高中数学充分条件与必要条件 例题解析
- 格式:doc
- 大小:79.50 KB
- 文档页数:6
命题判断、充分条件、必要条件类型题数学思想:集合与补集,数型结合、正难则反一、判断命题的真假例1:(正面)设集合A,B,有下列四个命题。
①A⊈B⇔与对任意x∈A,都有x∉B;②A⊈B⇔A∩B=φ;③A⊈B⇔B⊆A⊆⊆A⊈B⇔⊆⊆x⊆A⊆⊆⊆x⊆B⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆ ⊆ ⊆点评:正确的命题要有充分的依据,不一定正确的命题要举出反例,这是最基本的数学思维方式,也是两种不同的解题方向,有时举出反例可能比进行推理论证更困难,二者同样重要。
例2:判断下列命题的真假.(反面)(1)若a>b,则ac2>bc2;(2)正项等差数列的公差大于零。
解:(1)假命题,当c=0时,ac2=b c2;(2)假命题,如数列20,17,14,11,8.点评:判断一个命题为假命题,只要举一个反例即可。
例3:(利用等价命题判断命题的真假)命题“若a>-6,则a>-3”以及它的逆命题、否命题、逆否命题中真命题的个数为A.1B.2C.3D.4因为原命题为假命题,所以其逆否命题为假命题。
因为其逆命题若“a>-3,则a>-6”为真命题,故选B。
点评:因为原命题与其逆否命题的真假性保持一致,原命题的否命题与原命题的逆命题也互为逆否命题,所以判断原命题与其逆命题、否命题、逆否命题的真假性时,只需判断两组逆否命题中的各一个命题的真假性即可。
四种命题中,真命题的个数只能是0,2或4个。
二、判断充分条件、必要条件以及充要条件的方法例4:(集合思想)已知p:|x|<1.q:x2+x-20<0,试判断┐p是┐q的什么条件。
解:设p、q对应集合P,Q,则P={x|-1<x<1),Q={x|-5<x<4).因为P⫋Q,所以p=>q,且q⇏p,所以p是q的充分不必要条件。
所以┐q➩┐p,┐p⇏┐q,所以┐p是┐q的必要不充分条件。
点评:若给出两个条件,通过数轴或者veen图得到两个条件的范围大小,从而得出结论。
高中数学第三讲充分条件和必要条件练习北师大版选修21一、考试说明理解必要条件、充分条件的意义,会分析四种命题的相互关系二、基础知识建构1、“若p则q”是真命题,即p⇒q;“若p则q”为假命题,即p⎭q.2、(1)若①,则p是q的充分不必要条件.(2)若p⎭ q, 但p⇐q,则p是q的②.(3)若③,则p是q的充分条件,也是必要条件,也是充要条件(一般要回答是充要条件)(4)若④,则p是q的既不充分也不必要条件.3、证明p是q的充要条件,分两步:证明:①充分性,把p当作已知条件,结合命题的前提条件,推出q.②必要性,把q当作已知条件,结合命题的前提条件,推理论证得出p.所以,p是q的充要条件.4、充分条件、必要条件常用判断法(1)定义法:判断B是A的什么条件,实际上就是判断B⇒A或A⇒B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义即可判断;(2)转换法:当所给命题的充要条件不易判断时,可对命题的逆否命题进行判断;(3)集合法:在命题的条件和结论间的关系判断有困难时,有时可以从集合的角度来考虑,记条件p、q对应的集合分别为A、B、,则:若A⊆B,则p是q的充分条件;若A B,则p是q的充分非必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要非充分条件;若A=B,则p是q的充要条件若A∑B,且A⎛B,则p是q的非充分又非必要条件.5、当p⇒q时,称条件p是条件q的充分条件,意指为使q成立,具备条件p就足够了,“充分”即“足够”的意思,当p⇐q时,也称条件p是条件q的必要条件,因为q⇒p等价于非p⇒非q,即若不具备q,则p必不成立,所以要使p成立必须具备q .“必要”即“必须具备”的意思. “若p则q”形式的命题,其条件p与结论q之间的逻辑关系有四种可能:(1)p⇒q但q⇒p 不一定成立:这时,p是q的充分而不必要条件;(2)q⇒p但p⇒q不一定成立:这时,称p是q 的必要而不充分条件;(3)p⇒q且q⇒p:这时,称p是q的充分且必要条件;(4)p⇒q不一定成立且q⇒p不一定成立:这时,称p是q的既不充分也不必要条件.6、由于“充分条件与必要条件”是四种命题的关系的深化,它们之间存在着密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断7、一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
充分条件与必要条件例题解析能力素质例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ]A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔∵是成立的充要条件,∴③C B C B由①③得A C ④由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇ 当且仅当A =B 时,甲为乙的充要条件.例5 设A 、B 、C 三个集合,为使A (B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件分析 可以结合图形分析.请同学们自己画图.∴A (B ∪C).但是,当B =N ,C =R ,A =Z 时,显然A (B ∪C),但AB 不成立, 综上所述:“A B ”“A (B ∪C)”,而 “A(B ∪C)”“A B ”. 即“A B ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根;(4)p :|x -1|>2,q :x <-1.其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质.解 (1)p 是q 的必要条件(2)p 是q 充要条件(3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <b e ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题),∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422a a2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442a a 综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s)r 是q 的充要条件;(r q ,q s r)p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0A B A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a .解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy 故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏. 例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ]A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A .说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。
例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。
在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。
