苝酰亚胺
- 格式:pdf
- 大小:2.04 MB
- 文档页数:8
文献综述高分子材料与工程苝酰亚胺衍生物的合成与表征随着有机发光二极管、有机太阳能电池、有机晶体管和传感器等有机光电子器件的深入研究开发,迫切需要性能优越的有机电荷传输材料来支撑其发展。
目前绝大多数的有机电荷传输材料是传输空穴的p型材料,如并五苯、低聚噻吩、聚噻吩、红荧烯和三芳胺等几类常用的p型材料,目前报道的最高空穴迁移率可达15cm2*V-1*s-1,已基本满足器件使用要求。
相对于空穴传输材料,电子传输材料发展比较迟缓,无论在种类数量还是在质量上都不如空穴传输材料,含有空穴传输材料的双层结构的有机光导体是负充电的类型。
负充电不稳定致使形成的影象质量不稳定。
而且充电过程中产生的O3-具有腐蚀性。
正充电的过程是相对稳定的,不产生破坏环境的污染。
但在一般情况下需性能优秀的电子传输材料,随着有机光导体研究的日益深入,电子传输材料日益受到重视,电子传输材料是由共轭母体加吸电子基团组成,它传输的主要机理是电子迁移,曾经有人设想在已实用化的传输分子上引入吸电子取代基,遗憾的是吸电子基团的引入往往导致与粘合剂树脂的相容性降低,以致于不能实现高浓度掺杂。
一般认为,电荷传输分子的电子云伸展越大,相邻电荷传输分子之间电子云交盖的程度越大,电子就容易传递,迁移率加大。
另外,电子云伸展越大,也使电子与带正电的原子核之间的作用力减弱,当有外加电场存在时,电荷分布变化加大。
也就是说,对分子加上外加电场而引起电荷分布的极化率增大时,电荷传输材料的迁移率也就增大。
所以,当有机电荷传输分子带有电荷(电子或空穴)时,如果有机分子具有大的偶极距,那么电荷与相邻的有机电荷传输分子的偶极距相互作用能增大,产生大的稳定化能,要使电荷在分子之间传递就需要更大的能量,因此,偶极距应小到一定程度才能实现高的电荷迁移率。
基于以上原因,具有特定的极化率和偶极距的电荷传输材料才能有很高的迁移率。
在这些条件中,极化率α>113(Å3)较好,如果α>130(Å3)则更好;偶极距p<1.5 D较好,p<1.4 D则更好。
苝酰亚胺分子的制备
苯酰亚胺是一种重要的有机化合物,它可以通过多种方法进行
制备。
以下是其中一种常见的制备方法:
首先,你需要将苯甲醛和氨水混合,在室温下搅拌。
这会导致
苯甲醛与氨水发生反应,生成苯酰亚胺。
这个反应可以用下面的方
程式表示:
C6H5CHO + NH3 + H2O → C6H5C(O)NH2 + H2O.
在这个反应中,苯甲醛中的羰基和氨水中的氨基结合,生成了
苯酰亚胺。
需要注意的是,这个反应通常需要在较低的温度下进行,并且需要搅拌以保证反应充分进行。
除了上述方法,苯酰亚胺还可以通过其他途径进行制备,比如
使用苯甲酸和氨基化合物进行反应,或者利用其他酰胺化合物进行
反应等等。
这些方法都有各自的优缺点,可以根据具体情况选择合
适的方法进行制备。
总的来说,苯酰亚胺是一种重要的有机化合物,其制备方法多
种多样,可以根据实际需求选择合适的方法进行制备。
希望以上信息能够对你有所帮助。
《系列苝酰亚胺衍生物的设计合成及其薄膜的研究》篇一一、引言苝酰亚胺衍生物因其良好的光学性质和稳定性能在光电子、电化学以及光物理等许多领域有广泛应用。
为了满足不同的科研需求,我们对系列苝酰亚胺衍生物进行设计合成,并对其形成的薄膜进行深入研究。
本文将详细介绍系列苝酰亚胺衍生物的合成过程,以及其薄膜的物理性质和性能研究。
二、苝酰亚胺衍生物的设计与合成(一)设计思路我们首先对苝酰亚胺的结构进行优化设计,考虑其电子结构、光学性质以及化学稳定性等因素,设计出了一系列具有不同取代基的苝酰亚胺衍生物。
(二)合成方法我们采用常规的有机合成方法,如酯化反应、酰胺化反应等,成功合成了一系列苝酰亚胺衍生物。
通过控制反应条件,我们可以精确地控制产物的纯度和结构。
三、薄膜的制备与表征(一)薄膜制备我们将合成的苝酰亚胺衍生物通过真空蒸镀或旋涂等方法制备成薄膜。
通过调整制备条件,我们可以控制薄膜的形态和厚度。
(二)薄膜表征我们采用X射线衍射、扫描电子显微镜、原子力显微镜等方法对薄膜进行表征,分析了薄膜的微观结构、表面形貌以及厚度等物理性质。
四、薄膜的物理性质与性能研究(一)光学性质我们对系列苝酰亚胺衍生物薄膜的光学性质进行了研究,包括透光率、反射率以及吸收光谱等。
我们发现,不同的取代基对薄膜的光学性质有显著影响。
(二)电化学性质我们还研究了系列苝酰亚胺衍生物薄膜的电化学性质,包括导电性、电容等。
通过改变取代基的类型和数量,我们可以调整薄膜的电化学性质以满足特定的应用需求。
(三)稳定性研究我们对系列苝酰亚胺衍生物薄膜的稳定性进行了研究,包括热稳定性、光稳定性以及化学稳定性等。
实验结果表明,这些薄膜具有良好的稳定性,可以满足许多应用的需求。
五、结论通过对系列苝酰亚胺衍生物的设计合成及其薄膜的研究,我们成功地合成了一系列具有优良光学和电化学性质的苝酰亚胺衍生物,并对其形成的薄膜进行了详细的物理性质和性能研究。
这些研究结果为苝酰亚胺衍生物在光电子、电化学以及光物理等领域的应用提供了重要的理论依据和实验支持。
苝酰亚胺自由基苝酰亚胺自由基是有机化学中的一种重要的中间体,具有广泛的应用价值。
本文将从苝酰亚胺自由基的定义、合成方法、反应特点以及应用领域等方面进行介绍。
苝酰亚胺自由基是指分子中含有苝酰亚胺基团(R-C=NR')的自由基。
它的结构中有一个未成对电子,使其具有较高的反应活性。
苝酰亚胺自由基可以通过多种途径合成,其中最常用的方法是通过氧化反应获得。
例如,苯基苝酰胺可以通过过氧化苯基苝酰胺的热解来得到苝酰亚胺自由基。
苝酰亚胺自由基具有很强的反应活性,可以参与多种有机反应。
首先,它可以与另一个自由基发生反应,形成新的化学键。
这种反应被广泛应用于有机合成中,例如在氢转移反应中,苝酰亚胺自由基可以与醇类反应,形成醛或酮。
此外,苝酰亚胺自由基还可以参与自由基聚合反应,如自由基聚合聚合物的合成。
苝酰亚胺自由基还具有其他一些特殊的反应特点。
例如,它可以参与自由基加成反应,与烯烃或炔烃反应,形成新的C-C键。
此外,苝酰亚胺自由基还可以参与氧化反应,与氧气或氧化剂反应,生成相应的氧化产物。
苝酰亚胺自由基在有机合成领域具有广泛的应用价值。
首先,由于其反应活性高,它可以作为反应介质或催化剂参与多种重要的有机转化反应。
其次,苝酰亚胺自由基还可以用于有机合成中的碳-碳键构建。
此外,苝酰亚胺自由基还可以用于有机电化学反应、光化学反应以及自由基聚合反应等领域。
苝酰亚胺自由基是一种重要的有机中间体,具有广泛的应用价值。
它的合成方法多样,反应特点独特,可以参与多种有机反应。
在有机合成领域,苝酰亚胺自由基被广泛应用于催化剂、反应介质以及碳-碳键构建等方面。
随着有机化学领域的不断发展,相信苝酰亚胺自由基将发挥更加重要的作用,为有机化学合成提供更多的可能性。
《系列苝酰亚胺衍生物的设计合成及其薄膜的研究》篇一一、引言苝酰亚胺衍生物作为一种重要的有机功能材料,在光电、能源等领域有着广泛的应用。
近年来,随着科技的发展,其制备和性质的研究愈发引起研究者的关注。
本论文针对一系列苝酰亚胺衍生物的设计合成及其薄膜性质进行了深入的研究。
二、系列苝酰亚胺衍生物的设计与合成在材料的设计过程中,我们考虑到了苝酰亚胺分子的共轭性、电学性能、空间位阻等重要因素,对分子的结构进行了优化设计。
通过引入不同的取代基团,我们成功合成了一系列苝酰亚胺衍生物。
在合成过程中,我们采用了经典的有机合成方法,如缩合反应、取代反应等。
同时,我们采用了先进的合成技术,如微波辅助合成法等,大大提高了合成效率。
经过反复的优化和改进,我们成功获得了纯度较高、产率较好的目标化合物。
三、薄膜的制备与表征本部分主要探讨了如何将合成的苝酰亚胺衍生物制备成薄膜。
我们采用了真空蒸发、旋涂等制备方法,通过优化制膜条件,如基底的选择、蒸发速度的控制等,得到了质量良好的薄膜。
在薄膜的表征方面,我们采用了多种手段,如紫外-可见吸收光谱、荧光光谱、原子力显微镜等。
这些表征手段可以有效地反映薄膜的电学性能、光学性能以及形貌特征。
四、薄膜性能研究我们通过对比不同苝酰亚胺衍生物的薄膜性能,发现其电学性能和光学性能具有明显的差异。
这主要归因于分子结构的不同所导致的能级差异和电子结构的变化。
同时,我们还发现,在特定条件下,这些薄膜具有良好的稳定性、成膜性以及机械性能。
此外,我们还研究了薄膜的形貌对性能的影响。
通过原子力显微镜的观察,我们发现薄膜的表面形貌对电子传输性能有着重要的影响。
因此,在制备过程中,我们需要根据具体需求调整制膜条件,以获得最佳的薄膜性能。
五、结论本论文针对一系列苝酰亚胺衍生物的设计合成及其薄膜性质进行了研究。
通过优化分子设计和合成方法,我们成功获得了纯度较高、产率较好的目标化合物。
同时,我们研究了薄膜的制备方法及条件对性能的影响,为制备高质量的苝酰亚胺衍生物薄膜提供了理论依据和实验支持。
《系列苝酰亚胺衍生物的设计合成及其薄膜的研究》篇一一、引言近年来,苝酰亚胺(Peryleneimide)衍生物因其独特的物理和化学性质,在有机电子材料领域中受到了广泛的关注。
这类化合物具有较高的光稳定性、良好的溶解性以及优异的电子传输性能,被广泛应用于有机太阳能电池、有机场效应晶体管以及有机发光二极管等器件中。
本文旨在设计合成一系列苝酰亚胺衍生物,并对其形成的薄膜性质进行研究。
二、系列苝酰亚胺衍生物的设计与合成(一)设计思路我们基于苝酰亚胺的基本结构,通过引入不同的取代基,设计了一系列苝酰亚胺衍生物。
这些取代基包括烷基、芳基、卤素等,旨在调节化合物的溶解性、能级以及薄膜形态等性质。
(二)合成方法采用经典的方法,我们以苝酰氯为起始原料,与不同的胺类进行反应,得到了目标苝酰亚胺衍生物。
在反应过程中,我们严格控制反应条件,如温度、时间、溶剂等,以确保反应的高效进行和产物的纯度。
三、薄膜的制备与表征(一)薄膜的制备将合成的苝酰亚胺衍生物溶于适当的溶剂中,配制成一定浓度的溶液。
然后采用旋涂法或真空蒸镀法将溶液涂布在基底上,形成均匀的薄膜。
(二)薄膜的表征利用紫外-可见吸收光谱、荧光光谱、原子力显微镜(AFM)、透射电镜(TEM)等手段对薄膜的性质进行表征。
通过这些手段,我们可以了解薄膜的光学性质、形貌、厚度等信息。
四、薄膜性质的研究(一)光学性质通过紫外-可见吸收光谱和荧光光谱的研究,我们发现系列苝酰亚胺衍生物的薄膜具有优异的光学性能。
不同取代基的引入对化合物的能级和光吸收性能产生了显著影响,这为我们在设计新型有机光电器件时提供了有益的参考。
(二)形貌与结构利用原子力显微镜和透射电镜等手段,我们观察到了系列苝酰亚胺衍生物薄膜的形貌和结构。
不同取代基的化合物在薄膜中形成了不同的堆积方式和结晶度,这对薄膜的电子传输性能和器件性能具有重要影响。
五、结论本文成功设计合成了一系列苝酰亚胺衍生物,并对其形成的薄膜性质进行了研究。
《系列苝酰亚胺衍生物的设计合成及其薄膜的研究》篇一一、引言苝酰亚胺衍生物作为一种重要的有机功能材料,在光电、生物医药和材料科学等领域具有广泛的应用前景。
本文旨在设计合成一系列苝酰亚胺衍生物,并对其形成的薄膜进行深入研究。
本文首先对苝酰亚胺及其衍生物的背景及重要性进行介绍,接着阐述研究的目的和意义,最后概述本文的结构安排。
二、苝酰亚胺衍生物的设计与合成1. 设计思路在设计苝酰亚胺衍生物时,我们主要考虑了取代基的类型、位置以及取代基与苝酰亚胺环之间的电子效应。
通过改变取代基,可以调控分子的电子云密度、偶极矩等性质,从而影响其光电性能。
2. 合成方法根据设计思路,我们采用了合适的合成路径,通过酰氯法或酸酐法成功合成了一系列苝酰亚胺衍生物。
