义,并会求锐角的正弦值;2、掌握根据锐角的正弦值及直角三角形的一边,求直角三角形其他边长的方法;3、经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究能力。
教学重点:理解正弦(sinA )概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值. 教学难点:在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。
二、教学过程:1、创设情景,提出问题:(PPT 演示)在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。
大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。
你能帮孙悟空计算出山的高度吗?1000米B AC 情境探究:分析:这个问题可以归结为,在Rt△ABC 中,∠C =90°,∠A =30°,AB =1000m ,求BC 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即可得BC = AB =500m ,也就是说,这座山的高度是500m思考1:在上面的问题中,如果孙悟空从山底部飞到山顶1500米,那么山的高度是多少?可得B ’C = AB ’ =750m 仍有 结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角''1,'2A B C AB ∠ ==的对边斜边12B B 的对边与斜边的比值都等于思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?如果是,是多少?在Rt△ABC 中,∠C =90°,由于∠A =45°,所以 Rt△ABC 是等腰直角三角形,假设BC=,由勾股定理得: A 因此 C B即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于 从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C=90°当∠A=30°时,∠A 的对边与斜边的比都等于12,是个固定值; 当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值. 2、【探究】当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 任意画Rt△ABC 和Rt△A’B’C ,使得∠C =∠C ’=90°,∠A =∠A’= , 那么与 有什么关系.你能解释一下吗? 由于∠C =∠C ’=90°, ∠A =∠A ’=所以Rt△ABC ∽ Rt△A’B’C’【为了更直观地验证这一结论,教师几何画板演示:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比不变;当锐角A 的度数增大时,不管三∠A 的对边与斜边的比值变大。
《锐角三角函数》教学设计【教学目标】知识目标:理解锐角三角函数的概念和直角三角形的解法。
能力目标:培养运用图形分析问题的能力。
情感态度与价值观目标:通过合作交流和自主探究,感受探索的乐趣和成功的体验,并让同学们形成数形结合的思想。
【教学重点】锐角三角函数概念和直角三角形的解法。
【教学难点】正确理解锐角三角函数的概念。
【教学过程】一、复习旧知,导入新课:为了绿化荒山,市绿化办打算从位于山脚下的机井房沿着山坡铺设水管,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB根据“在直角三角形中,30°角所对的边等于斜边的一半”,即∠A的对边斜边=BCAB= 12可得AB=2BC=70m,所以需要70米长的水管。
思考:上面的例题中,如果使出水口的高度为50m,那么需要准备多长的水管∠A的对边斜边=12AB′=2B’C’=100结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12。
二、自主探究,概念深化:通过上面例题的讲解和同学们的讨论可知:在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于1/2,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于√22,也是一个固定值。
经过同学们的讨论可以得出:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,对边与斜边的比∠A的邻边与斜边的比都是一个固定值对边与邻边的比归纳:SinA= ∠A的对边∠A的斜边= acCOSA= ∠A的邻边∠A的斜边= bctanA= ∠A的对边∠A的邻边= ab三、拓展延伸,实际应用:解直角三角形:在直角三角形中,除直角外的5个元素之间有何关系1、三边之间的关系:a2+b2=c22、锐角之间的关系:∠A∠B=90°3、边角之间的关系:sinA=accosA=bctanA=absin^2Acos^2B=1tanA=sinAcosAsinA=cos90°-∠A=cosB判断对错:1、sinA表示“sin”乘以“A”。
优质课锐角三角函数教案一、教学目标1. 理解正弦函数、余弦函数、正切函数和余切函数的定义、周期、范围、单调性和图像特点;2. 掌握三角函数基本公式及其推导方法;3. 熟练运用三角函数及其基本公式解决实际问题;4. 培养学生的数学思维能力,拓宽学生的思维视野。
二、教学内容1. 三角函数的定义及其图像;2. 三角函数的基本公式;3. 三角函数在实际问题中的应用。
四、教学过程第一节正弦函数、余弦函数、正切函数和余切函数的定义及其图像1. 正弦函数与余弦函数定义:在直角三角形中,以斜边为半径、平分的角的对边与斜边之比叫做正弦;以斜边为半径、平分的角的邻边与斜边之比叫做余弦。
我们称正弦比和余弦比分别为这个角的正弦和余弦。
记牢诀:正弦对直角边,余弦邻直角边。
正弦函数和余弦函数的函数式分别为:y=sin x和y=cos x。