以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。
第8讲:充分条件和必要条件【知识点梳理】知识点:充分条件与必要条件【考点解析】考点一:充分条件的判断例1.设x ∈R ,则“220x x -<”是“12x -<”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分又不必要条件变式训练1:“三角形是等腰三角形”是“三角形是等边三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件变式训练2:2x =是260x x +-=的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .即不充分也不必要条件变式训练3:设x ∈R ,则“2230x x --<”是“13x -<”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件变式训练4:使得()20x y -=成立的一个充分不必要条件是( ) A .20x y +-= B .22(2)0x y +-= C .221x y +=D .0x =或2y =考点二:必要条件的判断例2.已知a ,b ,c 是实数,则下列命题是真命题的( ) A .“a b >”是“22a b >”的充分条件 B .“a b >”是“22a b >”的必要条件 C .“a b >”是“22ac bc >”的充分条件 D .“a b >”是“22ac bc >”的必要条件变式训练1:若a R ∈,则“1=a ”是“1a =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件变式训练2:“2320x x -+>”是“1x <或4x >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件变式训练3:已知a ,b ,R c ∈,则“a b >”是“22ac bc >”成立的( ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件变式训练4:使得“1x >”成立的一个必要且不充分的条件是( ) A .21x >B .3 1x >C .11x> D .2x >考点三:充分条件与必要条件(一)例3.华夏文明五千多年,孕育出璀璨的诗歌篇章,诗歌“黄沙百战穿金甲,不破楼兰终不还”一句引自王昌龄的《从军行七首(其四)》,楼兰,汉时西域国名.据《汉书》载:汉武帝时,曾使通大宛国,楼兰王阻路,攻截汉朝使臣.汉昭帝元凤四年(公元前77)霍光派傅介子去楼兰,用计斩杀楼兰王.唐时与吐蕃在此交战颇多,王昌龄诗中借用傅介子斩楼兰王典故,表明征战将士誓平边患的决心.那么,“不破楼兰终不还”中,“还”是“破楼兰”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件变式训练1:老师经常说“努力不一定成功,但是不努力一定不会成功”,若这句话是真命题,则“努力”是“成功”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件变式训练2:为促进离汉人员安全有序流动,统筹推进疫情防控和复工复产复学,国务院联防联控机制日前印发《关于做好离汉人员新冠肺炎检测和健康管理服务工作的通知》,重点人群离汉前按照“应检尽检”原则进行新冠病毒核酸检测,离汉人员到达目的地后满足相应条件即可正常复工复产复学.这里的“相应条件”是“正常复工复产复学”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件考点四:充分条件与必要条件的应用(二)例4.已知,a b R ∈,那么“1a b +>”是“221a b +>”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件变式训练1:如果2:2,:4,p x q x >->则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件变式训练2:如果p 是q 的必要不充分条件,q 是r 的充要条件,r 是s 的充分不必要条件,那么p 是s 的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件考点五:充分条件与必要条件的应用(三)例5.已知p :1x >或2x <-,q :x a >,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .{}2a a <- B .{}2a a >-C .{}21a a -<≤D .{}1a a ≥变式训练1:若“14x ≤≤”是“4a x a ≤≤+”的充分不必要条件,则实数a 的取值范围为( ) A .0a ≤B .0a ≤或1a ≥C .01a <<D .01a ≤≤变式训练2:已知条件12p x +≤:,条件q x a ≤:,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .1a ≥B .1a ≤C .1a ≥-D .3a ≤﹣变式训练3:已知:11p m x m -<<+,()():260q x x --<,且q 是p 的必要不充分条件,则实数m 的取值范围为( ) A .35m <<B .35m ≤≤C .5m >或3m <D .5m >或3m ≤考点六:充分条件与必要条件的应用(四)例6.已知集合{}211A x m x m =-<<+,{}24B x x =<. (1)当2m =时,求AB ,A B ;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.变式训练1:已知集合{}12A x x =-<<,{}|1120B x m x m m =-<<+>,,若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围变式训练2:已知集合{14}M xx =-<<∣,{0}N x x a =->∣. (1)当1a =时,求M N ⋂,M N ⋃;(2)若x M ∈是x ∈N 的充分不必要条件,求实数a 的取值范围.【课堂检测】1、“5x =”是“2450x x --=”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2、设a R ∈,则“23a <<”是“2560a a --<”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3、设命题甲为“03x <<”,命题乙为“12x -<“,那么甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4、设R a ∈,则“a >22a >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件5、“04a <<”是“210ax ax ++>对x ∈R 恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6、若“x a >”是“13x<”的一个充分不必要条件,则下列a 的范围满足条件的是( ) A .2a > B .102a <<C .13a <-D .13a -<<7、若“2x >”是“x a >”的必要不充分条件,则a 的取值范围是( ) A .{|2}a aB .{}|2a a ≤C .{}|2a a >D .