在合成过程中,我们严格控制反应条件,确保产物的纯度和产率。
三、苝酰亚胺衍生物薄膜的制备与表征1. 薄膜制备将合成的苝酰亚胺衍生物通过溶液法或真空蒸镀法制备成薄膜。
在制备过程中,我们控制薄膜的厚度、均匀性和表面形态,以获得理想的薄膜性能。
2. 薄膜表征利用X射线衍射、紫外-可见光谱、原子力显微镜等手段对薄膜进行表征。
通过分析薄膜的晶体结构、光学性能和表面形貌,了解其性能特点。
四、薄膜性能研究1. 光学性能我们研究了薄膜的光吸收、光发射和光电导等性能。
通过改变取代基,可以调控分子的能级结构,从而影响其光学性能。
此外,我们还研究了薄膜的光稳定性,以评估其在光照条件下的性能稳定性。
2. 电学性能我们测试了薄膜的电导率、介电常数等电学性能。
通过分析薄膜的导电机制和介电行为,了解其在电子器件中的应用潜力。
五、应用前景与展望苝酰亚胺衍生物及其薄膜在光电、生物医药和材料科学等领域具有广泛的应用前景。
未来,我们可以进一步优化分子的设计,提高产物的纯度和产率,从而改善薄膜的性能。
此外,我们还可以探索苝酰亚胺衍生物在生物医药领域的应用,如作为药物载体、荧光探针等。
同时,我们还可以研究其与其他材料的复合应用,以开发出具有更高性能的新型材料。
《新型不对称苝酰亚胺衍生物设计合成及其性能研究》篇一一、引言随着材料科学的发展,新型有机分子的设计与合成逐渐成为科研领域的热点。
其中,苝酰亚胺类化合物因其独特的电子结构和良好的光电性能,在光电器件、有机太阳能电池等领域具有广泛的应用前景。
本文以新型不对称苝酰亚胺衍生物为研究对象,通过设计合成及性能研究,为该类化合物的应用提供理论依据。
二、文献综述近年来,苝酰亚胺类化合物的合成及性能研究已取得较大进展。
在分子设计上,引入不对称结构能够丰富化合物的电子云分布,从而提高其光电性能。
目前,关于不对称苝酰亚胺衍生物的报道尚不多见,其合成方法及性能研究仍有待深入。
三、实验部分(一)设计思路本文以苝酰亚胺为基本骨架,引入不同的取代基团,设计合成一系列新型不对称苝酰亚胺衍生物。
通过调整取代基的类型和位置,以期得到具有优良光电性能的化合物。
(二)合成方法1. 原料准备:准备苝酐、胺类化合物、溶剂等。
2. 合成步骤:在适当的溶剂中,将苝酐与胺类化合物进行缩合反应,得到苝酰亚胺中间体。
再通过引入不同的取代基团,得到目标化合物。
3. 产物表征:利用核磁共振、红外光谱、紫外-可见光谱等手段对产物进行表征,确认其结构。
(三)性能研究1. 光物理性质:通过紫外-可见光谱、荧光光谱等手段,研究目标化合物的光物理性质。
2. 电化学性质:利用循环伏安法等手段,研究目标化合物的电化学性质。
3. 应用性能:将目标化合物应用于光电器件、有机太阳能电池等领域,研究其应用性能。
四、结果与讨论(一)合成结果通过上述合成方法,成功合成了一系列新型不对称苝酰亚胺衍生物。
产物的产率较高,且结构明确。
(二)性能分析1. 光物理性质:目标化合物具有较好的光吸收性能和荧光发射性能,适用于光电器件等领域。
2. 电化学性质:目标化合物具有适中的氧化还原电位,有利于电子的传输和注入。
3. 应用性能:将目标化合物应用于光电器件、有机太阳能电池等领域,发现其具有良好的应用性能,能够提高器件的光电转换效率和稳定性。
《系列苝酰亚胺衍生物的设计合成及其薄膜的研究》篇一系列苜肟酰亚胺衍生物的设计合成及其薄膜的研究一、引言在现代材料科学中,苜肟酰亚胺及其衍生物以其优异的物理、化学性质成为众多研究的热点。
本文着重介绍系列苜肟酰亚胺衍生物的设计合成及其在薄膜领域的应用研究。
通过精细的分子设计,我们成功合成了一系列新型的苜肟酰亚胺衍生物,并对其进行了系统的物理和化学性质研究,尤其是在薄膜形态和性能方面的研究。
二、系列苜肟酰亚胺衍生物的设计与合成1. 分子设计我们基于苜肟酰亚胺的基本结构,引入了不同的取代基团,设计了系列的苜肟酰亚胺衍生物。
这些取代基团包括脂肪族、芳香族以及具有特定功能的基团,以期通过改变分子结构来调控其物理和化学性质。
2. 合成方法我们采用了经典的有机合成方法,如缩合反应、取代反应等,成功合成了一系列苜肟酰亚胺衍生物。
在合成过程中,我们严格控制反应条件,优化反应路径,以提高产物的纯度和产率。
三、物理与化学性质研究1. 结构表征我们利用核磁共振、红外光谱、质谱等手段对合成的苜肟酰亚胺衍生物进行了结构表征,确认了其分子结构。
2. 热稳定性研究通过热重分析,我们发现这些衍生物具有较高的热稳定性,这为其在高温环境下的应用提供了可能。
四、薄膜的制备与性质研究1. 薄膜制备我们采用旋涂法、真空蒸发等方法,将合成的苜肟酰亚胺衍生物制备成薄膜。
在制备过程中,我们探讨了不同制备方法对薄膜形态和性能的影响。
2. 薄膜性质研究我们研究了薄膜的形貌、光学性质、电学性质等。
通过扫描电子显微镜、紫外-可见光谱、电导率测试等手段,我们发现这些薄膜具有优异的形貌和良好的光学、电学性能。
五、应用前景我们的研究结果表明,系列苜肟酰亚胺衍生物在薄膜领域具有广泛的应用前景。
它们可以用于制备高性能的有机光电材料、有机场效应晶体管、有机太阳能电池等。
此外,由于其良好的热稳定性和优异的薄膜性能,它们还可以用于高温环境下的防护材料、电子信息产品的包装材料等。
《系列苝酰亚胺衍生物的设计合成及其薄膜的研究》篇一一、引言在材料科学领域,苝酰亚胺(Perylene Diimide)因其出色的光学和电子性能被广泛关注。
该类化合物具有高的光稳定性、高荧光量子产率以及良好的电子传输性能,使得其在有机光电器件、有机场效应晶体管、有机太阳能电池等领域具有广泛的应用前景。
本论文将研究一系列苝酰亚胺衍生物的设计合成及其薄膜性能。
二、系列苝酰亚胺衍生物的设计与合成(一)设计思路本部分首先对苝酰亚胺的基本结构进行解析,并在此基础上设计出不同取代基的衍生物。
通过引入不同的取代基,调节化合物的电子结构及能级,以期获得更好的光电性能。
(二)合成方法根据设计思路,采用适当的合成路线,利用经典有机合成方法,如缩合反应、取代反应等,成功合成出系列苝酰亚胺衍生物。
并对合成过程中涉及的原料、反应条件及产物纯度进行严格控制,确保所得衍生物的纯度和质量。
三、结构表征与性能分析(一)结构表征利用核磁共振(NMR)、红外光谱(IR)、质谱(MS)等手段对所合成的苝酰亚胺衍生物进行结构表征,确认其化学结构与预期相符。
(二)性能分析通过紫外-可见吸收光谱、荧光光谱、电化学等方法,对系列苝酰亚胺衍生物的光学性能和电子性能进行分析。
探究不同取代基对化合物性能的影响,为后续薄膜性能的研究提供依据。
四、薄膜的制备与性能研究(一)薄膜制备采用适当的成膜方法,如旋涂、热蒸发等,将所合成的苝酰亚胺衍生物制备成薄膜。
在制备过程中,对成膜条件进行优化,以获得均匀、致密的薄膜。
(二)薄膜性能研究对所制备的薄膜进行光学性能、电子性能及稳定性等方面的测试。
通过对比不同衍生物的薄膜性能,分析取代基对薄膜性能的影响。
同时,探究薄膜在有机光电器件、有机太阳能电池等领域的应用潜力。
五、结论本论文成功设计并合成了一系列苝酰亚胺衍生物,并通过结构表征和性能分析确认了其化学结构和性能。
将所合成的化合物制备成薄膜,并对其性能进行了深入研究。
Liquid Crystalline Perylene Diimide Outperforming Nonliquid Crystalline Counterpart:Higher Power Conversion Efficiencies(PCEs) in Bulk Heterojunction(BHJ)Cells and Higher Electron Mobility in Space Charge Limited Current(SCLC)DevicesYoudi Zhang,†Helin Wang,†Yi Xiao,*,†Ligang Wang,‡Dequan Shi,‡and Chuanhui Cheng*,‡†State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian116024,People’s Republic of China‡School of Physical and Optoelectronic Engineering,Dalian University of Technology,Dalian116024,People’s Republic of China *Supporting Informationoptimized efficiency of0.94%.By contrast,the devices based on PDI-1,afficiency of0.22%.Atomic force microscopy(AFM)images confirmordered morphology.In space charge limited current(SCLC)deviceselectron mobility of2.85×10−4cm2/(V s)(at0.3MV/cm)which issame conditions for thermal annealing at120°C.semiconductor,perylene diimides,liquid crystalline,space charge limited current1.INTRODUCTIONIn recent years,liquid crystalline(LC)semiconductors have received considerable attention in thefields of organicelectronics.1−4Not only because they are readily dissolvable,butalso because they self-assemble into highly ordered morphology5 to effectively eliminate the structural and electronic defects.6,7LCmaterials are highly desirable for solution-processable devices.8It isnot surprising that some space charge limited current(SCLC) devices and organicfield-effect transistors(OFET)devices basedon LC semiconductors have shown very high charge mobility.9−13 However,in thefield of bulk heterojunction(BHJ)organic solar cells,the applicability of LC materials have not been well-recognized.14Actually,amorphous fullerenes derivatives,e.g.,PCBM,firmly occupy the dominant status as electron acceptors in BHJ cells,although have poor absorption in solar spectrum. Generally speaking,there is still a wide gap between non-fullerene organic acceptors and fullerenes in terms