备战高考物理临界状态的假设解决物理试题(大题培优 易错 难题)及详细答案
- 格式:doc
- 大小:817.00 KB
- 文档页数:15
高考物理备考之临界状态的假设解决物理试题压轴突破训练∶培优易错难题篇附答案解析一、临界状态的假设解决物理试题1.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
P是圆外一点,OP=3r,一质量为m、电荷量为q(q>0)的粒子从P点在纸面内沿着与OP成60°方向射出(不计重力),求:(1)若粒子运动轨迹经过圆心O,求粒子运动速度的大小;(2)若要求粒子不能进入圆形区域,求粒子运动速度应满足的条件。
【答案】(1)3Bqrm;(2)(332)vm≤+或(332)vm≥-【解析】【分析】【详解】(1)设粒子在磁场中做圆周运动的半径为R,圆心为O',依图题意作出轨迹图如图所示:由几何知识可得:OO R'=()222(3)6sinOO R r rRθ'=+-解得3R r=根据牛顿第二定律可得2vBqv mR=解得3Bqrvm=(2)若速度较小,如图甲所示:根据余弦定理可得()22211196sin r R R r rR θ+=+-解得1332R =+若速度较大,如图乙所示:根据余弦定理可得()22222296sin R r R r rR θ-=+-解得2332R =-根据BqRv m=得1(332)v m =+,2(332)v m =-若要求粒子不能进入圆形区域,粒子运动速度应满足的条件是(332)v m ≤+或(332)v m≥-2.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计粒子重力。
备战高考物理知识点过关培优训练∶临界状态的假设解决物理试题及详细答案一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ= 【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
传送带以v 0=4m/s 的速度沿图示方向匀速运动,m =lkg 的小滑块由静止放到传送带的A 端,经一段时间运动到B 端,滑块与传送带间的动摩擦因数μ=0.5,g =10m/s 2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
【答案】(1)v B =4m/s ; (2)Q =8J ; (3)不能通过最高点 【解析】 【分析】本题考查了动能定理和圆周运动。
【详解】⑴滑块在传送带上先向右做加速运动,设当速度v = v 0时已运动的距离为x 根据动能定理201-02mgx mv μ=得x=1.6m <L所以滑块到达B 端时的速度为4m/s 。
高考物理培优易错试卷(含解析)之临界状态的假设解决物理试题含详细答案一、临界状态的假设解决物理试题1.一倾角为α的光滑绝缘斜面体固定在水平面上,整个装置处于垂直纸面向里的磁场中,如图所示.一质量为m ,电荷量为q 的带正电小球从斜面上由静止释放.已知磁感应强度为B ,重力加速度为g .求:(1)小球离开斜面时的速率; (2)小球在斜面上滑行的位移大小.【答案】(1)cos mg v qB α=(2)2222cos 2sin m g x q B αα= 【解析】(1)小球在斜面上运动,当F N =0时,离开斜面 mg cos α=qvBcos mg v qBα=(2)小球在斜面上做匀加速直线运动 mg sin α=ma v 2=2ax解得2222cos 2sin m g x q B αα=2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
圆形底面的直径为2R ,圆筒的高度为R 。
(1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率;(2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。
【答案】(1)5n ≥甲(2)2n >乙【解析】【详解】(1)盛满甲液体,如图甲所示,P点刚好全反射时为最小折射率,有1sinnC=由几何关系知222sin2RCRR=⎛⎫+ ⎪⎝⎭解得5n=则甲液体的折射率应为5n≥甲(2)盛满乙液体,如图乙所示,与底边平行的光线刚好射入液体时对应液体的最小折射率,A点1sinnC='乙由几何关系得90Cα'=︒-B点恰好全反射有Cα'=解各式得2n=乙则乙液体的折射率应为2n >乙3.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
高考物理培优(含解析)之临界状态的假设解决物理试题含详细答案一、临界状态的假设解决物理试题1.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