{|2}a a ≥8、“三角形ABC 为锐角三角形”是“A ∠为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9、设,a b ∈R ,下列四个条件中,使a b <成立的必要不充分条件是( ) A .1a b <+B .1a b <-C .22a b <D .33a b <10、设集合{}|2M x x =>,{}|6P x x =<,那么“x M ∈或x P ∈”是“x M P ∈”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件11、使不等式22530x x --≥成立的一个必要不充分条件是( ) A .0x ≥或2x -≤ B .0x <或2x > C .1x <-或4x >D .12x ≤-或3x ≥12、使()f x = )A .16x -≤≤B .13xC .26x -<<D .61x -<<13、不等式22530x x --≥成立的一个充分不必要条件是( ) A .0x ≥ B .0x <或2x > C .2x <-D .12x ≤-或3x ≥14、王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( ) A .必要条件 B .充分条件C .充要条件D .既不充分又不必要条件15、盛唐著名边塞诗人王昌龄在其作品《从军行》中写道:青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还.其最后一句中“攻破楼兰”是“返回家乡”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16、唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙.”其中后一句“成仙”是“到蓬莱”的()A.充分非必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件17、2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID-19(新冠肺炎)新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征.“某人表现为发热、干咳、浑身乏力”是“新冠肺炎患者”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件18、2019年12月,湖北省武汉市发现多起病毒性肺炎病例.2020年1月12日,世界卫生组织正式将造成此次肺炎疫情的病毒命名为“2019新型冠状病毒”.2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID-19(新冠肺炎)。新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征。“某人表现为发热、干咳、浑身乏力”是“新冠肺炎患者”的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件19、“不到长城非好汉,屈指行程二万”,出自毛主席1935年10月所写的一首词《清平乐·六盘山》,反映了中华民族的一种精神气魄,一种积极向上的奋斗精神,其中“到长城”是“好汉”的()A.充要条件B.既不充分也不必要条件C.充分条件D.必要条件20、钱大姐常说“好货不便宜”,她这话的意思是:“好货”是“不便宜”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件21、除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件22、已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( )A .12m >B .12m ≥C .1mD .m 1≥23、已知:12p x +≥,:q x a ≥,若p 是q 的必要不充分条件,则a 的取值范围是( ) A .1a ≥B .1a >C .3a ≥-D .3a >-24、若1x a -<成立的充分不必要条件是312x <<,则a 的取值范围( ) A .122a <<B .122a ≤≤ C .12a ≤或2a ≥D .12a <或2a >25、已知:12p x -≤<,2:21q a x a ≤≤+,若p 是q 的必要条件,则实数a 的取值范围是( )A .1a ≤-B .112a -<≤-C .112a -<≤ D .112a -≤<26、设p :112x ≤≤;q :1a x a ≤≤+,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .102a <<B .102a ≤≤C .102a ≤<D .102a <≤27、已知条件p :2230x x --≤,条件q :x a ≤,若p 是q 的充分非必要条件,利用教材中《子集与推出关系》的方法,求出实数a 的取值范围.28、设{|1A x x =≤或4},{|22}x B x a x a ≥=-<<. (1)若AB R =,求实数a 的取值范围;(2)设:,:p x A q x B ∈∈,且p 是q 的必要不充分条件,求实数a 的取值范围.。
§1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件1.当命题“如果p,则q”经过推理证明判定为真命题时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.这几种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.2.若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件1.一般地,如果p⇒q,且q⇒p,就记作p⇔q,此时,我们说,p是q的充分且必要条件,简称充要条件.p是q的充要条件,又常说成q当且仅当p,或p与q等价.2.从集合的角度判断充分条件、必要条件和充要条件.若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件若A=B,则p,q互为充要条件若A⊈B且B⊈A,则p既不是q的充分条件,也不是q的必要条件其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.若p是q的充分条件,则p是唯一的.(×)2.“若p,则q”是真命题,而“若q,则p”是假命题,则p是q的充分不必要条件.(√) 3.q不是p的必要条件时,“p⇏q”成立.(√)4.若p是q的充要条件,则命题p和q是两个相互等价的命题.(√)5.若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题型一充分、必要、充要条件的判断例1下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分也不必要条件)(1)p:x=1或x=2,q:x-1=x-1;(2)p:m>0,q:x2+x-m=0有实根;(3)p:四边形的对角线相等,q:四边形是平行四边形.考点充要条件的概念及判断题点充要条件的判断解(1)因为x=1或x=2⇒x-1=x-1,x-1=x-1⇒x=1或x=2,所以p是q的充要条件.(2)因为m>0⇒方程x2+x-m=0的判别式Δ=1+4m>0,即方程有实根,方程x2+x-m=0有实根,即Δ=1+4m≥0⇏m>0,所以p是q的充分不必要条件.(3)p是q的既不充分也不必要条件.反思感悟充分条件、必要条件的两种常用的判断方法(1)定义法:①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1下列各题中,试分别指出p是q的什么条件.(1)p :两个三角形相似,q :两个三角形全等; (2)p :f (x )=x ,q :f (x )在(-∞,+∞)上为增函数; (3)p :A ⊆B ,q :A ∩B =A ; (4)p :a >b ,q :ac >bc . 考点 充要条件的概念及判断 题点 充要条件的判断解 (1)∵两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似, ∴p 是q 的必要不充分条件.