最速下降法的若干重要改进
- 格式:pdf
- 大小:270.45 KB
- 文档页数:5
最速下降法1.最速下降⽅向函数f(x)在点x处沿⽅向d的变化率可⽤⽅向导数来表⽰。
对于可微函数,⽅向导数等于梯度与⽅向的内积,即:Df(x;d) = ▽f(x)Td,因此,求函数f(x)在点x处的下降最快的⽅向,可归结为求解下列⾮线性规划:min ▽f(x)Tds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成⽴。
因此,在点x处沿上式所定义的⽅向变化率最⼩,即负梯度⽅向为最速下降⽅向。
2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λkd(k) ,其中d(k)是从x(k)出发的搜索⽅向,这⾥取在x(k)处的最速下降⽅向,即d = -▽f(x(k)).λk是从x(k)出发沿⽅向d(k)进⾏⼀维搜索的步长,即λk满⾜f(x(k) + λkd(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ Rn,允许误差ε> 0,置k = 1。
(2)计算搜索⽅向d = -▽f(x(k))。
(3)若||d(k)|| ≤ ε,则停⽌计算;否则,从x(k)出发,沿d(k)进⾏⼀维搜索,求λk,使f(x(k) + λkd(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λkd(k) ,置k = k + 1,转步骤(2)。
共轭梯度法1.共轭⽅向⽆约束问题最优化⽅法的核⼼问题是选择搜索⽅向。
以正定⼆次函数为例,来观察两个⽅向关于矩阵A共轭的⼏何意义。
设有⼆次函数:f(x) = 1/2 (x - x*)TA(x - x*) ,其中A是n×n对称正定矩阵,x*是⼀个定点,函数f(x)的等值⾯1/2 (x - x*)TA(x - x*) = c是以x*为中⼼的椭球⾯,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极⼩点。
设x(1)是在某个等值⾯上的⼀点,该等值⾯在点x(1)处的法向量▽f(x(1)) = A(x(1) - x*)。
一、填空题1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。
2.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数 。
4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。
5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法.6。
随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。
7。
最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。
8.二元函数在某点处取得极值的必要条件是()00f X ∇= , 充分条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无约束优化问题,这种方法又被称为 升维 法.10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。
13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。
14。
数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 . 15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。
16。
机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提. 1. 优化设计问题的基本解法有 解析法 法和 数值法2. 无约束优化问题取得极值的充分必要条件是 一阶导数等于零 和 二阶导数大于零。
matlab最速下降法求解二次凸函数的最小值1.引言1.1 概述概述:在数学和优化领域中,最速下降法是一种常用的优化算法,用于求解二次凸函数的最小值。
该算法通过迭代更新变量的值,以逐步靠近函数的最小值。
在本文中,我们将介绍最速下降法的原理和步骤,并探讨它在求解二次凸函数最小值中的应用。
最速下降法的核心思想是沿着目标函数梯度的反方向移动,以找到函数的最小值。
具体而言,算法从一个初始点开始,计算该点的梯度,并将其与一个步长因子相乘,得到一个移动的方向。
然后,根据这个方向更新变量的值,并重复此过程直到满足停止准则。
对于二次凸函数的最小值求解,最速下降法是一种有效且收敛性良好的方法。
二次凸函数是一种具有凸性和二次项的函数,它在数学和工程问题的建模中经常出现。
通过最速下降法,我们可以通过迭代计算逐步逼近二次凸函数的最小值。
本文主要目的是介绍最速下降法在求解二次凸函数最小值中的应用。
我们将详细讨论最速下降法的原理和步骤,并通过数学推导和示例说明其有效性和收敛性。
我们还将比较最速下降法与其他优化算法的优缺点,并总结结论。
通过本文的阅读,读者将能够了解最速下降法在求解二次凸函数最小值中的原理和应用。
这将有助于读者更好地理解最速下降法的优势和局限性,并为进一步研究和应用提供基础。
1.2文章结构2. 正文2.1 最速下降法的原理和步骤最速下降法是一种常用的优化算法,用于求解函数的最小值。
它基于函数的负梯度方向进行迭代,通过迭代更新自变量的值来逐步逼近最优解。
最速下降法的步骤如下:步骤1:选择初始点。
从问题的可行域内选择一个初始点作为最速下降法的起点。
步骤2:计算负梯度。
在当前点处,计算目标函数的负梯度,即函数在该点处的梯度乘以-1。
步骤3:确定步长。
寻找沿着负梯度方向移动的合适步长,使得目标函数的值能够得到较大的下降。
步骤4:更新自变量。
根据确定的步长,更新自变量的值。
步骤5:重复步骤2-步骤4。
不断迭代执行步骤2到步骤4,直到满足停止准则。
最速下降法原理及其算法实现最速下降法(Gradient Descent)是一种常用的优化算法,用于寻找函数的最小值。
它是一种迭代的方法,每次迭代都沿着负梯度方向更新参数,以减小目标函数的值。
在本文中,我们将介绍最速下降法的原理和算法实现。
1.最速下降法原理假设有一个目标函数f(x),其中x是一个向量。
我们的目标是找到使得f(x)最小的x。
最速下降法的思想是从任意初始点x0开始迭代,按照梯度方向更新参数,直到达到最优解。
具体地,设f(x)的梯度为g(x),即g(x)=∇f(x)。
最速下降法的迭代公式为:x(n+1)=x(n)-α*g(x(n))其中,x(n)表示第n次迭代的参数向量,α是迭代步长,也称为学习率。
每次迭代时,我们沿着梯度方向更新参数,α控制更新的步长。
我们期望通过不断迭代,逐渐逼近最优解。
2.最速下降法算法实现步骤1:初始化参数。
选择初始点x(0),设定学习率α,设定最大迭代次数。
步骤2:迭代过程。
重复以下步骤,直到达到最大迭代次数或满足收敛条件:a)计算梯度g(x(n))=∇f(x(n))。
b)更新参数。
根据迭代公式进行更新,x(n+1)=x(n)-α*g(x(n))。
c)判断终止条件。
比较f(x(n+1))和f(x(n))的差异,如果差异小于一定阈值,停止迭代。
步骤3:输出结果。
输出最优参数x*,即使得f(x)最小的参数。
需要注意的是,在实际应用中,我们可能需要进行一些改进来提高最速下降法的性能。
例如,可以使用线来自适应地选择学习率以保证每次更新获得合理的进展。
此外,为了加快收敛速度,可以使用加速算法,如动量法、Nesterov 加速梯度法等。
3.总结。