图像:正弦函数的图像:余弦函数的图像:第二节三角函数的基本公式1. 正弦函数、余弦函数的基本公式sin(-x)=-sin(x),cos(-x)=cos(x)sin(x±π)=-sin x,cos(x±π)=-cos xsin(x±2π) = sinx,cos(x±2π) = cosxsin(x+π/2)=cosx,cos(x+π/2)=-sinxsin(x-π/2)=-cosx,cos(x-π/2)=sinx2. 正切函数、余切函数的基本公式tan(-x)=-tan(x),cot(-x)=-cot(x)tan(x±π) = tanx,cot(x±π) = cotxtan(x±2π) = tanx,cot(x±2π) = cotx第三节三角函数在实际问题中的应用1. 应用一求解三角形的边长和角度。
解题步骤:(1) 确定已知量和求解量,建立右三角形;(2) 算出所求角度的正弦、余弦、正切、余切以及关系式;(3) 根据角度公式,求解未知角度;(4) 根据正弦定理、余弦定理、正切定理和勾股定理,求解未知边长。
锐角三角函数全章教案【篇一:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
省优秀课一等奖:锐角三角函数全章教案锐角三角函数全章教案教学三维目标:一、知识目标:初步了解正弦、余弦、正切概念;能正确使用sinA、cosA、XXX表示直角三角形中两边的比;熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数。
二、能力目标:逐步培养学生观察、比较、分析、概括的思维能力。
三、情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点:正弦、余弦、正切概念。
2.教学难点:使用含有几个字母的符号组sinA、cosA、XXX表示正弦、余弦、正切。
教学程序:一、探究活动1.引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义:sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边。
3.例1.求如图所示的直角三角形ABC中的sinA、cosA、XXX的值。
4.学生练练1、2、3.二、探究活动二1.让学生画30°、45°、60°的直角三角形,分别求sin30°、cos45°、tan60°,归纳结果。
sinAcosAXXX30°1/22/23/345°2/22/2160°3/21/232.求下列各式的值:cos30° = √3/2。
sin30° + cos30° = (√3+1)/2。
2sin45° - cos30° = √2。
tan60° - tan30° = √3.三、拓展提高P82例4.如图,在直角三角形ABC中,∠A=30°,tanB=3/2,AC=2/3,求AB。
四、小结五、作业:课本p85-86 2、3、6、7、8、10.解直角三角形应用(一)一、教学三维目标一)知识目标:使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
锐角三角函数【教学目标】1.理解正弦、余弦、正切的概念并根据其概念进行正确的计算。
2.感知当直角三角形的锐角固定时,它的对边与斜边、邻边与斜边、对边与邻边的比值也都固定这一事实。
3.能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。
4.能熟练计算含有30°、45°、60°角的三角函数的运算式。
【教学重点】1.理解正弦、余弦、正切的概念并根据其概念进行正确的计算。
2.熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式。
【教学难点】1.当直角三角形的锐角固定时,它的对边与斜边、邻边与斜边、对边与邻边的比值是固定值的事实。
2.30°、45°、60°角的三角函数值的推导过程。
【教学过程】一、寻疑之自主学习1.活动问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌。
现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35 m,那么需要准备多长的水管思考1:如果使出水口的高度为50m,那么需要准备多长的水管_____;如果使出水口的高度为a m,那么需要准备多长的水管_____。
结论:直角三角形中,30°角的对边与斜边的比值_____。
答案:100米2a m12思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗如果是,是多少C BA结论:直角三角形中,45°角的对边与斜边的比值_____。
答案:是定值22.通过自主练习寻找疑问(1)在直角三角形中,当锐角A 的度数一定时,无论三角形的大小如何,∠A 的对边与斜边的比都是一个_____。
锐角三角函数(2)教学目标:1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA、cosA表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.教学重点:1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA、cosA表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算.教学难点:用函数的观点理解正弦、余弦和正切.教学过程:一、正弦、余弦及三角函数的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.1.引入正弦余弦在Rt△ABC中,锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sinAA∠=的对边斜边在Rt△ABC中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cos A,即cosAA∠=的邻边斜边2.三角函数的定义锐角A 的正弦、余弦和正切都是∠A 的三角函数.二、经典例题讲解例2 如图,在Rt△ABC 中,∠B =90°,AC =200,sin A =.求BC 的长三、随堂作业1如图:在Rt △ABC 中,∠C =90°,AC =10 ,12cos 13A =,AB 等于多少?,sin B 呢.2.在等腰△ABC 中,AB =AC =5,BC =6.求: sin B ,cos B ,tan B .四、课堂小结1.锐角三角函数定义:tan A A A ∠=∠的对边的邻边,sin A A ∠=的对边斜边,cos A A ∠=的邻边斜边 2.探索问题的方法.五、布置作业作业: 习题 第1、2、4题教学反思 解:在Rt △ABC 中, sin 06200.,,BC A AC AC=== 0.6.200BC ∴= 2000.6120.BC ∴=⨯=。
