高一数学专题讲座-6
- 格式:doc
- 大小:66.22 KB
- 文档页数:3
高一数学第六章-知识点第一节:函数与方程在高一数学第六章中,我们将学习函数与方程,这是一个非常重要的数学知识点。
函数和方程在数学中起着非常重要的作用,它们被广泛应用于各个领域,如物理、经济学等。
了解和掌握函数与方程的概念与性质,对于我们解决实际问题具有重要的指导意义。
1.1 函数的定义与性质函数是一种特殊的关系,它把一个集合的元素映射到另一个集合的元素。
函数可用来描述数学、物理、经济等各个领域中的规律与关系。
函数的定义包括定义域、值域和对应关系三部分:1.1.1 定义域在函数的定义中,定义域是指函数的自变量所能取值的集合。
用符号表示为D(x)。
例如,对于函数y=x+1,自变量x可以取任意实数,因此定义域为全体实数集合R。
1.1.2 值域值域是函数的因变量所能取值的集合。
用符号表示为R(y)。
对于函数y=x+1,因变量y的取值范围依赖于自变量x,它的值域为全体实数集合R。
1.1.3 对应关系函数是对应关系的一种特殊形式。
对于函数y=x+1,自变量x的每个取值都有唯一对应的因变量y值。
例如,当x=1时,y=2;当x=2时,y=3。
这种一一对应的关系是函数的基本特征。
1.2 方程的解与根方程是一个等式,它描述了两个表达式相等的关系。
方程的解是满足方程的变量的取值。
这些取值使得方程两边的表达式相等。
方程的解可以分为有理数解、无理数解和复数解。
1.2.1 有理数解有理数解是指满足方程的解为有理数的情况。
例如,方程x^2-2=0的解为x=±√2,√2是一个无理数,因此方程的解为无理数解。
1.2.2 无理数解无理数解是指满足方程的解为无理数的情况。
例如,方程x^2-4=0的解为x=±2,2是一个有理数,因此方程的解为有理数解。
1.2.3 复数解复数解是指满足方程的解为复数的情况。
在高一阶段,我们主要研究一元二次方程的解,一元二次方程的解可以用复数表示。
例如,方程x^2+1=0的解为x=±i,其中i是虚数单位。
一、讲座背景随着新课程改革的深入推进,高中数学教学面临着前所未有的挑战和机遇。
高一作为高中数学教学的起始阶段,对于培养学生的数学核心素养具有重要意义。
为了提高高一数学教学质量,本讲座将围绕高一数学教学策略与核心素养培养展开讨论。
二、讲座内容一、高一数学教学现状分析1. 学生学习兴趣不高:部分学生对数学学习缺乏兴趣,导致课堂参与度低,学习效果不佳。
2. 教学方法单一:部分教师仍采用传统的灌输式教学方法,忽视学生的主体地位,导致学生被动学习。
3. 教学内容与实际脱节:部分教学内容过于抽象,与实际生活联系不大,使学生难以理解和应用。
4. 教学评价单一:过分注重考试成绩,忽视学生的综合素养培养。
二、高一数学教学策略1. 激发学生学习兴趣:通过创设情境、开展趣味活动等方式,激发学生对数学学习的兴趣。
2. 改进教学方法:采用启发式、探究式、合作式等教学方法,提高学生的课堂参与度。
3. 注重教学内容与实际联系:将数学知识与实际生活相结合,提高学生的应用能力。
4. 完善教学评价:采用多元化的评价方式,关注学生的综合素养。
三、高一数学核心素养培养1. 理解数学本质:培养学生对数学知识的理解和掌握,提高学生的数学思维能力。
2. 培养数学应用意识:使学生学会运用数学知识解决实际问题,提高学生的实践能力。
3. 培养数学创新精神:激发学生的创新意识,培养学生的创新思维。
4. 培养数学审美能力:引导学生欣赏数学之美,提高学生的审美情趣。
四、高一数学教学案例分享1. 案例一:通过创设情境,激发学生学习兴趣在讲解“函数”这一章节时,教师可以结合实际生活,如气温、商品价格等,引导学生思考函数在生活中的应用,从而激发学生对函数学习的兴趣。
2. 案例二:采用探究式教学方法,提高学生课堂参与度在讲解“三角函数”这一章节时,教师可以引导学生自主探究三角函数的性质,通过小组合作、讨论等方式,让学生在探索中掌握知识。
3. 案例三:注重教学内容与实际联系,提高学生应用能力在讲解“概率与统计”这一章节时,教师可以结合实际案例,如彩票中奖概率、股市行情等,让学生了解概率与统计在生活中的应用,提高学生的应用能力。