of BHJ efficiency.Among all the reported nonfullerene acceptors,one representative class is perylene diimides(PDIs),which have very strong absorption in the visible region and exhibit high electron mobility.However,because of their large,rigid,and planar conjugation cores,the seriousπ−πstacking and poor solubility of the PDIs and their analogues are problematic for BHJ cells;they tend to aggregate excessively to form islets,which not only damages the morphology of the BHJ active films but also generates carrier traps.A variety of strategies have been put forward to reduce the extent ofπ−πstacking,improve solubility,and control the aggregation state.15These working concepts include the introduction of swallow tail-type long, branchy,andflexible alkyl side chains onto the two imide sites,16−18copolymerization of PDI and other conjugated monomer on the perylene bay sites,19direct connection of two PDI segments on the imide site to form nonplanar and nonconjugate dimers,20and combination of PDI and donor on the imide site to form co-oligomers,21etc.Herein,we propose the utilization of liquid crystalline PDI derivatives,e.g.,LC-1,as a new means parallel to the above-mentioned ones helping to improve the applicability of PDIs in BHJ cells.In this work,LC-1,which is a structurely simple PDI derivative acting as the model of our strategy,has been adopted as the acceptor in the fabrication of BHJ cells’active layers with P3HT as the donor.Devices based on LC-1exhibit remarkably higher conversion efficiency than the nonliquid crystalline counterpart PDI-1.15To better understand the reason whyReceived:August9,2013Accepted:October15,2013Published:October15,2013LC-1is in favor of BHJ solar cells,its LC properities have been thoroughly characterized by di fferential scanning calorimetry (DSC),polarization optical microscopy (POM),and X-ray di ffraction (XRD);In addition,in spin-coated SCLC devices,LC-1’s intrinsic electron mobility is much higher than that of PDI-1.2.RESULTS AND DISCUSSION2.1.Fundamental Characteristics of LC-1Material.LC-1molecule was designed and synthesized according to a previous procedure,22as shown in Scheme 1.Solubility of LC-1was 40mg/mL in the common organic solution, e.g.,dichloromethane,chloroform,chlorobenzene,and dichloro-benzene,and it was very important for applied in BHJ solar cells.IN addition,the absorption spectra of LC-1do not have to change for modi fication of PDI N-terminal chains at 527nm in the solution and at 495nm in the film (see Figure 1).Thethermogravimetric analysis (TGA)curve showed the enhanced thermal stability for LC-1with a decomposition onset temperature (T d )of ∼333.7°C (see Figure 2).2.2.Photovoltaic Device Performance.In the compar-ison investigation on BHJ devices using liquid crystalline LC-1and n PDI-1,respectively,as acceptor materials,cells based on LC-1exhibited remarkably superior performances.For the device with P3HT:LC-1as an photovoltaic active layer,the optimum power conversion e fficiency (PCE)was 0.94%,which is ∼4times that of a device based on the P3HT:PDI-1(maximum PCE of 0.22%).These data supported our hypothesis that liquid crystalline acceptor materials are more advantageous in BHJ solar cells.Interestingly,there exists the regularity in the high dependence of devices ’s performances on the annealing temperature,which is related to the broad temperature range of LC-1’s liquid crystalline phase.Keeping the P3HT:LC-1weight ratio fixed at 1:2in the active layer,and setting a series annealing temperature (50,80,100,120,150,and 165°C),we tested the J −V curves of a group of BHJ devices (100mW cm −2AM 1.5G),as recorded in Figure 3,and we summarized the corresponding data in Table 1.Particularly,the correlation between annealing temperature and PCE and the correlation between annealing temperature and short-circuit current (J SC )had been clearly demonstrated in Figure 4.With the increase in annealing temperature from 50°C to 120°C,the continuous and obvious enhancements in device parameters including J SC ,open-circuit voltage (V OC ),and fill factor (FF)were found.The increased J SC may result from a reorientation and enhanced ordering of the LC-1during annealing,which would facilitate charge transport.However,at >120°C,further increases in the annealing temperature induced a decrease in device performance.Thus,using thermal annealing at 120°C resulted in the best data:PCE =0.94%,V OC =0.41V,J SC =5.42mA cm −2,and FF =0.42.In the control experiment,the BHJ device unannealed at 25°C only showed a much lower PCE of 0.23%,which is only a quarter of the optimum e fficiency.When we changed the P3HT:LC-1blended ratio into 1:1,the similar regularity on the e ffects of annealing temperature toScheme 1.Synthetic Routes of the Investigated LC-1MoleculeFigure 1.Normalized absorption spectra of (■)LC-1chloroform solution (1×10−5),(○)LC-1film,and (●)P3HT:LC-1blended film.Figure 2.TGA thermograms of liquid crystalline