【锐角三角函数全章教案】锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结五.作业课本p85-86 2,3,6,7,8,10解直角三角形应用(一)一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 2 a=6,解这个三角形.例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 ∠=350,解这个三角形(精确到0.1).B解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习∠的平分线AD=43,解此直角三角形。
在△ABC中,∠C为直角,AC=6,BAC解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.(四)总结与扩展请学生小结:1在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2解决问题要结合图形。
四、布置作业.p96 第1,2题解直三角形应用(二)一.教学三维目标 (一)、知识目标使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题. (二)、能力目标逐步培养分析问题、解决问题的能力. 二、教学重点、难点和疑点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题. 三、教学过程 (一)回忆知识1.解直角三角形指什么? 2.解直角三角形主要依据什么? (1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系: tanA=(二)新授概念 1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义. 2.例1如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)解:在Rt △ABC 中sinB=AB AC ∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.例2.2003年10月15日“神州”5号载人航天飞船发射成功。
当飞船完成变轨后,就在离地形表面350km 的圆形轨道上运行。
如图,当飞船运行到地球表面上P 点的正上方时,从的邻边的对边A A ∠∠飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6400km ,结果精确到0.1km )分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。
将问题放到直角三角形FOQ 中解决。
.解决此问题的关键是在于把它转化为数学问题,利用解直角三角形知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重请学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角α得出Rt △ABC 中的∠ABC ,进而利用解直角三角形的知识就可以解此题了.例1小结:本章引言中的例子和例1正好属于应用同一关系式 sinA=斜边的对边A ∠ 来解决的两个实际问题即已知α∠和斜边,求∠α的对边;以及已知∠α和对边,求斜边. (三).巩固练习1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为600,热气球与高楼的水平距离为120m ,这栋高楼有多高(结果精确到0.1`m )2.如图6-17,某海岛上的观察所A 发现海上某船只B 并测得其俯角α=80°14′.已知观察所A 的标高(当水位为0m 时的高度)为43.74m ,当时水位为+2.63m ,求观察所A 到船只B 的水平距离BC(精确到1m) 教师在学生充分地思考后,应引导学生分析:(1).谁能将实物图形抽象为几何图形?请一名同学上黑板画出来. (2).请学生结合图形独立完成。
OPQF3 如图6-19,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.此题在例1的基础上,又加深了一步,须由A作一条平行于CD的直线交BD于E,构造出Rt△ABE,然后进一步求出AE、BE,进而求出BD与CD.设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度为1.72米,求树高(精确到0.01米).要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.(四)总结与扩展请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.四、布置作业1.课本p96 第3,.4,.6题解直三角形应用(三)(一)教学三维目标(一)知识目标使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.(二)能力目标逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.二、教学重点、难点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决.三、教学过程1.导入新课上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决.2.例题分析例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt△ABC 的方法求出BC和AB.学生在把实际问题转化为数学问题后,大部分学生可自行完成例题小结:求出中柱BC的长为2.44米后,我们也可以利用正弦计算上弦AB的长。
如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯.另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想.例2.如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东340方向上的B处。