传送带以v 0=4m/s 的速度沿图示方向匀速运动,m =lkg 的小滑块由静止放到传送带的A 端,经一段时间运动到B 端,滑块与传送带间的动摩擦因数μ=0.5,g =10m/s 2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
【答案】(1)v B =4m/s ; (2)Q =8J ; (3)不能通过最高点 【解析】 【分析】本题考查了动能定理和圆周运动。
【详解】⑴滑块在传送带上先向右做加速运动,设当速度v = v 0时已运动的距离为x 根据动能定理201-02mgx mv μ=得x=1.6m <L所以滑块到达B 端时的速度为4m/s 。
⑵设滑块与传送带发生相对运动的时间为t ,则0v gt μ=滑块与传送带之间产生的热量0()Q mg v t x μ=-解得Q = 8J⑶设滑块通过最高点C 的最小速度为C v 经过C 点,根据向心力公式2C mv mg R= 从B 到C 过程,根据动能定理2211222C B mg R mv mv -⋅=- 解得经过B 的速度50B v =m/s从A 到B 过程,若滑块一直加速,根据动能定理2102m mgL mv μ=-解得40m v =m/s由于速度v m <v B ,所以仅改变传送带的速度,滑块不能通过圆轨道最高点。
2.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
备战高考物理压轴题之临界状态的假设解决物理试题(备战高考题型整理,突破提升)附答案解析一、临界状态的假设解决物理试题1.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
传送带以v 0=4m/s 的速度沿图示方向匀速运动,m =lkg 的小滑块由静止放到传送带的A 端,经一段时间运动到B 端,滑块与传送带间的动摩擦因数μ=0.5,g =10m/s 2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
【答案】(1)v B =4m/s ; (2)Q =8J ; (3)不能通过最高点 【解析】 【分析】本题考查了动能定理和圆周运动。
【详解】⑴滑块在传送带上先向右做加速运动,设当速度v = v 0时已运动的距离为x 根据动能定理201-02mgx mv μ=得x=1.6m <L所以滑块到达B 端时的速度为4m/s 。
⑵设滑块与传送带发生相对运动的时间为t ,则0v gt μ=滑块与传送带之间产生的热量0()Q mg v t x μ=-解得Q = 8J⑶设滑块通过最高点C 的最小速度为C v 经过C 点,根据向心力公式2C mv mg R= 从B 到C 过程,根据动能定理2211222C B mg R mv mv -⋅=- 解得经过B 的速度50B v =m/s从A 到B 过程,若滑块一直加速,根据动能定理2102m mgL mv μ=-解得40m v =m/s由于速度v m <v B ,所以仅改变传送带的速度,滑块不能通过圆轨道最高点。
2.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,则F T 随ω2变化的图象是( )A .B .C .D .【答案】C 【解析】 【分析】 【详解】由题知小球未离开圆锥表面时细线与竖直方向的夹角为θ,用L 表示细线长度,小球离开圆锥表面前,细线的张力为F T ,圆锥对小球的支持力为F N ,根据牛顿第二定律有F T sin θ-F N cos θ=mω2L sin θ F T cos θ+F N sin θ=mg联立解得F T=mg cosθ+ω2mL sin2θ小球离开圆锥表面后,设细线与竖直方向的夹角为α,根据牛顿第二定律有F T sinα=mω2L sinα解得F T=mLω2故C正确。
高考物理培优(含解析)之临界状态的假设解决物理试题含详细答案一、临界状态的假设解决物理试题1.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
传送带以v 0=4m/s 的速度沿图示方向匀速运动,m =lkg 的小滑块由静止放到传送带的A 端,经一段时间运动到B 端,滑块与传送带间的动摩擦因数μ=0.5,g =10m/s 2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
【答案】(1)v B =4m/s ; (2)Q =8J ; (3)不能通过最高点 【解析】 【分析】本题考查了动能定理和圆周运动。