(2)∵f (x )=x ⇒f (x )在(-∞,+∞)上为增函数,但f (x )在(-∞,+∞)上为增函数⇏f (x )=x ,∴p 是q 的充分不必要条件.(3)∵p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.(4)∵p ⇏q ,且q ⇏p ,∴p 是q 的既不充分也不必要条件.题型二 充分条件、必要条件、充要条件的应用命题角度1 由充分条件、必要条件求参数范围例2 已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件,即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. 引申探究1.若本例中“p 是q 的必要不充分条件”改为“p 是q 的充分不必要条件”,其他条件不变,求实数m 的取值范围.解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的充分不必要条件,设p 代表的集合为A ,q 代表的集合为B ,所以A B .所以⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.解不等式组得m >9或m ≥9, 所以m ≥9,即实数m 的取值范围是[9,+∞).2.若本例中p ,q 不变,是否存在实数m 使p 是q 的充要条件?若存在,求出m 的值;若不存在,说明理由.解 因为p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0).若p 是q 的充要条件,则⎩⎪⎨⎪⎧-2=1-m ,10=1+m ,m 不存在.反思感悟 由条件关系求参数的取值(范围)的步骤 (1)根据条件关系建立条件构成的集合之间的关系. (2)根据集合端点或数形结合列方程或不等式(组)求解.跟踪训练2 (1)“不等式(a +x )(1+x )<0成立”的一个充分不必要条件是“-2<x <-1”,则实数a 的取值范围是________. 考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 (2,+∞)解析 不等式变形为(x +1)(x +a )<0, 因为当-2<x <-1时不等式成立, 所以不等式的解集是-a <x <-1. 由题意有(-2,-1)(-a ,-1), 所以-2>-a ,即a >2.(2)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 [-1,5]解析 因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P ,所以⎩⎪⎨⎪⎧ a -4≤1,a +4≥3,即⎩⎪⎨⎪⎧a ≤5,a ≥-1,所以-1≤a ≤5.命题角度2 探求充要条件例3 求关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立的充要条件. 考点 充要条件的概念及判断 题点 寻求充要条件解 由题意可知,关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立,等价于对于方程ax 2-ax +1=0中,⎩⎨⎧a >0,Δ<0⇔0<a <4.反思感悟 求一个问题的充要条件,就是利用等价转化的思想,使得转化前后的两个命题所对应的解集是两个相同的集合,这就要求我们转化的时候思维要缜密.跟踪训练3 直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是m =________. 考点 充要条件的概念及判断 题点 寻求充要条件 答案 -4或0解析 由题意知,直线与圆相切等价于圆心(1,1)到直线x +y +m =0的距离等于半径2, 即|2+m |2=2,得m =-4或0.充要条件的证明典例 求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 证明 充分性(由ac <0推证方程有一正根和一负根),∵ac <0,∴一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac >0, ∴原方程一定有两不等实根,不妨设为x 1,x 2,则x 1x 2=ca <0,∴原方程的两根异号,即一元二次方程ax 2+bx +c =0有一正根和一负根. 必要性(由方程有一正根和一负根推证ac <0), ∵一元二次方程ax 2+bx +c =0有一正根和一负根, 不妨设为x 1,x 2,∴由根与系数的关系得x 1x 2=ca <0,即ac <0,此时Δ=b 2-4ac >0,满足原方程有两个不等实根.综上可知,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.[素养评析] (1)一般地,证明“p 成立的充要条件为q ”时,在证充分性时应以q 为“已知条件”,p 是该步中要证明的“结论”,即q ⇒p ;证明必要性时则是以p 为“已知条件”,q 为该步中要证明的“结论”,即p ⇒q .(2)通过论证数学命题,学会有逻辑地思考问题,探索和表述论证过程,能很好的提升学生的逻辑思维品质.1.“-2<x <1”是“x >1或x <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充要条件 答案 C解析 ∵-2<x <1⇏x >1或x <-1,且x >1或x <-1⇏-2<x <1,∴“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.2.设命题p :x 2-3x +2<0,q :x -1x -2≤0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 命题p :1<x <2;命题q :1≤x <2,故p 是q 的充分不必要条件. 3.“θ=0”是“sin θ=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由于当“θ=0”时,一定有“sin θ=0”成立,反之不成立,所以“θ=0”是“sin θ=0”的充分不必要条件.4.记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________. 答案 (-∞,-3]解析 由于A ={x |x 2+x -6<0}={x |-3<x <2},B ={x |y =lg(x -a )}={x |x >a },而“x ∈A ”是“x ∈B ”的充分条件,则有A ⊆B ,则有a ≤-3.5.“a =0”是“直线l 1:x -2ay -1=0与l 2:2x -2ay -1=0平行”的________条件. 答案 充要解析 (1)∵a =0,∴l 1:x -1=0,l 2:2x -1=0, ∴l 1∥l 2,即a =0⇒l 1∥l 2. (2)若l 1∥l 2,当a ≠0时, l 1:y =12a x -12a ,l 2:y =1a x -12a .令12a =1a,方程无解. 当a =0时,l 1:x -1=0,l 2:2x -1=0,显然l 1∥l 2. ∴a =0是直线l 1与l 2平行的充要条件.充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,常采用如下方法:(1)定义法:分清条件p 和结论q ,然后判断“p ⇒q ”及“q ⇒p ”的真假,根据定义下结论.(2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合A={x|p(x)}及集合B={x|q(x)},利用集合之间的包含关系加以判断.一、选择题1.