高二数学充分条件与必要条件
- 格式:pdf
- 大小:837.29 KB
- 文档页数:8
高二数学充分条件与必要条件试题答案及解析1.已知p:x=2,q:0<x<3,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分,又不必要条件【答案】A.【解析】因为命题p:x=2,显然满足0<x<3,即p是q的充分条件;反过来,若0<x<3,则不能推出x=2,即q不能推出p. 故p是q的成分不必要条件.【考点】充分条件与必要条件.2.“”是“函数为奇函数”的条件.(从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择适当的填写)【答案】充分不必要.【解析】易知,当为奇函数,但当函数为奇函数时,有(),所以填充分不必要条件.【考点】充分必要条件的判断.3.成立的一个必要不充分条件是( )A.B.C.D.【答案】C.【解析】根据一元二次不等式的解法,可得的解集为,进而依次分析选项,判断选项所给的不等式与的关系,中“”是“”成立的充要条件,不合题意;中“”是“”成立的充分不必要条件,不合题意;中“”是“”成立的必要不充分条件,符合题意;中“”是“”成立的既不充分又不必要条件,不合题意.故选C.【考点】必要条件、充分条件与充要条件的判断.4.成立的一个必要不充分条件是( )A.B.C.D.【答案】C.【解析】根据一元二次不等式的解法,可得的解集为,进而依次分析选项,判断选项所给的不等式与的关系,中“”是“”成立的充要条件,不合题意;中“”是“”成立的充分不必要条件,不合题意;中“”是“”成立的必要不充分条件,符合题意;中“”是“”成立的既不充分又不必要条件,不合题意.故选C.【考点】必要条件、充分条件与充要条件的判断.5.“x>1”是“”的____________条件(填充分不必要,必要不充分,充要,既不充分也不必要).【答案】充分不必要【解析】由于⇔x<0或x>1.∴当“x>1”时,“”成立即“x>1”是“|x|>1”充分条件;当“”成立时,x>1或x<0,即“x>1”不一定成立.即“x>1”是“”不必要条件.“x>1”是“”充分不必要条件.故答案为:充分不必要.【考点】必要条件、充分条件与充要条件的判断.6.设条件,条件,其中为正常数.若是的必要不充分条件,则的取值范围是()A.B.C.D.【答案】A【解析】因为条件,所以可得,又因为条件,其中为正常数.且是的必要不充分,即,所以,故选A.【考点】1.绝对值不等式的解法;2.数轴表示解集;3.充分必要条件.7.设,其中.那么“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件【答案】B【解析】令=-1,则m=-1,M=1,所以,而,则.故选B.【考点】充要条件的判断方法.8.“a=1”是“函数f(x)=|x﹣a|在区间[1,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,,此时函数在上单调递增;当函数在上单调递增时,则在上即恒成立,所以。
高二数学充分条件与必要条件试题答案及解析1.设p:x<-1或x>1,q:x<-2或x>1,则p是q的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】利用集合关系法。
因为,,所以,p是q的必要不充分条件,故选B。
【考点】本题主要考查充要条件的概念。
点评:简单题,充要条件的判断,涉及知识面较广,从方法来讲有三种思路:定义法,等价关系法,集合关系法。
2.已知条件p:x<1,条件q:<1,则p是q的条件.【答案】既不充分也不必要条件【解析】根据题意,由于条件p:x<1,条件q:<1,那么可知q:,因此根据集合之间的互不包含的关系,可知p是q的条件既不充分也不必要条件。
【考点】充分条件点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.3.“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】可得;可得,由成立,反之不成立,所以“”是“” 必要不充分条件【考点】条件关系点评:若成立,则是的充分条件,是的必要条件4.设a∈R,则a>1是<1的 ()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】根据题意,由于,可知条件表示的集合是结论集合的真子集,那么可知条件可以推出结论,反之不成立,因此可知为充分但不必要条件,选A.【考点】充分条件点评:解决的关键是对于结论和条件表示的集合的关系的确定,属于基础题。
充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。
例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。
在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。
以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。
高二数学必修四“充要条件”具体概念解析以下是作者为大家整理的关于《高二数学必修四“充要条件”具体概念解析》的文章,供大家学习参考!“充要条件”是数学中极其重要的一个概念。
(1)先看“充分条件和必要条件”当命题“若p则q”为真时,可表示为p => q,则我们称p为q的充分条件,q是p的必要条件。
这里由p => q,得出p为q的充分条件是容易知道的。
但为何说q是p的必要条件呢?事实上,与“p => q”等价的逆否命题是“非q => 非p”。
它的意思是:若q不成立,则p一定不成立。
这就是说,q对于p是必不可少的,因此是必要的。
(2)再看“充要条件”若有p =>q,同时q => p,则p既是q的充分条件,又是必要条件。
简称为p是q的充要条件。
记作pq回想一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也能够推出命题A成立,那么称A等价于B,记作AB。
“充要条件”的含义,实际上与“等价于”的含义完全相同。
也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。
如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
明显,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。
“仅当”表示“必要”。
(4)一样地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
高二数学充分条件与必要条件试题答案及解析1.若是非零实数,则“”是“”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】可以把看成函数的自变量和因变量,所以表示的是二、四象限的角平分线;表示的是除去原点以外的所有点,所以根据小范围推大范围的结论可得:“”是“”成立的充分不必要条件.【考点】充要条件.2.“”是“函数为奇函数”的条件.(从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择适当的填写)【答案】充分不必要.【解析】易知,当为奇函数,但当函数为奇函数时,有(),所以填充分不必要条件.【考点】充分必要条件的判断.3.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】,即,若,则,即由不一定能推出,故选A。