【详解】⑴滑块在传送带上先向右做加速运动,设当速度v = v 0时已运动的距离为x 根据动能定理201-02mgx mv μ=得x=1.6m <L所以滑块到达B 端时的速度为4m/s 。
⑵设滑块与传送带发生相对运动的时间为t ,则0v gt μ=滑块与传送带之间产生的热量0()Q mg v t x μ=-解得Q = 8J⑶设滑块通过最高点C 的最小速度为C v 经过C 点,根据向心力公式2C mv mg R= 从B 到C 过程,根据动能定理2211222C B mg R mv mv -⋅=- 解得经过B 的速度50B v =m/s从A 到B 过程,若滑块一直加速,根据动能定理2102m mgL mv μ=-解得40m v =m/s由于速度v m <v B ,所以仅改变传送带的速度,滑块不能通过圆轨道最高点。
2.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
设小球在水平:面内做匀速圆周运动的角速度为ω,线所受拉力为T ,则下列T 随2ω变化的图像可能正确的是( )A .B .C .D .【答案】C 【解析】 【分析】 【详解】对小球受力分析如图当角速度较小时,小球在光滑锥面上做匀速圆周运动,根据向心力公式可得2sin cos sin T N mL θθθω-=⋅cos sin T N mg θθ+=联立解得22cos sin T mg mL θθω=+⋅当角速度较大时,小球离开光滑锥面做匀速圆周运动,根据向心力公式可得2sin sin T mL ααω=⋅则2T mL ω=综上所述,ABD 错误,C 正确。
高考物理备考之临界状态的假设解决物理试题压轴突破训练∶培优易错试卷篇附答案一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qBπ【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R 1相对应的速度v 1时,粒子从cd 边射出,由几何关系可知R 1=L ;由洛伦兹力等于向心力可知:21 11v qvB mR=从图中看出,当轨迹的半径对应R1时从ab边上射出时用时间最短,此时对应的圆心角为000=18030=150θ-由公式可得:22R mTv qBππ==;由1=360tTθ解得156π=mtqB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.3.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
高考物理备考之临界状态的假设解决物理试题压轴突破训练∶培优 易错 难题篇及答案解析一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24T=⨯+⨯(1101)N=30N0.83.如图甲,小球用不可伸长的轻绳连接绕定点O在竖直面内圆周运动,小球经过最高点的速度大小为v,此时绳子拉力大小为F,拉力F与速度的平方的关系如图乙所示,图象中的数据a和b以及重力加速度g都为已知量,以下说法正确的是()A.数据a与小球的质量有关B.数据b与小球的质量无关C.比值只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【答案】D【解析】【分析】【详解】A.当时,此时绳子的拉力为零,物体的重力提供向心力,则有:解得:解得:与物体的质量无关,A错误;B.当时,对物体受力分析,则有:解得:b=mg与小球的质量有关,B错误;C.根据AB可知:与小球的质量有关,与圆周轨道半径有关,C错误;D. 若F=0,由图知:,则有:解得:当时,则有:解得:D正确.4.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
备战高考物理压轴题之临界状态的假设解决物理试题(备战高考题型整理,突破提升)附详细答案一、临界状态的假设解决物理试题1.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B 【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q Bθθ====2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
圆形底面的直径为2R ,圆筒的高度为R 。
(1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率;(2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。