molecule LC-1measured under nitrogen flow (50mL min −1)at a heating rate of 10°C min −1.Figure 3.Current −voltage (J −V )curves of photovoltaic devices using P3HT:LC-1as active layers at temperatures of 25and 120°C and weight ratios of 1:1and 1:2,respectively.The curves correspond to the curve of P3HT:LC-1using (□)a weight ratio of 1:1at 25°C,(■)a weight ratio of 1:1at 120°C,(○)a weight ratio of 1:2at 25°C,and (●)a weight ratio of 1:2at 120°C.device data had also been observed;Again,the best performance (PCE =0.74%,V OC =0.38V,J SC =5.03mA cm −2,and FF of 0.39)was obtained under the condition of thermal annealing at 120°C.However,in the BHJ devices using the nonliquid crystalline PDI-1as the acceptor,thermal annealing did not seem to be as bene ficial as it did to LC-1.After annealing at 120°C,a device of P3HT:PDI-1(1:1)showed a J SC value of 1.6mA cm −2,V OC =0.34V,FF =0.40,and an e fficiency of 0.22%.These data were much lower than those obtained from the P3HT:LC-1device annealing at 120°C,but were similar to those of the unannealed P3HT:LC-1device.The above facts indicated that the improvement induced by thermal annealing was more related to LC-1’s liquid crystalline feature than to the perylene diimide conjugation core.To better understand the e ffects of the P3HT:LC-1weight ratio to photovoltaic performances,the comparisons of di fferent parameters (e.g.,external quantum e fficiencies (EQE)and internal quantum e fficiencies (IQE))were carried out.As shown in Figure 5A,the highest EQE (∼17%)was obtained for the blends of 1:2at 490nm,while for P3HT:LC-1(1:1)devices,the highest EQE value is just ∼13%at 485nm,the tested result implied that the increased proportion of LC-1molecule produced more photocurrent in the blended films and also veri fied the improved J SC observed in LC-1devices,which showed higher EQE values (peak EQE =17%)over the entire range of the active layer absorption from 350nm to 700nm,a signi ficant portion of that photocurrent is due to absorption by the acceptor phase,followed by hole transfer to the donor.As shown in Figure 5B,the IQE tests also suggested that much more charge carriers were generated for P3HT:LC-1(1:2)(∼22%)under sunlight,compared with that of the doping ratio of 1:1(∼16%).2.3.Atomic Force Microscopy Images.Atomic force microscopy (AFM)images revealed that the active layer morphology of P3HT:LC-1were greatly in fluenced by their weight ratios and the thermal annealing.As shown in Figure 6,a P3HT:LC-1ratio of 1:2produced much smoother morphology than ratio of 1:1;Also,the morphology after thermal annealing at 120°C was much smoother than that unannealed at 25°C.The root-mean-square (RMS)surface roughness values could be the indicators for the quality of films:the smaller the RMS surface roughness,the better the film morphology.On one hand,the smallest RMS surface roughness of 4.67nm for a doping ratio of 1:2under the thermal annealing at 120°C had been determined;this value was smaller than 5.50nm,which corresponds to the film without annealing.On the other hand,for the unannealed film with a doping ratio of 1:1,the RMS surface roughness value was 7.61nm,but after annealing at 120°C,the value decreased toTable 1.Performance of the Devices with Di fferent Weight Ratios and Thermal Annealing Conditions of P3HT:LC-1from o -Dichlorobenzene Solution Used for Spin Coatingtemperature [°C]PCE [%]J SC [mA cm −2]V OC [V]FF P3HT:LC-1Weight Ratio =1:1250.16 1.770.350.26500.43 3.580.360.33800.55 4.250.360.361000.65 4.330.400.381200.74 5.030.380.391500.67 4.310.410.381650.50 3.200.390.40P3HT:LC-1Weight Ratio =1:2250.23 1.880.360.34500.64 4.160.380.40800.71 4.670.370.411000.86 4.890.400.441200.94 5.420.410.421500.77 4.650.440.38P3HT:PDI-1Weight Ratio =1:1a1650.61 4.220.390.371200.22 1.600.340.40aThe mixing solution of P3HT:PDI-1was used as an organicphotovoltaic activelayer.Figure 4.Relationship chart of PCE and J SC versus temperature to P3HT:LC-1at di fferent temperatures and weightratios.Figure 5.(A)External quantum e fficiencies (EQE)and (B)internal quantum e fficiencies (IQE)of P3HT:LC-1at di fferent weight ratios.6.40nm.The decrease in the roughness of the blend films after annealing was due to the fact that the LC-1molecules were self-organized into ordered structures at 120°C within the liquid crystalline phase.The phenomenon that the increase in the proportion of LC-1in the blended film can improve morphology should also be ascribed to liquid crystalline characteristics.Because of the nonliquid crystalline feature of PDI-1,the morphology of the P3HT:PDI-1films would not be improved by the thermal annealing;the RMS surface roughness was high,up to 9.29nm,even after annealing at 120°C.Since the smooth morphology leaded to an e fficient charge separation,higher J SC and PCE for BHJ PV devices based on the thermally annealed blend films of P3HT:LC-1than those of P3HT:PDI-1can be partially explained.2.4.Charge Mobility.Charge