【考点】(1)不等式的基本性质;(2)充分必要条件的判断。
4.若“0<x<1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,则实数a的取值范围是()A.(-∞,0]∪[1,+∞)B.(-1,0)C.[-1,0]D.(-∞,-1)∪(0,+∞)【答案】C【解析】由不等式可得,由是的充分不必要条件知,,则.【考点】充要条件.5.设为正实数,则“”是“”成立的()A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件【答案】D【解析】因为,因为大前提是,所以,所以“”是“”的充要条件,选D.【考点】充分必要条件.6.是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由,可得,结合数轴,知选A【考点】含绝对值的不等式,充要条件.7.2x2-5x-3<0的一个必要不充分条件是()A.-<x<3B.-<x<0C.-3<x<D.-1<x<6【答案】D【解析】不等式的解集是A={x|}{x|-1<x<6},∴答案是D.【考点】充要条件.8.的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】设命题p:,命题q:;由于,,所以,但,故p是q的必要不充分条件.【考点】必要条件、充分条件与充要条件的判断.9.“”是“直线与圆相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若直线与圆相交,则圆心到直线的距离小于半径,所以,所以答案是A.【考点】(1)直线与圆的位置关系;(2)充要条件.10.“”是“直线与直线平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】当直线与直线平行时,,所以“”是“直线与直线平行”的充要条件,选C.【考点】1.两直线平行的判定;2.充分必要条件.11.两个三角形全等是这两个三角形相似的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件【答案】A【解析】∵两个三角形全等是两个三角形相似的特殊情况,∴答案为A.【考点】充要条件.12.设A,B两点的坐标分别为(-1,0),(1,0),条件甲:·>0;条件乙:点C的坐标是方程的解,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】设满足条件,则.选【考点】1.必要条件、充分条件与充要条件的判断;2.数量积表示两个向量的夹角.13.集合A=(―∞,―2]∪[3,+∞),关于x的不等式(x-2a)·(x+a)>0的解集为B(其中a<0). (1)求集合B;(2)设p:x∈A,q:x∈B,且Øp是Øq的充分不必要条件,求a的取值范围。
高二数学知识点:判断充分与必要条件的方法一、定义法对于“?圯”,可以简单的记为箭头所指为必要,箭尾所指为充分。
在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义。
例1已知p:-2分析条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简。
解设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq。
综上,可知p是q的必要但不充分条件。
点评解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断。
二、集合法如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,则x∈A和x∈B互为充要条件;④若A?芫B且A?芸B,则x∈A和x∈B互为既不充分也不必要条件。
例2设x,y∈R,则x2+y22是|x|+|y|≤的()条件,是|x|+|y|2的()条件。
A。
充要条件B。
既非充分也非必要条件C。
必要不充分条件?摇D。
充分不必要条件解如右图所示,平面区域P={(x,y)|x2+y22}表示圆内部分(不含边界);平面区域Q={(x,y)||x|+|y|≤}表示小正方形内部分(含边界);平面区域M={(x,y)||x|+|y|2}表示大正方形内部分(不含边界)。
由于(,0)?埸P,但(,0)∈Q,则P?芸Q。
又P?芫Q,于是x2+y22是|x|+|y|≤的既非充分也非必要条件,故选B。
同理P?芴M,于是x2+y22是|x|+|y|2的充分不必要条件,故选D。
点评由数想形,以形辅数,这种解法正是数形结合思想在解题中的有力体现。
高二数学充分条件与必要条件试题答案及解析1.已知关于x的一元二次方程 (m∈Z)① mx2-4x+4=0,② x2-4mx+4m2-4m-5=0,求方程①和②都有整数解的充要条件.【答案】.【解析】(1)判定是的什么条件,需要从两方面去理解:一是由条件能否推得;二是由条件能否推得.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可以利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;(2)判断充要条件的方法:(1)定义法:直接判断若则、若则的真假;(2)等价法:利用与,与,与的等价关系,对于条件或结论是否定式的命题,一般运用等价法;(3)利用集合间的包含关系判断:若,则是的充分条件或是的必要条件,若,则是的充要条件.试题解析:解:方程①有实根的充要条件是解得m 1.方程②有实根的充要条件是,解得故m=-1或m=0或m=1.当m=-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m=1.反之,m=1①②都有整数解.∴①②都有整数解的充要条件是m=1【考点】充要条件的探索.2.条件,条件,则p是q的().A.充分不必要条件B.必要不充分条件充要条件 D.既不充分又不必要条件【答案】A【解析】,,的充分不必要条件.【考点】四种条件的判定.3.已知,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为由,但是,所以,是的充分不必要条件.故选A.【考点】1、对数函数的性质;2、指数函数的性质;3、充要条件.4.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】,即,若,则,即由不一定能推出,故选A。
【考点】(1)不等式的基本性质;(2)充分必要条件的判断。
5.不等式与同时成立的充要条件为()A.B.C.D.【答案】B【解析】∵,因此现要同时成立,需.【考点】作差法证明不等式.6.设、两点的坐标分别为、,条件甲:点满足;条件乙:点的坐标是方程的解. 则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解析】设,条件甲:.其对应的图形是圆内,而点的坐标是方程的解的点所对应的图形是椭圆,观察图形得甲是乙的必要不充分条件即可.【考点】必要条件、充分条件与充要条件的判断;数量积表示两个向量的夹角.7.“”是“”的()A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】,所以“”是“”的充分而不必要条件.【考点】必要条件、充分条件与充要条件的判断.8.是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由,可得,结合数轴,知选A【考点】含绝对值的不等式,充要条件.9.已知p: ,q: ,若是的必要不充分条件,求实数m的取值范围。