高中数学专题讲座篇一:高中数学专题讲座讲座题目:解析几何讲座主题:解析几何的基本概念、方法和应用讲座时长:30分钟正文:解析几何是高中数学中重要的分支之一,主要研究平面上点与线之间的关系,以及它们在空间中的相互转化。
解析几何的应用非常广泛,包括几何光学、天体物理学、工程学等领域。
讲座开始时,我们将介绍解析几何的基本概念和符号表示。
解析几何中的点通常用字母P表示,线通常用字母l表示,函数通常用字母f表示,变量通常用字母x表示。
我们将使用这些符号来表示解析几何中的各种概念和公式。
接下来,我们将介绍解析几何的基本方法。
这些方法包括几何法、代数法和曲线法等。
几何法是利用几何图形来表示函数,代数法是利用代数公式来表示函数,曲线法是利用曲线来表示函数。
我们将介绍这些方法的基本原理和应用。
最后,我们将介绍解析几何的应用。
解析几何在几何光学、天体物理学、工程学等领域都有广泛的应用。
例如,在光学中,解析几何可以用来研究光的传播规律;在天体物理学中,解析几何可以用来研究行星的轨道和运动规律;在工程学中,解析几何可以用来研究机械运动的分析和控制。
在讲座的结尾,我们将总结一下解析几何的基本概念、方法和应用。
我们还将介绍一些常见的解析几何问题和解决方法,以便听众们能够更好地掌握解析几何的知识和技能。
以上就是本次高中数学专题讲座的全部内容。
希望本次讲座能够帮助听众们更好地掌握解析几何的基本概念、方法和应用,为未来的学习和研究打下坚实的数学基础。
篇二:高中数学专题讲座讲座题目:高中数学专题讲座讲座主题:高中数学基础知识的讲解与拓展正文:大家好,今天我们来谈一谈高中数学基础知识的讲解与拓展。
高中数学是一个非常重要的学科,因为它是许多大学专业的基础课程,同时也是许多职业领域中必不可少的技能。
因此,在学习高中数学时,掌握基础知识是非常重要的。
在讲解基础知识时,我们需要注意以下几个方面:1. 理解概念和定义。
概念和定义是数学的基石,只有理解了它们,才能更好地应用数学知识。
高一暑假第6讲数学知识点在高一的数学课程中,我们学习了很多重要的数学知识点。
在这篇文章中,我将介绍一些高一暑假第6讲的数学知识点,希望能够对同学们的学习有所帮助。
1. 二次函数二次函数是高中数学中非常重要的一部分内容。
它的一般式为y = ax² + bx + c,其中a、b、c为实数,a ≠ 0。
二次函数的图像是一个抛物线。
我们可以通过一些常见的方法来分析二次函数的图像,包括确定抛物线的开口方向、顶点坐标、对称轴以及特殊点等。
2. 幂函数幂函数也是高中数学中的重点内容。
幂函数的定义域是实数集,一般式为y = x^m,其中m为实数。
幂函数的图像形状与幂指数m的正负及大小相关。
当m为正数时,图像呈现递增趋势;当m为负数时,图像呈现递减趋势;当m为0时,图像为一条常函数。
3. 对数函数对数函数是一种常见的函数形式,它的定义域是正实数集,定义式为y = logₐx,其中a为底数,x为真数。
对数函数和指数函数是互逆的关系,通过对数函数可以简化复杂的指数运算。
对数函数的图像呈现递增趋势,底数越大,图像的变化越剧烈。
4. 不等式不等式在高中数学中也是重要的知识点之一。
我们学习了一元一次不等式、一元二次不等式以及绝对值不等式等内容。
解不等式的关键是找到使得不等式成立的数值范围,并将其用数轴或集合表示出来。
需要注意的是,不等式在进行运算时,需要遵循一定的规则以及不等式的性质。
5. 三角函数三角函数是数学中较为复杂的一部分内容。
我们学习了正弦函数、余弦函数以及正切函数等基本三角函数的概念和性质。
在解三角函数的问题时,我们需要熟练运用诱导公式和简单的三角函数化简技巧。
同时,还需要掌握三角函数在坐标系中的图像特征,包括周期、振幅、相位等。
6. 排列与组合在数学中,排列和组合是组合数学的基础概念。
我们学习了排列和组合的定义以及计算方法。
排列是指从n个元素中选取r个元素进行排列,其中元素之间有顺序关系,计算公式是A(n,r) = n! / (n-r)!;组合是指从n个元素中选取r个元素进行组合,其中元素之间没有顺序关系,计算公式是C(n,r) = n! / (r!(n-r)!)。
高中数学复习专题讲座
前言
本次数学复专题讲座旨在帮助高中学生全面复和巩固数学知识,提高数学应试能力。