【答案】(1)5n ≥甲(2)2n >乙【解析】【详解】(1)盛满甲液体,如图甲所示,P点刚好全反射时为最小折射率,有1sinnC=由几何关系知222sin2RCRR=⎛⎫+ ⎪⎝⎭解得5n=则甲液体的折射率应为5n≥甲(2)盛满乙液体,如图乙所示,与底边平行的光线刚好射入液体时对应液体的最小折射率,A点1sinnC='乙由几何关系得90Cα'=︒-B点恰好全反射有Cα'=解各式得2n =乙则乙液体的折射率应为2n >乙3.小明同学站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m =0.3kg 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球在某次运动到最低点时,绳恰好达到所能承受的最大拉力F 而断掉,球飞行水平距离s 后恰好无碰撞地落在临近的一倾角为α=53°的光滑斜面上并沿斜面下滑,已知斜面顶端与平台的高度差h =0.8 m .绳长r =0.3m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)绳断时小球的速度大小v 1和小球在圆周最低点与平台边缘的水平距离s 是多少. (2)绳能承受的最大拉力F 的大小.【答案】(1)3m/s ,1.2m (2)12N 【解析】 【详解】(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以有v y =v 0 tan53°又v y 2=2gh ,代入数据得:v y =4m/s ,v 0=3m/s故绳断时球的小球做平抛运动的水平速度为3m/s ; 由v y =gt 1得:10.4s y v t g==则s =v 0 t 1=3×0.4m=1.2m(2)由牛顿第二定律:21mv F mg r-= 解得:F =12N4.火车转弯时,如果铁路弯道内外轨一样高,外轨对轮绝(如图a所示)挤压的弹力F提供了火车转弯的向心力(如图b所示),但是靠这种办法得到向心力,铁轨和车轮极易受损.在修筑铁路时,弯道处的外轨会略高于内轨(如图c所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度小为,以下说法中正确的是A.该弯道的半径B.当火车质量改变时,规定的行驶速度也将改变C.当火车速率大于时,外轨将受到轮缘的挤压D.当火车速率小于时,外轨将受到轮缘的挤压【答案】C【解析】【详解】火车拐弯时不侧向挤压车轮轮缘,靠重力和支持力的合力提供向心力,设转弯处斜面的倾角为θ,根据牛顿第二定律得:mgtanθ=mv2/R,解得:R= v2/ g tanθ,故A错误;根据牛顿第二定律得:mgtanθ=mv2/R, 解得:v=gRtanθ,与质量无关,故B错误;若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力,轮缘挤压外轨.故C 正确;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力,轮缘挤压内轨.故D错误.故选C.点睛:火车拐弯时以规定速度行驶,此时火车的重力和支持力的合力提供圆周运动所需的向心力.若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力.5.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
高考物理备考之临界状态的假设解决物理试题压轴突破训练∶培优 易错 难题篇附答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
备战高考物理临界状态的假设解决物理试题(大题培优 易错 难题)及详细答案一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ= 【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qBπ【解析】【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间;【详解】(1)由图可知:R=2L据洛伦兹力提供向心力,得:2vqvB mR=则02qBR qBLvm m==(2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R1相对应的速度v1时,粒子从cd边射出,由几何关系可知R1=L;由洛伦兹力等于向心力可知:2111vqv B mR=从图中看出,当轨迹的半径对应R1时从ab边上射出时用时间最短,此时对应的圆心角为000=18030=150θ-由公式可得:22R mTv qBππ==;由1=360tTθ解得156π=mtqB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.3.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