“ab ≠0”是“直线ax +by +c =0与两坐标轴都相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 ab ≠0,即a ≠0且b ≠0,此时直线ax +by +c =0与两坐标轴都相交;又当ax +by +c =0与两坐标轴都相交时,a ≠0且b ≠0.2.下列“若p ,则q ”形式的命题中,p 是q 的充分条件的命题个数为( ) ①若f (x )是周期函数,则f (x )=sin x ; ②若x >5,则x >2; ③若x 2-9=0,则x =3. A .0 B .1 C .2 D .3 答案 B解析 ①中,周期函数还有很多,如y =cos x ,所以①中p 不是q 的充分条件;很明显②中p 是q 的充分条件;③中,当x 2-9=0时,x =3或x =-3,所以③中p 不是q 的充分条件.所以p 是q 的充分条件的命题的个数为1,故选B.3.已知向量a ,b 为非零向量,则“a ⊥b ”是“|a +b |=|a -b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 |a +b |2=|a -b |2⇔a 2+b 2+2a ·b =a 2+b 2-2a ·b ⇔a ·b =0.4.已知圆O :x 2+y 2=1,直线l :ax +by +c =0,则a 2+b 2=c 2是圆O 与直线l 相切的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 由直线与圆相切得|c |a 2+b 2=1,即a 2+b 2=c 2;a 2+b 2=c 2时也有|c |a 2+b 2=1成立,即直线与圆相切.5.若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a >0且b 2-4ac <0时,对任意x ∈R ,ax 2+bx +c >0成立,即充分性成立.反之,则不一定成立.如当a =0,b =0,且c >0时,对任意x ∈R ,ax 2+bx +c >0成立.综上,“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的充分不必要条件.6.设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)内不是单调函数的充要条件是( ) A .0<m <12B .0<m <1 C.12<m <1 D .m >1答案 B解析 f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1.f (x )的图象在(0,1)内单调递减, 在(1,+∞)内单调递增.f (x )在(m,2m +1)(m >0)上不是单调函数等价于⎩⎪⎨⎪⎧m <1,2m +1>1⇔0<m <1. 7.已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A ,B ,C 三点共线的充要条件是( ) A .λ1=λ2=-1 B .λ1=λ2=1 C .λ1λ2=1 D .λ1λ2=-1答案 C解析 依题意,知A ,B ,C 三点共线⇔AB →=λAC →⇔λ1a +b =λa +λλ2b ⇔⎩⎪⎨⎪⎧λ1=λ,λλ2=1,即λ1λ2=1.故选C.8.设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别是集合M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a 1a 2=b 1b 2=c 1c 2<0,则M ≠N , 即a 1a 2=b 1b 2=c 1c 2⇏M =N ; 反之,若M =N =∅,即两个一元二次不等式的解集为空集时,只要求判别式Δ1<0,Δ2<0(a 1<0,a 2<0),而与系数之比无关.二、填空题9.设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由于方程有整数根,由判别式Δ=16-4n ≥0.得1≤n ≤4,逐个分析,当n =1,2时,方程没有整数解;而当n =3时,方程有正整数解1,3;当n =4时,方程有正整数解2.故n =3或4.10.设p :1≤x <4,q :x <m ,若p 是q 的充分条件,则实数m 的取值范围为________. 答案 [4,+∞)解析 据题意知,p ⇒q ,则m ≥4.11.给出下列三个命题:①“a >b ”是“3a >3b ”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件.其中真命题的序号为________.答案 ③解析 ①∵函数y =3x 是R 上的增函数,∴“a >b ”是“3a >3b ”的充要条件,故①错误;②∵2π>π2,cos 2π>cos π2,∴α>β⇏cos α<cos β;∵cos π<cos 2π,π<2π,∴cos α<cos β⇏α>β.∴“α>β”是“cos α<cos β”的既不充分也不必要条件,故②错误;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件,正确.三、解答题12.已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0},若p 是q 的充分条件,求实数a 的取值范围.解 化简B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1}; ②当a <13时,B ={x |3a +1≤x ≤2}. 因为p 是q 的充分条件且A 为非空集合,所以A ⊆B ,于是有⎩⎪⎨⎪⎧ a ≥13,a 2+1≤3a +1,2a ≥2,或⎩⎪⎨⎪⎧ a <13,a 2+1≤2,2a ≥3a +1,解得1≤a ≤3或a =-1.综上,a 的取值范围是{a |1≤a ≤3或a =-1}.13.设a ,b ,c 是△ABC 的三个内角A ,B ,C 所对的边.求证:a 2=b (b +c )的充要条件是A =2B .证明 充分性:∵A =2B ,∴A -B =B ,则sin(A -B )=sin B ,则sin A cos B -cos A sin B =sinB ,结合正弦、余弦定理得a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc=b ,化简整理得a 2=b (b +c ); 必要性:由余弦定理a 2=b 2+c 2-2bc cos A ,且a 2=b (b +c ),得b 2+bc =b 2+c 2-2bc cos A ,∴1+2cos A =c b =sin C sin B, 即sin B +2sin B cos A =sin C =sin(A +B )=sin A cos B +cos A sin B ,∴sin B =sin A cos B -cos A sin B =sin(A -B ),由于A ,B 均为三角形的内角,故必有B =A -B ,即A =2B . 综上,知a 2=b (b +c )的充要条件是A =2B .14.已知p :x 2+2x -3>0,q :x >a (a 为实数).若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是________.答案 [1,+∞)解析 将x 2+2x -3>0化为(x -1)(x +3)>0,所以p :x >1或x <-3,所以綈p :-3≤x ≤1.又綈q :x ≤a ,且綈q 的一个充分不必要条件是綈p ,所以a ≥1.15.设x ,y ∈R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.证明 充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,得|x+y|=|y|,|x|+|y|=|y|,∴等式成立.当xy>0,即x>0,y>0或x<0,y<0时,又当x>0,y>0时,|x+y|=x+y,|x|+|y|=x+y,∴等式成立.当x<0,y<0时,|x+y|=-(x+y),|x|+|y|=-x-y=-(x+y),∴等式成立.总之,当xy≥0时,|x+y|=|x|+|y|成立.必要性:若|x+y|=|x|+|y|且x,y∈R,得|x+y|2=(|x|+|y|)2,即x2+2xy+y2=x2+y2+2|x|·|y|,∴|xy|=xy,∴xy≥0.综上可知,xy≥0是等式|x+y|=|x|+|y|成立的充要条件。