在这个讲座中,我们将对高中数学的各个知识
点进行系统性讲解和练。
专题一:代数与函数
1.1 一次函数与二次函数
- 理解一次函数与二次函数的定义及性质
- 掌握一次函数与二次函数的图像的绘制方法
- 学会解一次方程与二次方程
1.2 指数与对数函数
- 理解指数与对数函数的定义与性质
- 掌握指数与对数函数的图像的绘制方法
- 学会解指数与对数方程
专题二:几何与三角
2.1 三角函数
- 了解三角函数的定义及其基本性质
- 掌握正弦、余弦和正切函数在单位圆上的性质和应用- 学会解三角方程和利用三角函数求解实际问题
2.2 平面几何
- 熟悉平面几何的基本概念和性质
- 掌握平面几何中的重要定理和推理方法
- 学会运用平面几何解决实际问题
专题三:概率与统计
3.1 概率
- 理解概率的基本概念和性质
- 掌握概率计算的基本方法和技巧
- 学会应用概率解决实际问题
3.2 统计
- 了解统计学的基本概念和方法
- 掌握统计分布的计算和数据分析的技巧
- 学会运用统计学方法研究实际问题
结语
本次高中数学复专题讲座涵盖了代数与函数、几何与三角、概率与统计三个专题,重点讲解了各个知识点的定义、性质和应用。
通过参与讲座并积极实践,相信您的数学水平会有明显提高,为应对高考做好准备。
祝愿大家在数学学习中取得优异成绩!。
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。
高一数学第6章知识点第一节:函数与方程函数与方程是高一数学中非常重要的概念。
在这一章中,我们将学习如何理解、运用和解决函数与方程的问题。
1. 什么是函数?函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素上。
在数学中,我们可以用不同的方式来表示函数,如显式表达式、隐式表达式、图像等。
函数的定义域(输入)和值域(输出)是确定函数特性的重要因素。
2. 函数的性质函数具有许多重要的性质,如有界性、单调性、奇偶性、周期性等。
通过研究函数的性质,我们可以更好地理解函数的行为和特点。
3. 方程与不等式方程和不等式是表示数学关系的重要工具。
通过解方程和不等式,我们可以找到使其成立的未知数的值。
方程和不等式在解决实际问题中起着重要的作用,例如确定最大值、最小值、等速率等问题。
第二节:多项式函数多项式函数是高中数学中的关键概念之一。
它是一种形式为f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 的函数,其中 a_n是非零常数,n 是非负整数。
1. 多项式的基本性质多项式函数具有许多重要的性质,如奇次多项式和偶次多项式的图像特点、多项式函数的极值、多项式函数与方程的关系等等。
2. 多项式的运算多项式函数之间可以进行加法、减法、乘法和除法运算。
这些运算在多项式函数的化简和计算中非常有用。
3. 多项式的根与因式分解多项式的根是使多项式等于零的解。
通过寻找多项式函数的根,我们可以将其因式分解为不可再分解的因子。
第三节:指数与对数函数指数与对数函数是高中数学中一个重要的研究对象,它们在科学、工程和经济学等领域有着广泛的应用。
1. 指数函数指数函数可以用 f(x) = a^x 来表示,其中 a 是正实数且不等于1。
指数函数具有许多重要的性质,如单调性、连续性、收敛性等等。
2. 对数函数对数函数是指数函数的反函数。
对数函数可以用 f(x) = log_a(x) 来表示,其中 a 是正实数且不等于1。
数学高一第六章知识点在高一数学的学习中,第六章是一个重要的章节,其中包含了许多关键的数学知识点。
本文将介绍数学高一第六章的核心内容,并分小节进行讨论。
一、函数的基本概念和性质函数是数学中一个基本的概念,它描述了两个集合之间的一种特殊关系。
在第六章中,我们学习了函数的定义、定义域、值域、图像以及函数的性质等。
1.1 定义和性质函数是一个映射关系,它将一个集合的元素映射到另一个集合的元素上。
函数的定义由一组输入和一组输出组成,每个输入对应唯一的输出。
函数可以用公式、图像或数据表来表示。
函数的定义域是所有可能的输入值的集合,而函数的值域是所有可能的输出值的集合。