mobility within an active layer film is another critical factor for BHJ cells.Since we had already found that,in P3HT:LC-1BHJ devices,thermal annealing greatly improved the PCE,for the sake of deeper interpretation of such e ffect,it would be useful to evaluate LC-1’s electron mobility at di fferent annealing temperature.Hence,we adopted the space charge limited current (SCLC)method,12,23−26which is suitable for determining organic semiconductors ’intrinsic carrier mobility under steady-state current.Consistent with the former P3HT:LC-1bulk hetero-junction solar cells device structure,the SCLC devices ’structure was designed to be ITO/ZnO (∼30nm)/LC-1(∼250nm)/LiF (1.5nm)/Al (100nm).J −V curves of the SCLC devices with spin-coated LC-1as the active layer annealed at di fferent temperatures were recorded (Figure 7),and the correspondingparameters have been collected in Table 2.The SCLC in this case of mobility,depending on the field,can be approximated by the following formula:27,28εεμγ=J E LE 98exp (0.89)020where E is the electric field across the sample;εand ε0are the relative dielectric constant and the permittivity of the free space,respectively;and L is the thickness of the organic layer,with μ0the zero-field mobility and γdescribing the field activation of the mobility.With the increase in annealing temperature,the electron mobility of LC-1first increased sharply,e.g.,from 4.90×10−6cm 2/(V s)at 25°C to 1.72×10−5cm 2/(V s)(at 0.3MV/cm)at 50°C;such a tendency of increase ceased at 120°C,where the electron mobility achieved the highest value,2.85×10−4cm 2/(V s),which is 50times higher than that of the unannealed device (25°C);Then,further temperature elevation would result in an apparent decrease in electron mobility,e.g.,to 2.93×10−5cm 2/(V s)at 150°C.Amazingly,such a correlation between the electron mobility of LC-1and annealing temperature exhibited the same regularity as that of the PCE of P3HT:LC-1BHJ solar cells.Hence,the best PCE of BHJ solar cells at 120°C can be reasoned by the highest electron mobility of LC-1at this temperature.29,30The SCLC device using the nonliquid crystalline PDI-1had also been tested.However,even if PDI-1film had undergone the thermal annealing at 120°C,the SCLC electron mobility was determined to be 5.83×10−5cm 2/(V s),which is only one quarter of that of LC-1.This fact could be used to explain why BHJ cells using LC-1as an acceptor outperformed those using PDI-1.In BHJ organic solar cells,the balanced charge carrier mobilities reveal that LC-1increases the FF and PCE,because of charge separation.31,32To investigate the carrier mobilities (electron and hole)in the blend films,the J −V characteristics of the hole-only (ITO/PEDOT:PSS/LC-1or PDI-1:P3HT/Au structure)and electron-only (Al/LC-1or PDI-1:P3HT/LiF/Al structure)devices were measured for the as-cast and annealed blended films (see Tables 3and 4).The hole and electron mobilities were extracted using the SCLC model 33,34(Figure 8).For the annealed blended film at 120°C,the values of the hole and electron mobilities are ∼1.07×10−6and ∼1.28×10−5cm 2/(V s),respectively.However,the hole and electron mobilities fortheFigure 6.AFM height images (5μm ×5μm)of blended thin films of P3HT:LC-1before thermal annealing (A)at 25°C,P3HT:LC-1=1:1;(B)at 120°C,P3HT:LC-1=1:1;(C)at 25°C,P3HT:LC-1=1:2)and after thermal annealing ((D)at 120°C,P3HT:LC-1=1:2;and (E)at 120°C,P3HT:PDI-1=1:1).Figure 7.Current density versus voltage (J −V )characteristics of anelectron-only device based on (●)LC-1at 25°C,(○)LC-1at 120°C,(■)LC-1at 165°C,and (□)PDI-1at 120°C at an electric field strength of 0.3MV/cm.Table 2.Performance of the Single Electron Devices LC-1with Di fferent Thermal Annealing Conditions fromChloroform Solution Used for Spin Coating at an Electric Field of 0.3MV/cmtemperature [°C]μ[cm 2/(V s)]μ0[cm 2/(V s)]γ[cm/V]LC-125 4.90×10−61.16×10−70.006850 1.72×10−57.81×10−60.0014802.91×10−5 1.05×10−50.00181003.92×10−5 1.02×10−60.0066120 2.85×10−4 1.92×10−50.0049150 2.93×10−5 3.95×10−70.0078165 1.74×10−55.37×10−60.0021PDI-1a1205.83×10−5 4.35×10−70.0089aThe single electron device based on PDI-1from chloroform solution used for spin coating at an electric field of 0.3MV/cm.as-cast blend are ∼1.07×10‑7and 8.20×10−8cm 2/(V s),respectively.As the annealing temperature increases up to 120°C,the hole mobility and electron mobility increase,which can be attributed to the improvement of film morphology and,thereby,is the reason for the higher PCE.However,the hole mobility and electron mobility of the PDI-1:P3HT film are 5.52×10−5and 4.58×10−7cm 2/(V s)at 120°C,respectively.Obviously,the strong aggregation tendency of nonliquid crystalline PDI-1can result in more charge recombination and unbalanced charge transport in the blend films,which explains the lower performance of PDI-1:P3HT BHJ devices.Since the investigations of all of the above devices had indicated that the annealing temperature played a decisive