课时分层作业(二) 充分条件与必要条件(建议用时:60分钟)[基础达标练]一、选择题1.下面四个条件中,使“a >b ”成立的充分条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a +1>bA [“p 的充分条件是q ”即“q 是p 的充分条件”,亦即“q ⇒p ”.因为a >b +1⇒a >b ,故选A.]2.函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1 D .m =1A [由f (x )=x 2+mx +1=⎝ ⎛⎭⎪⎫x +m 22+1-m 24,∴f (x )的图像的对称轴为x =-m 2,由题意:-m2=1,∴m =-2.]3.已知p :关于x 的不等式x 2+2ax -a >0的解集是R ,q :-1<a <-12,则p 是q 的( )A .充分条件B .必要条件C .既不充分也不必要条件D .不能确定B [p 所对应的集合为A ={a |-1<a <0},q 所对应的集合为B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1<a <-12, ∴B ⊆A ,∴q ⇒p ,∴p 是q 的必要条件.]4.设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件A [|x -2|<1⇔1<x <3,x 2+x -2>0⇔x >1或x <-2. 由于{x |1<x <3}是{x |x >1或x <-2}的真子集,所以“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件.] 5.有下述说法:①a >b >0是a 2>b 2的充要条件;②a >b >0是1a <1b的充要条件;③a >b >0是a 3>b 3的充要条件.其中正确的说法有( ) A .0个 B .1个 C .2个D .3个A [a >b >0⇒a 2>b 2,a 2>b 2⇒|a |>|b |⇒/a >b >0,故①错. a >b >0⇒1a <1b ,但1a <1b ⇒/a >b >0,故②错.a >b >0⇒a 3>b 3,但a 3>b 3⇒/a >b >0,故③错.]二、填空题 6.“cos α=-32”是“α=56π”的________条件. [解析] α=56π时,cos α=-32,反之不一定成立,故应是必要不充分条件.[答案] 必要不充分7.若“p :x >a ”是“q :x >1或x <-3”的充分不必要条件,则a 的取值范围是________. [解析] p 是q 的充分不必要条件,则p ⇒q 且qp .设A ={}x |x >a ,B ={}x |x >1或x <-3,则A ⊆B ,但B A .如数轴所示,易知a ≥1.[答案] [1,+∞)8.直线l 1:2x +my +1=0与直线l 2:y =3x -1垂直的充要条件是________. [解析] l 1⊥l 2,则2×3+m ×(-1)=0,即m =6. [答案] m =6 三、解答题9.已知M ={x |(x -a )2<1},N ={x |x 2-5x -24<0},若N 是M 的必要条件,求a 的取值范围.[解] 由(x -a )2<1,得a -1<x <a +1, 由x 2-5x -24<0,得-3<x <8, ∵N 是M 的必要条件, ∴M ⊆N ,∴⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,∴-2≤a ≤7.即a 的取值范围是[-2,7].10.已知p :ab ≠0,a +b =1;q :ab ≠0,a 3+b 3+ab -a 2-b 2=0.求证:p 是q 的充要条件.[证明] ①先证充分性成立. ∵ab ≠0,a +b =1, ∴b =1-a .∴a 3+b 3+ab -a 2-b 2=a 3+(1-a )3+a (1-a )-a 2-(1-a )2=a 3+1-3a +3a 2-a 3+a -a 2-a 2-1+2a -a 2=0. ②再证必要性成立. ∵ab ≠0, ∴a ≠0且b ≠0.∵a 3+b 3+ab -a 2-b 2=0,∴(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=0. ∴(a 2-ab +b 2)·(a +b -1)=0. ∵a 2-ab +b 2≠0, ∴a +b =1.由①②知,p 是q 的充要条件.[能力提升练]1.设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [因为0<x <π2,所以0<sin x <1.由x sin x <1知x sin 2 x <sin x <1,因此必要性成立.由x sin 2x <1得x sin x <1sin x ,而1sin x>1,因此充分性不成立.] 2.若A :log 2a <1,B :关于x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一个根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [由log 2a <1,解得0<a <2;而方程x 2+(a +1)x +a -2=0的一个根大于零,另一个根小于零的充要条件是a -2<0,解得a <2.因为命题:“若0<a <2,则a <2”是真命题,而“若a <2,则0<a <2”是假命题,所以“0<a <2”是“a <2”的充分不必要条件,所以A 是B 的充分不必要条件,选A.]3.定义在(-∞,0)∪(0,+∞)上的奇函数f (x )在(0,+∞)上为减函数,且f (2)=0,则“f (x )-f (-x )x<0”是“2x>4”成立的________条件. [解析] ∵f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,∴f (x )-f (-x )=2f (x ),∴f (x )-f (-x )x <0即f (x )x<0,又∵f (x )在(0,+∞)上为减函数,且f (2)=0,∴x ∈(2,+∞),又∵f (x )是(-∞,0)∪(0,+∞)上的奇函数,∴x ∈(2,+∞)∪(-∞,-2),因为2x>4⇔x >2,所以前者是后者的必要不充分条件.[答案] 必要不充分4.设a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别为M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).[解析] 如果a 1a 2=b 1b 2=c 1c 2>0,则M =N ;如果a 1a 2=b 1b 2=c 1c 2<0,则M ≠N ,所以a 1a 2=b 1b 2=c 1c 2M=N .反之,若M =N =∅,即说明二次不等式的解集为空集、与它们的系数比无任何关系,只要求判别式小于零.因此,M =Na 1a 2=b 1b 2=c 1c 2. [答案] 既不充分也不必要5.已知条件p :|x -1|>a 和条件q :2x 2-3x +1>0,求使p 是q 的充分不必要条件的最小正整数a .[解] 依题意得a >0.由条件p :|x -1|>a , 得x -1<-a ,或x -1>a ,∴x <1-a ,或x >1+a . 由条件q :2x 2-3x +1>0,得x <12,或x >1.要使p 是q 的充分不必要条件,即“若p ,则q ”为真命题,逆命题为假命题,应有 ⎩⎪⎨⎪⎧1-a ≤12,1+a >1,或⎩⎪⎨⎪⎧1-a <12,1+a ≥1,解得a ≥12.令a =1,则p :x <0,或x >2, 此时必有x <12,或x >1.即p⇒q,反之不成立.∴最小正整数a为1.。