1.2 图像和图像的性质函数的图像是函数在平面直角坐标系中的表示,它由所有的输入和对应的输出点组成。
函数的图像可以用来研究函数的性质,如增减性、奇偶性和周期性等。
另外,函数的图像还可以用来解决实际问题,如求解方程、不等式和函数的最值等。
二、函数的基本类型与特性在数学高一的第六章中,我们学习了几种常见的函数类型和它们的特性。
这些函数类型包括线性函数、二次函数、指数函数和对数函数等。
2.1 线性函数线性函数是最简单的一类函数,它的定义可以用一个一次方程来表示。
线性函数的图像是一条直线,具有常比例关系。
我们在学习线性函数时,会介绍直线的斜率、截距和函数的解析式等概念。
2.2 二次函数二次函数是一个抛物线函数,它的定义可以用一个二次方程来表示。
二次函数的图像是一个平滑的曲线,具有开口方向、顶点坐标和对称轴等特性。
我们还会学习二次函数的最值、零点和图像的平移缩放等内容。
2.3 指数函数和对数函数指数函数和对数函数是相互逆运算的函数,它们的定义分别由指数和对数的性质决定。
指数函数的图像是递增的,而对数函数的图像是递减的。
我们会学习指数函数和对数函数的基本性质、特点和应用。
三、函数的运算与组合在高一数学的第六章中,函数的运算和组合也是一个重要的内容。
我们会学习函数的四则运算、复合函数、反函数和函数方程等知识点。
第6讲:函数的奇偶性【考纲要求】1.掌握函数奇偶型的定义和判断方法。
2.理解奇偶函数图像的特点3.能熟练应用两个性质解决一些简单问题。
【教学重难点】函数的单调性和奇偶性【重难点命题方向】单调性和奇偶性的综合应用自主预习:1. 函数的奇偶性概念(1)奇函数设函数f(x) 的定义域为D ,如果对D 内的_________x,都有-x ∈D,且________________则这个函数叫奇函数(2)偶函数设函数f(x) 的定义域为D ,如果对D 内的_________x,都有-x ∈D,且________________则这个函数叫偶函数。
2、 奇偶函数图像的对称性(1)如果一个函数为奇函数,则这个函数图像关于_________________对称。
a) 如果一个函数为偶函数,则这个函数图像关于_________________对称。
3、 函数奇偶性的性质关于奇函数(1)图像关于________________对称(2)在关于原点对称的区间上,单调性________(3)如果在原点处有意义,则f(0)=_________关于偶函数(1)图像关于________________对称(2)在关于原点对称的区间上,单调性________(3)F(-x)=f(x)=f(|x|)4、函数的单调性(1)函数的单调区间必须是_________的子集。
因此,要求函数的单调区间,必须先求函数的____________(2)函数y=x1的单调区间是(0,∞-),(0,∞+),要特别注意一些无意义的特殊点。
课堂互动一、函数奇偶性的判定例1 判断下列函数的奇偶性,并说明理由.① 2()1f x x x =-+ []1,4x ∈-②()(f x x =- (1,1)x ∈- ③ ()11f x x x =+--④ 22230()00230x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩巩固提高:判断下列函数的奇偶性①()f x =②()f x x =-③(1)0()(1)0x x x f x x x x -<⎧=⎨+>⎩二.奇偶函数的图像问题例2 设奇函数()f x 的定义域为[]5,5-.当[]0,5x ∈时,函数()y f x =的图像如图,则使函数值0y <的x 的取值集合为 .巩固提高:三.奇偶性与单调性的联系例3.已知函数f(x)是R 上的奇函数,且当x>0时,1)(3++=x x x f ,求f(x)的解析式。
高一数学专题讲座-函数(三)
基础知识
(1)函数奇偶性定义,(2)函数奇偶性性质,(3)函数奇偶性应用
解题训练
1、函数y=x x
是( )
(A )奇函数(B )既是奇函数又是偶函数 (C )偶函数(D )非奇非偶函数
2、已知函数f(x)=ax 2+bx+c (a ≠0)是偶函数,那么g(x)=ax 3+bx 2+cx 是 ( )