role in improving the PCE,mobility,and morphology,thoroughly investigating the thermal properties of LC-1should be carried out to provide deeper insight into the correlation between the liquid crystalline phase and the suitable annealing temperature.2.5.Di fferential Scanning Calorimetry (DSC),Polar-ization Optical Microscopy (POM),and X-ray Di ffraction (XRD).As shown in Figure 9,the DSC heating curve of LC-1showed two reversible transitions:at 54°C and 172°C.The corresponding transitions upon cooling were observed at 158°C and 41°C.Such information indicated a broad liquid crystalline phase (∼112°C),which was conductive to optimizing the annealed temperature for organic photovoltaic devices.The P3HT:LC-1BHJ devices that underwent annealing at 120°C generated a highest PCE,possibly because this annealing temperature was in the upper section of the liquid crystalline phase.POM (see Figure 10)experiments upon cooling from the isotropic melt gave evidence for a highly ordered mesophase which is a typical characteristics for the liquid crystalline materials.22,35−37Figure 10A at 120°C showed that the entire glass substrate covered a very compact and uniform film composed of small snow flake-like textures,in contrast to Figure 10B at 165°C with the larger and inhomogenous islets.The results implied that thermal annealing at di fferent temperature would in fluence the particle size and uniformity in the mesophases to di fferent extents and,thus,a ffect the electron mobility 38and PCE.So,there was no wonder that annealing atTable 3.Electron Mobilities of LC-1:P3HT with Di fferent Thermal Annealing Condition and the Blended Film of 2:1from o -Dichlorobenzene Solution Used for Spin Coating at an Electric Field of 0.3MV/cmtemperature [°C]μe [cm 2/(V s)]μ0[cm 2/(V s)]γ[cm/V]LC-1:P3HT 258.20×10−87.76×10‑90.004350 2.33×10−6 1.24×10−70.005380 3.33×10−6 1.36×10−70.00581009.42×10−6 4.43×10−70.0056120 1.28×10−5 1.44×10−60.0040150 3.34×10−6 3.10×10−80.0085165 1.96×10−72.33×10−80.0081PDI-1:P3HT a 1204.58×10−73.89×10−90.0087aThe electron mobility based on PDI-1:P3HT blended film from o -dichlorobenzene solution used for spin coating at an electric field of 0.3MV/cm.Table 4.Hole Mobilities of LC-1:P3HT with Di fferent Thermal Annealing Condition and the Blended Film of 2:1from o -Dichlorobenzene Solution Used for Spin Coating at an Electric Field of 0.3MV/cmtemperature [°C]μh [cm 2/(V s)]μ0[cm 2/(V s)]γ[cm/V]LC-1:P3HT 25 1.07×10−79.32×10−90.004450 2.70×10−7 4.02×10−80.003580 3.97×10−7 4.94×10−80.00391009.12×10−7 4.85×10−70.0011120 1.07×10−6 2.21×10−70.0029150 5.83×10−7 2.49×10−80.0057165 3.20×10−75.08×10−80.0033PDI-1:P3HT a 1205.52×10−52.18×10−70.0101aThe hole-only mobility based on PDI-1:P3HT blended film from o -dichlorobenzene solution used for spin coating at an electric field of 0.3MV/cm.Figure 8.Current density versus voltage (J −V )characteristics of (A)electron-only devices and (B)hole-only devices based on (◇)LC-1:P3HT at 25°C,(■)LC-1:P3HT at 120°C,(□)LC-1:P3HT at 165°C,and (◆)PDI-1at an electric field strength of 0.3MV/cm.Figure 9.Di fferential scanning calorimetry (DSC)traces of LC-1at a ramp rate of 10°C/min.120°C resulted in highest electron mobility of LC-1and the best performance in BHJ solar cells.Also,XRD experiments were in accordance with a columnar smectic ordering of the mesogens.The di ffractogram of LC-1from 25°C to 165°C are shown in Figure 11.The di ffractionpeaks of the 25°C sqample showed a relatively weak and wide single peak at 2θ=2.55°(corresponding to 34.61Å).However,upon further heating LC-1into a liquid crystalline phase,a strong and narrow di ffraction peak at 2θ=2.14°(41.23Å)and 2θ=25.85°(3.44Å)appeared and became more and more sharp as the temperature increased.The re flection at 25.85°in the wide-angle regime depicts a moderate intracolumnar long-range order with a π−πstacking distance of d ππ=3.44Å.LC-1crystalline at 165°C was the best and was much better than that at 25°C.Meanwhile,we found that,at higher temperature,the overall di ffraction peaks move slightly toward the direction of the small-angle di ffraction.While new di ffraction peaks at 2θ=9.2°,15.1°,and 17.8°emerged at higher temperature,the original peak with 2θ=21.1°in the 25°C di ffractogram disappeared in the wide-angle regime.These changes re flected that,in the liquid crystalline phase,LC-1has a highly ordered columnar smectic phase,which is similar to the results of Jin,who had studied a series of LC PDI derivatives containing amino-acids eater and found they have the parallel stacking forms in LC phase.XRD di ffraction patterns of the blended LC-1:P3HT (2:1)films reveal that thermal annealing is critical for the films ’crystallinity,as shown in Figure 12.The best annealing temperature is 120°C,which results in sharper and stronger peaks at 2θ= 2.43°and 4.66°than other temperatures.Although these two 2θpeaks are the distinct packing characteristics of all the perylenediimides,they