1.2 充分条件与必要条件1.2.1 充分条件与必要条件 1.2.2 充要条件自主预习·探新知情景引入古代有一次考画师的题目是“深山藏古寺”,考生的画面上有的是崇山峻岭,松柏深处有座寺庙;有的是山峦之间露出寺庙的一角……而有一个考生的画面上只有起伏的山峦,密密的松林,一个和尚正从山脚下沿着一股小道担水上山,却没有寺庙.最后,这幅画被评为第一名.和尚担水上山与深山古寺之间有什么逻辑关系呢?(如果有和尚担水上山,那么山里就有庙……)新知导学1.如果命题“若p,则q”为真,则记为__p⇒q__,“若p则q”为假,记为__p⇒/q__.2.如果已知p⇒q,则称p是q的__充分条件__,q是p的__必要条件__.3.如果既有p⇒q,又有q⇒p,则p是q的__充要条件__,记为__p⇔q__.4.如果p⇒/q且q⇒/p,则p是q的__既不充分也不必要条件__.5.如果p⇒q且q⇒/p,则称p是q的__充分不必要__条件.6.如果p⇒/q且q⇒p,则称p是q的__必要不充分__条件.预习自测1.直线x-y+m=0与圆x2+y2-2x=0有两个不同交点的一个充分不必要条件是( A ) A.-1<m<0 B.-4<m<2C.m<1 D.-3<m<1[解析] 圆方程整理得(x -1)2+y 2=1, 即圆心为(1,0),半径r =1.∵直线x -y +m =0与圆x 2+y 2-2x =0有两个不同交点,∴直线与圆相交,∴|1+m |2<1,即|m +1|<2,解得-2-1<m <2-1.故结合选项得直线x -y +m =0与圆x 2+y 2-2x =0有两个不同交点的一个充分不必要条件是-1<m <0,故选A .2.(2020·天津卷,2)设a ∈R ,则“a >1”是“a 2>a ”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 由a 2>a 得a >1或a <0,反之,由a >1得a 2>a ,则“a >1”是“a 2>a ”的充分不必要条件,故选A .3.(2019·浙江卷,5)若a >0,b >0,则“a +b ≤4”是“ab ≤4”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件[解析] ∵ a >0,b >0,若a +b ≤4,∴ 2ab ≤ a +b ≤4. ∴ ab ≤4,此时充分性成立.当a >0,b >0,ab ≤4时,令a =4,b =1,则a +b =5>4, 这与a +b ≤4矛盾,因此必要性不成立.综上所述,当a >0,b >0时,“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A . 4.设点P (x ,y ),则“x =-3,y =1”是“点P 在直线l :x -y +4=0上”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 由x =-3,y =1⇒x -y +4=0成立,而由x -y +4=0⇒/x =-3,y =1成立,故选A .5.已知p :1-x <0,q :x >a .若p 是q 的充分不必要条件,则实数a 的取值范围是__a <1__.[解析] p :x >1,q :x >a ,∵p 是q 的充分不必要条件.∴a <1.互动探究·攻重难互动探究解疑 命题方向❶充分条件的判断典例1 下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若x >1,则-3x <-3; (2)若x =1,则x 2-3x +2=0; (3)若f (x )=-x3,则f (x )为减函数;(4)若x 为无理数,则x 2为无理数; (5)若l 1∥l 2,则k 1=k 2.[思路分析] 判断命题“若p ,则q ”的真假,从而判定p 是否是q 的充分条件. [解析] 由定义知:若p ⇒q (即原命题为真时),则p 是q 的充分条件.易知(1)(2)(3)是真命题;当x =2时,x 2=2,所以(4)是假命题;当l 1∥l 2时,可能斜率都不存在,故(5)为假命题.即命题(1)(2)(3)中的p 是q 的充分条件.『规律方法』 1.判断p 是q 的充分条件,就是判断命题“若p ,则q ”为真命题. 2.p 是q 的充分条件说明:有了条件p 成立,就一定能得出结论q 成立.但条件p 不成立时,结论q 未必不成立.例如,当x =2时,x 2=4成立,但当x ≠2时,x 2=4也可能成立,即当x =-2时,x 2=4也可以成立,所以“x =2”是“x 2=4”成立的充分条件,“x =-2”也是“x 2=4”成立的充分条件.┃┃跟踪练习1__■下列“若p ,则q ”形式的命题中,p 是q 的充分条件的命题个数为( B ) ①若f (x )是周期函数,则f (x )=sin x ; ②若x >5,则x >2; ③若x 2-9=0,则x =3. A .0B .1C.2 D.3[解析]①中,周期函数还有很多,如y=cos x,所以①中p不是q的充分条件;很明显②中p是q的充分条件;③中,当x2-9=0时,x=3或x=-3,所以③中p不是q的充分条件.所以p是q的充分条件的命题个数为1,故选B.命题方向❷必要条件典例2 下列命题中是真命题的是( D )①“x>3”是“x>4”的必要条件;②“x=1”是“x2=1”的必要条件;③“a=0”是“ab=0”的必要条件;④“函数f(x)的定义域关于坐标原点对称”是“函数f(x)为奇函数”的必要条件.A.①②B.②③C.②④D.①④[思路分析]根据必要条件的定义进行判断.[解析]x>4⇒x>3,故①是真命题;x=1⇒x2=1,x2=1⇒/x=1,故②是假命题;a=0⇒ab=0,ab=0⇒/a=0,故③是假命题;函数f(x)的定义域关于坐标原点对称⇒/函数f(x)为奇函数,函数f(x)为奇函数⇒函数f(x)的定义域关于坐标原点对称,故④是真命题,∴选D.『规律方法』 1.判断p是q的必要条件,就是判断命题“若q,则p”成立;2.p是q的必要条件理解要点:①有了条件p,结论q未必会成立,但是没有条件p,结论q一定不成立.②如果p是q的充分条件,则q一定是p的必要条件.真命题的条件是结论的充分条件;真命题的结论是条件的必要条件.假命题的条件不是结论的充分条件,但是有可能是必要条件.例如:命题“若p:x2=4,则q:x=-2”是假命题.p不是q的充分条件,但q⇒p成立,所以p是q的必要条件.因此只有一个命题“若p,则q”是真命题时,才能说p是q的充分条件,q是p的必要条件.3.推出符号“⇒”只有当命题“若p,则q”为真命题时,才能记作“p⇒q”.┃┃跟踪练习2__■函数f(x)=a-22x+1为奇函数的必要条件是__a=1__.[解析]∵函数f(x)=a-22x+1为奇函数,定义域为R.∴f(0)=0,即a-220+1=0,解得a=1.命题方向❸充要条件典例3 函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是( A ) A.m=-2 B.m=2C.m=-1 D.m=1[解析]∵f(x)=x2+mx+1的图象的对称轴为x=-m2,∴-m2=1,∴m=-2,故选A.『规律方法』 1.充要条件一般地,如果有p⇒q,那么p是q的充分条件;如果还有q⇒p,那么p又是q的必要条件,则称p是q的充要条件.显然p和q能互相推出,所以q也是p的充要条件.记为:p⇔q(“⇔”表示p与q等价).2.