圆形底面的直径为2R,圆筒的高度为R。
(1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率;(2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。
【答案】(1)5n≥甲;(2)2n>乙【解析】【详解】(1)盛满甲液体,如图甲所示,P点刚好全反射时为最小折射率,有1sinnC=由几何关系知222sin2RCRR=⎛⎫+ ⎪⎝⎭解得5n=则甲液体的折射率应为5n≥甲(2)盛满乙液体,如图乙所示,与底边平行的光线刚好射入液体时对应液体的最小折射率,A 点1sin n C ='乙 由几何关系得90C α'=︒-B 点恰好全反射有C α'=解各式得2n =乙则乙液体的折射率应为2n >乙4.质量为m 的光滑圆柱体A 放在质量也为m 的光滑“ V ”型槽B 上,如图,α=60°,另有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连,现将C 自由释放,则下列说法正确的是( )A .当M= m 时,A 和B 保持相对静止,共同加速度为0.5g B .当M=2m 时,A 和B 保持相对静止,共同加速度为0.5gC .当M=6m 时,A 和B 保持相对静止,共同加速度为0.75gD .当M=5m 时,A 和B 之间的恰好发生相对滑动 【答案】B 【解析】 【分析】 【详解】D.当A 和B 之间的恰好发生相对滑动时,对A 受力分析如图根据牛顿运动定律有:cot 60mg ma ︒=解得cot 603a g g =︒=B 与C 为绳子连接体,具有共同的运动情况,此时对于B 和C 有:()Mg M m a =+所以3M a g g M m ==+,即3MM m=+ 解得3 2.3713M m m =≈-选项D 错误;C.当 2.37M m >,A 和B 将发生相对滑动,选项C 错误;A. 当 2.37M m <,A 和B 保持相对静止。
若A 和B 保持相对静止,则有(2)Mg M m a =+解得2Ma g M m=+所以当M= m 时,A 和B 保持相对静止,共同加速度为13a g =,选项A 错误; B. 当M=2m 时,A 和B 保持相对静止,共同加速度为10.52a g g ==,选项B 正确。
故选B 。
5.中国已进入动车时代,在某轨道拐弯处,动车向右拐弯,左侧的路面比右侧的路面高一些,如图所示,动车的运动可看作是做半径为R 的圆周运动,设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L ,已知重力加速度为g ,要使动车轮缘与内、外侧轨道无挤压,则动车拐弯时的速度应为( )A gRhLB gRhdC 2gR D gRdh【答案】B 【解析】 【详解】把路基看做斜面,设其倾角为θ,如图所示当动车轮缘与内、外侧轨道无挤压时,动车在斜面上受到自身重力mg和斜面支持力N,二者的合力提供向心力,即指向水平方向,根据几何关系可得合力F=mg tanθ,合力提供向心力,根据牛顿第二定律,有mg tanθ=2 v mR计算得v=tangRθ,根据路基的高和水平宽度得tanθ=h d带入解得v=gRhd,即动车拐弯时的速度为gRhd时,动车轮缘与内、外侧轨道无挤压,故B正确,ACD错误。
故选B。
6.如图所示,直线Oa和Ob的夹角为30︒,在两直线所夹的空间内有垂直纸面向里的匀强磁场,磁场向右的区域无限大,磁感应强度为B。
在P点有速度相等的正、负离子沿垂直于Oa方向射入磁场。
两离子的运动轨迹均与Ob相切,若不计两离子间的相互作用力,则正、负两种离子的比荷之比为()A.3B3C.1:3D.3:1【答案】D【解析】【详解】如图所示,由左手定则知磁场中的正离子向左偏转、负离子向右偏转。
洛伦兹力提供向心力,正离子有2v q vB m r=正正负离子有2v q vB m R=负负由几何关系知sin 30sin 30r Rr R ︒︒++= 解以上三式得3:1q q m m =负正负正 故选D 。
7.有一长为L 的细绳,其下端系一质量为m 的小球,上端固定于O 点,当细绳竖直时小球静止。
现给小球一初速度0v ,使小球在竖直平面内做圆周运动,并且恰好能通过最高点,重力加速度大小为则下列说法正确的是( ) A .小球过最高点时速度为零B .小球开始运动时细绳对小球的拉力大小为20v m LC .小球过最高点时细绳对小球的拉力大小为mgD gL 【答案】D 【解析】 【详解】ACD .小球恰好能过最高点时细绳的拉力为零,则2v mg m L=得小球过最高点时速度大小v gL =故AC 错误,D 正确;B .小球开始运动时仍处于最低点,则20v F mg m L-=拉力大小20v F mg m L=+故B 错误。