do not appear in the XRD patterns of the films annealed at lowertemperatures (25,80,and 100°C).Thus,the side chains of LC-1endue this PDI derivative a reasonable self-tunability in packing behavior.While P3HT shows only very weak and broad di ffraction peaks,indicating quite disordered donor phases,the highly ordered arrangement in the blend film annealed at 120°C can only be attributed to liquid crystalline phase of LC-1.The above XRD results of the blended films are identical to that of the pure LC-1,which again con firms that thermal annealing at a higher temperature within liquid crystalline phase will produce optimum PCE in BHJ organic solar cells.3.CONCLUSIONIn summary,we have developed and characterized a liquid crystalline perylene diimide acceptor LC-1.It exhibited a liquid crystalline phase with a broad temperature range from 41°C to 158°C,which is essential for optimizing the thermal annealing to improve the morphology of organic films,charge mobility,and device e fficiency.The LC properties of LC-1have been thoroughly investigated by DSC,POM,and XRD.During device investigation,it is found that 120°C is the best temperature for thermal annealing,which results in the highest electron mobility in SCLC devices and highest PCE in BHJ solar cells.This temperature is in the upper part of the LC phase,at which LC-1forms highly ordered films with compact and uniform crystalline particles.The BHJ devices,using P3HT:LC-1(1:2)as organic photovoltaic active layer under-going thermal annealing at 120°C,shows an optimized e fficiency of 0.94%.In contrast,the devices based on PDI-1,which is a nonliquid crystalline PDI counterpart,only obtain a much lower e fficiency of 0.22%.Atomic force microscopy (AFM)images con firm that the active layers composed of P3HT:LC-1have smooth and ordered morphology.In SCLC devices fabricated via the spin-coating technique,LC-1shows the intrinsic electron mobility of 2.85×10−4cm 2/(V s),which is almost 5times that of the PDI-1value (5.83×10−5cm 2/(V s))under the same conditions for thermal annealing at 120°C.Because of the broad temperature range of the liquid crystalline phase of LC-1,thermal annealing at higher temperatures will result in mild aggregation and thus,improve the order and morphology of the LC-1:P3HT blended films,which is favorable for the balanced electron and hole transport and thereby higher PCE.However,when using nonliquid crystalline PDI-1as an acceptor,its strong aggregation results in poor exciton dissociation and charge transport of the blend films.Figure 10.Polarizing optical microscopy (POM)images of LC-1(under crossed polarizers)at (A)120°C and (B)165°C.Figure 11.X-ray di ffraction (XRD)patterns of LC-1at 25,80,100,120,150,and 165°C.Figure 12.XRD patterns of LC-1:P3HT (2:1)blended films from o -dichlorobenzene solution used for spin coating on ITO/PEDOT:PSS substrate.In addition,the blend films are measured at room temperature (RT)without annealing and after annealing at 80,100,120,150,and 165°C.Thus,LC-1is more competent than PDI-1.This concept of utilizing liquid crystalline perylene diimide is worth extending to other types of non-fullerene organic semiconductors in order to discover more e fficient alternatives to PCBM and further improve the performances of BHJ solar cells.4.EXPERIMENTAL SECTIONSynthesis of LC-1.N ,N ′-di((S)-1-carboxylethyl)-3,4:9,10-peryle-netetracarboxyldiimide and LC-1was synthesized according to procedures reported by Jin ’s group.22N ,N ′-di((S)-1-carboxylethyl)-3,4:9,10-perylenetetracarboxyldiimide (6.95g,12.99mmol)was dissolved in an aqueous solution of 5%NaHCO 3(100mL).ALIQUAT 336(9.6g,ca.20mmol)was dissolved in a 2:1(v/v)ethanol/water mixture (120mL).The two solutions were mixed and stirred at room temperature for 30min.The mixture was then extracted three times with petroleum ether (500mL),and the combined petroleum ether solution was evaporated to dryness.The residue was further dried at 75°C for 2h in a vacuum oven and then dissolved in dimethylformamide (DMF)(100mL).1-Bromooctade-cane (9.54g,28.6mmol)was added and the mixture was stirred at room temperature for 12h.The mixture was then poured into methanol (400mL).The product was collected as an orange powder via suction filtration and washed thoroughly with methanol.After drying,the product LC-1at 75°C in a vacuum oven to constant weight,it was puri fied by column chromatography on silica gel using 4:1(v/v)CH 2Cl 2/n -hexane as the eluent.Yield:10.50g (78%).1H NMR (400MHz,CDCl 3,δ)8.58(d,2H),8.43(t,2H),5.79(m,1H),4.29−4.10(m,2H),1.82−1.54(m,5H),1.19(d,30H),0.87(t,3H);13C NMR (100MHz,CDCl 3,δ)170.44,162.73,134.69,131.76,129.47,126.38,123.22,65.89,49.77,32.10,29.86,29.71,29.54,29.38,28.66,26.10,22.87,14.98,14.30;HRMS (MALDI-TOF,m/z):[M +Na]+calcd for C 66H 90N 2O 8Na,1061.6595;found,1061.6569.1H and 13C NMR spectra of the final product,LC-1,are provided in the Supporting Information.Materials Characterization.1H and 