(A )奇函数 (B )偶函数 (C )既奇且偶函数 (D )非奇非偶函数
3、下列函数中为奇函数的是 ( )
(A )();12+=x x f (B) ()2
2x 1x 1x f -+=; (C) ()313x x x f -+=; (D)()x 1x lg x f -= 4、若()x f 是奇函数, ()x g 是偶函数,且在它们定义域的公共部分上都不恒等于零.则()
x f ()x g 是 ( )
(A )奇函数 (B) 偶函数 (C) 非奇非偶函数 (D)既奇且偶函数
5、若()x f y =是奇函数,则下列各点中一定在图象上的点是 ( )
(A ) ()()a f a -,; (B) ()()a f a ,-; (C) ()()a f a --,; (D) ()()a f a ---,
6、已知f(x)=x 5+ax 3+bx-8,且f(-2)=10,那么f(2)=( )
(A ) -26 (B ) –18 (C ) -10 (D ) 10
7、设()()()⎩⎨⎧+-=x x x x x f 11()()
00<>x x .则()x f 是 ( )
(A )偶函数 (B) 奇函数 (C)既奇且偶函数 (D)非奇非偶函数
8、已知y=f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2-2x,则f(x)在R 上的表达式是
( )
(A )y=x(x -2) (B) y=x(|x|-1) (C)y=|x|(x -2) (D) y=x(|x|-
2)
9、设()x f 是R 上的奇函数,且当()+∞∈,o x 时,()()
31x x x f +=.则当()0,∞-∈x 时,
()x f 的表达式是 ( ) (A) ()31x x -; (B) -()31x x -; (C) ()31x x + ; (D) -()
31x x +.
10、函数f (x )的定义域∈x R ,且1≠x ,已知f (x+1)是奇函数,当1<x 时, 12)(2+-=x x x f ,那么,,1>x f (x )的递减区间是( ) (A) ),45[+∞ (B) ]45,1( (AC) ),47[+∞ (D) ]4
7,1(
11、函数f(x)定义在实数集R 上,f(x+y)=f(x)+f(y),且当x>0时,f(x)<0则f(x) ( )
(A)是奇数且在R 上是单调增函数 (B)是奇数且在R 上是单调减函数
(C)是偶函数且在R 上是单调减函数 (D)是偶函数且在R 上不是单调函数
12、已知奇函数y=f (x)是定义域上的增函数,那么y=f (-x)在定义域上( )
(A)既是奇函数又是增函数 (B )既是奇函数又是减函数
(C)既是偶函数又是增函数 (D )既是偶函数又是减函数
13、偶函数y=f (x)在区间[3, 5]上是增函数且最小值为2,那么y=f (x)在区间[-5, -3]上是( )
(A)减函数且最小值为2 (B )减函数且最大值为2
(C)增函数且最小值为2 (D )增函数且最大值为2
14、如果奇函数f (x)在区间[3, 7]上是增函数,且最小值为5,那么f (x)在区间[-7, -3]上是( )
(A)增函数且最小值为-5 (B )增函数且最大值为-5
(C)减函数且最小值为-5 (D )减函数且最大值为-5
15、已知f(x)=mx 2+nx+3m+n 是偶函数,且其定义域位[m-1,2m],则m=_________n=___________
16、若非零函数()x f ,()x g 的奇偶性相同,则在公共定义域内,函数()()()x g x f x H ⋅=为 (奇还是偶) 函数
17、若y=f (x)是偶函数, 则f (2+3)-f (321
-)等于
18、设偶函数y=f (x)在(-∞, 0)上是减函数,则f (3)与f (-π)的大小关系是
19、设偶函数y=f (x)在(-∞, 0)上f (x)=x 2+x -1则在),0(+∞上f (x)=
20、已知函数y=f (x)是偶函数,y=g(x)是奇函数,且f (x)+g(x)=
1
1-x ,则 f(x)= g(x)=
21、试判断函数2|2|12
-+-=x x y 的奇偶性
22、.求证:奇函数的反函数仍是奇函数.。