故选D 。
8.如图甲所示,用大型货车运输规格相同的圆柱形水泥管道,货车可以装载两层管道,底层管道固定在车厢里,上层管道堆放在底层管道上,如图乙所示。
已知水泥管道间的动摩擦因数为μ,假设最大静摩擦力等于滑动摩擦力,货车紧急刹车时的加速度大小为0a 。
每根管道的质量为m ,重力加速度为g ,最初堆放时上层管道最前端离驾驶室为d ,则下列分析判断正确的是( )A .货车沿平直路面匀速行驶时,图乙中管道A 、B 之间的弹力大小为mg B .若0a g μ>,则上层管道一定会相对下层管道发生滑动C .若023a g μ>则上层管道一定会相对下层管道发生滑动 D .若03a g μ=要使货车在紧急刹车时上管道不撞上驾驶室,货车在水平路面上匀速行驶的最大速度为323gdμ 【答案】C 【解析】 【详解】A.货车匀速行驶时上层管道A 受力平衡,在其横截面内的受力分析如图所示其所受B 的支持力大小为N ,根据平衡条件可得2cos30N mg ︒=解得33N mg =故A 错误;BC.当紧急刹车过程中上层管道相对下层管道静止时,上层管道A 所受到的静摩擦力为0f ma =最大静摩擦力为max 2f N μ=随着加速度的增大,当0max ma f >时,即03g 23a μ>时,上层管道一定会相对下层管道发生滑动,故C 正确B 错误;D.若03g a μ=,紧急刹车时上层管道受到两个滑动摩擦力减速,其加速度大小为123a g μ=,要使货车在紧急刹车时上管道不撞上驾驶室,货车在水平路面上匀速行驶的速度,必须满足22001022v v d a a -≤ 解得023v gd μ≤故D 错误。
故选C 。
9.如图所示,长为L 的轻质细长物体一端与小球(可视为质点)相连,另一端可绕O 点使小球在竖直平面内运动。
设小球在最高点的速度为v ,重力加速度为g ,不计空气阻力,则下列说法正确的是( )A .v gLB .v 若增大,此时小球所需的向心力将减小C .若物体为轻杆,则当v 逐渐增大时,杆对球的弹力也逐渐增大D .若物体为细绳,则当v gL 0开始逐渐增大 【答案】D 【解析】【分析】 【详解】A .若物体为轻杆,通过最高点的速度的最小值为0,物体所受重力和支持力相等,A 错误;B .v 增大,根据2vF m r=向可知向心力将增大,B 错误;C .若物体为轻杆,在最高点重力提供向心力20v mg m L=解得0v gL =当速度小于gL 时,根据牛顿第二定律2v mg N m L-=随着速度v 增大,杆对球的弹力在逐渐减小,C 错误;D .若物体为细绳,速度为gL 时,重力提供向心力,所以绳子拉力为0,当v 由gL 逐渐增大时,根据牛顿第二定律2v T mg m L+=可知绳子对球的拉力从0开始逐渐增大,D 正确。
故选D 。
10.竖直平面内的四个光滑轨道,由直轨道和平滑连接的圆弧轨道组成,圆轨道的半径为R ,P 为圆弧轨道的最低点。
P 点左侧的四个轨道均相同,P 点右侧的四个圆弧轨道的形状如图所示。
现让四个相同的小球 ( 可视为质点,直径小于图丁中圆管内径 ) 分别从四个直轨道上高度均为h 处由静止下滑,关于小球通过P 点后的运动情况,下列说法正确的是 ( )A .若 h <12R ,则四个小球能达到的最大高度均相同 B .若 h=R ,则四个小球能达到的最大高度均相同C .若h=52R ,则图乙中的小球能达到的高度最大 D .若 h=52R ,则图甲、图丙中的小球能达到的最大高度相同 【答案】ACD【解析】【详解】A .若2R h <,根据机械能守恒定律可知,四个小球都能上升到右侧高度2R h <处,即小球不会超过圆弧的四分之一轨道,则不会脱离圆轨道,故上升到最高点的速度均位列零,最大高度相同为h ,A 正确;B .若h =R ,根据机械能守恒,甲乙丁都能上升到右侧高度R 处而不会越过圆弧的四分之一轨道,而丙图中小球做斜上抛运动离开轨道,到达最高点时还有水平的速度,最大高度小于R ,B 错误;C .若52h R =,甲、丁两图中的小球不会脱离圆轨道,最高点的速度不为零,丙图小球离开轨道,最高点速度也不为零,乙图离开轨道,上升到最高点的速度为零,根据机械能守恒知,图乙中小球到达的高度最大,故C 正确;D .若52h R =,图甲中小球到达的最大高度为2R ,根据机械能守恒得, 2122mgh mg R mv '-⋅=得最高点的速度为v '=对于图丙,设小球离开轨道时的速度为v 1,根据机械能守恒得,211(cos602mgh mg R R mv -⋅-︒=) 而到达最高点的速度v =v 1cos60°,联立解得最高点的速度v =则两球到达最高点的速度相等,根据机械能守恒得,甲、丙图中小球到达的最大高度相等,故D 正确;故选ACD 。