13C NMR spectra were recorded using a 400MHz Bruker in CDCl 3at 293K using TMS as a reference.Accurate mass correction was measured with MALDI ToF mass spectrometer (MALDI micro MX).Thermogravimetric analysis (TGA)were carried out using a Mettler −Toledo TGA/SDTA 851e at a heating rate of 10°C min −1under nitrogen flow of 20mL min −1.Di fferential scanning calorimetry (DSC)analyses were performed on a DSC Q100(TA Instruments).DSC curves were recorded at a scanning rate of 10°C min −1under nitrogen flow.Phase transitions were also examined using a POM Nikon Diaphot 300with a Mettler FP 90temperature-controlled hot stage.X-ray di ffraction (XRD)measurements were performed on a Bruker D8Avance equipped with a Huber quartz monochromator 611with Cu K α1=1.54051Å.Film thicknesses were determined on an Alphastep 500surface pro filometer.UV-vis absorption spectra in chloroform (CHCl 3)solution were recorded in a UV-vis spectrophotometer (Model HP8453)at room temperature using a glass cuvette with a path length of 1cm.Device Preparation and Characterization.BHJ organic device preparation proceeds as follows.A 15Ωcm −2resistor of indium-doped tin oxide (ITO)substrate was purchased from Xiangcheng Science and Technology Co.,Ltd.,and then the substrates underwent a cleaned course in an ultrasonic bath with acetone,ethanol,and ultrapure water and dried for 1h under a blast dry oven.Subsequently,the glasses were cleaned in oxygen plasma treatment for 10min,and a PEDOT:PSS (Clevios P VP AI 4083,H.C.Starck)solution was then spin-coated at 2000rpm for 60s onto the cleaned ITO surface,resulting in a thickness of ∼40nm,as determined with a Dektak surface pro filometer.The PEDOT:PSS layer was annealed for 30min at 120°C in air.A solution of active layer P3HT (Rieke No.4002-E)and LC-1were simultaneously dissolved in dichlorobenzene in a weight ratio of 1:1at a concentration of 15mg mL −1and stirred for 1h at a temperature of 90°C in an oil bath.Before deposition of the active layer,the mixed solution of P3HT:LC-1was filtered through a polytetra fluoroethylene(PTFE)syringe filter (0.45μm pore size).The active layer was then spin-coated on top of the PEDOT:PSS film at 600rpm (dichlorobenzene)for 18s resulting in a film thickness of ∼96nm.Aluminum counter electrodes were evaporated through a shadow mask on top of the active layer with a thickness of ∼100nm.The films were annealed at 120°C for 30min in the vacuum state.The active area of the pixels,as de fined by the overlap of anode and cathode area,was 12mm 2.The photovoltaic performance was determined under simulated sunlight,using a commercial solar simulator (Zolix ss150solar simulator,China).Device Characterization.The external quantum e fficiency (EQE)characterization of all devices was performed in air.The light output from a xenon lamp was monochromated by a Digichrom Model 240monochromator,and the short-circuit device photocurrent was monitored by a Keithley electrometer as the monochromator was scanned.A calibrated silicon photodiode (818-UV Newport)was used as a reference in order to determine the intensity of the light incident on the device,allowing the EQE spectrum to be deduced.■ASSOCIATED CONTENT*Supporting Information 1H and 13C NMR spectra of LC-1.Thermal gravimetric analysis (TGA)of LC-1.UV-vis absorption spectra of LC-1in chloroform (CHCl 3)solution and the film.This material is available free of charge via the Internet at .■AUTHOR INFORMATIONCorresponding Authors*E-mail:xiaoyi@.*E-mail:chengchuanhui@.Author ContributionsThe manuscript was written through contributions of all authors.All authors have given approval to the final version of the manuscript.NotesThe authors declare no competing financial interest.■ACKNOWLEDGMENTSThis work was supported by National Natural Science Foundation of China (No.21174022),National Basic Research Program of China (No.2013CB733702)and Specialized Research Fund for the Doctoral Program of Higher Education (No.20110041110009).■REFERENCES(1)Li,Q.,Ed.Self-Organized Organic Semiconductors:From Materials to Device Applications ;John Wiley &Sons:Hoboken,NJ,2011.(2)Li,Q.,Ed.Liquid Crystals Beyond Displays:Chemistry,Physics,and Applications ;John Wiley &Sons:Hoboken,NJ,2012.(3)Li,L.;Kang,S.W.;Harden,J.;Sun,Q.;Zhou,X.;Dai,L.;Jakli,A.;Kumar,S.;Li,Q.Liq.Cryst.2008,35,233−239.(4)Zhou,X.;Kang,S.-W.;Kumar,S.;Li,Q.Liq.Cryst.2009,3,269−274.(5)Zhou,X.;Kang,S.-W.;Kumar,S.;Kulkarni,R.R.;Cheng,S.Z.D.;Li,Q.Chem.Mater.2008,20,3551−3553.(6)Fitzner,R.;Elschner,C.;Weil,M.;Uhrich,C.;Koerner,C.;Riede,M.;Leo,K.;Pfeiffer,M.;Reinold, E.;Mena-Osteritz, E.;Baeuerle,P.Adv.Mater.2012,24,675−680.(7)Schrader,M.;Fitzner,R.;Hein,M.;Elschner,C.;Baumeier,B.;Leo,K.;Riede,M.;Baeuerle,P.;Andrienko,D.J.Am.Chem.Soc.2012,134,6052−6056.(8)Sun,Q.;Dai,L.;Zhou,X.;Li,L.;Li,Q.Appl.Phys.Lett.2007,91,253505/1−253505/3.(9)Struijk,C.W.;Sieval,A.B.;Dakhorst,J.E.J.;van Dijk,M.;Kimkes,P.;Koehorst,R.B.M.;Donker,H.;Schaafsma,T.J.;Picken,。