充分条件、必要条件、充要条件与命题的真假之间关系:条件p与结论q关系结论p⇒q,但q⇒/p p是q成立的充分不必要条件q⇒p,但p⇒/q p是q成立的必要不充分条件p⇒q,q⇒p,即p⇔q p是q成立的充要条件p⇒/q,q⇒/p p是q成立的既不充分也不必要条件┃┃跟踪练习3__(1)设a、b是实数,则“a+b>0”是“ab>0”的( D )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析]本题采用特殊值法:当a=3,b=-1时,a+b>0,但ab<0,故不是充分条件;当a=-3,b=-1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分也不必要条件,故选D.(2)(2019·全国Ⅱ卷文,7)设α,β为两个平面,则α∥β的充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面[解析]若α∥β,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一平面,则α与β可以平行也可以相交,故A,C,D均不是充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之亦成立.因此B中条件是α∥β的充要条件.故选B.命题方向❹充要条件的证明典例4 求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c =0.[思路分析]第一步,审题,分清条件与结论:“p是q的充要条件”中p是条件,q是结论;“p的充要条件是q”中,p是结论,q是条件.本题中条件是“a+b+c=0”,结论是“关于x的方程ax2+bx+c=0有一个根为1”.第二步,建联系确定解题步骤.分别证明“充分性”与“必要性”先证充分性:“条件⇒结论”;再证必要性:“结论⇒条件”.第三步,规范解答.[解析]必要性:∵关于x的方程ax2+bx+c=0有一个根为1,∴x=1满足方程ax2+bx+c=0.∴a×12+b×1+c=0,即a+b+c=0.充分性:∵a+b+c=0,∴c=-a-b,代入方程ax2+bx+c=0中可得ax2+bx-a-b=0,即(x -1)(ax+a+b)=0.因此,方程有一个根为x=1.故关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.┃┃跟踪练习4__■已知ab≠0,证明:a+b=1成立的充要条件是a3+b3+ab-a2-b2=0.[解析]充分性:若a3+b3+ab-a2-b2=0,则(a +b -1)(a 2-ab +b 2)=0,∴(a +b -1)[(a -b 2)2+34b 2]=0,由ab ≠0,得a +b -1=0,∴a +b =1,充分性得证. 必要性:若a +b =1,则由以上对充分性的证明知a 3+b 3+ab -a 2-b 2=(a +b -1)(a 2-ab +b 2)=0, 故必要性得证.综上可知,a +b =1成立的充要条件是a 3+b 3+ab -a 2-b 2=0.学科核心素养求参数的值或取值范围的关键先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.典例5 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P是x ∈S 的必要条件,求m 的取值范围.[解析] 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件, 即所求m 的取值范围是[0,3].『规律方法』 先把p ,q 等价转化,利用充分条件、必要条件与集合间的包含关系,建立关于参数的不等式(组)进行求解.注意:把充分条件或必要条件转化为集合间的关系后,集合端点处的等号易错. ┃┃跟踪练习5__■设集合A ={x |2a +1≤x ≤3a -5},B ={x |y =3-xx -22},则A ⊆A ∩B 的充要条件为__a ≤9__;A ⊆A ∩B 的一个充分不必要条件可为__6≤a ≤9__(答案不惟一).[解析] A ⊆A ∩B ⇔A ⊆B ,B ={x |3≤x ≤22}.若A =∅,则2a +1>3a -5,解得a <6;若A ≠∅,则A ⊆B ⇔⎩⎪⎨⎪⎧2a +1≥3,3a -5≤22,3a -5≥2a +1,解得6≤a ≤9.综上可知,A ⊆A ∩B 的充要条件为a ≤9;A⊆A ∩B 的一个充分不必要条件可为6≤a ≤9.易混易错警示 忽视隐含条件致误典例6 在△ABC 中,A 、B 、C 分别为三角形三边所对的角,则“A >B ”是“sin A >sinB ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[错解] A >B ⇒/sin A >sin B ,如:A =150°,B =60°;sin A >sin B ⇒/A >B ,如:sin 45°>sin 150°⇒/45°>120°,故选D .[错解分析] 错解的原因是忽视了A 、B 是△ABC 的内角这一条件.[正解] C 在△ABC 中,设角A 、B 所对的边分别为a 、b ,则A >B ⇔a >b ⇔2R sin A >2R sinB (其中R 为△ABC 外接圆的半径)⇔sin A >sin B ,故选C .。
高中数学高考总复习充分必要条件习题及详解一、选择题1.(文)已知a、b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案] D[解析]a2>b2不能推出a>b,例:(-2)2>12,但-2<1;a>b不能推出a2>b2,例:1>-2,但12<(-2)2,故a2>b2是a>b的既不充分也不必要条件.(理)“|x-1|<2成立”是“x(x-3)<0成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案] B[解析]由|x-1|<2得-2<x-1<2,∴-1<x<3;由x(x-3)<0得0<x<3.因此“|x-1|<2成立”是“x(x-3)<0成立”的必要不充分条件.2.(2010·福建文)若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件[答案] A[解析]当x=4时,|a|=42+32=5当|a|=x2+9=5时,解得x=±4.所以“x=4”是“|a|=5”的充分而不必要条件.3.(文)已知数列{a n},“对任意的n∈N*,点P n(n,a n)都在直线y=3x+2上”是“{a n}为等差数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析] 点P n (n ,a n )在直线y =3x +2上,即有a n =3n +2,则能推出{a n }是等差数列;但反过来,{a n }是等差数列,a n =3n +2未必成立,所以是充分不必要条件,故选A.(理)(2010·南充市)等比数列{a n }中,“a 1<a 3”是“a 5<a 7”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件[答案] C[解析] 在等比数列中,q ≠0,∴q 4>0,∴a 1<a 3⇔a 1q 4<a 3q 4⇔a 5<a 7.4.(09·陕西)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 由m >n >0可以得方程mx 2+ny 2=1表示焦点在y 轴上的椭圆,反之亦成立.故选C.5.(文)设集合A ={x |x x -1<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] ∵A ={x |0<x <1},∴A B ,故“m ∈A ”是“m ∈B ”的充分不必要条件,选A. (理)(2010·杭州学军中学)已知m ,n ∈R ,则“m ≠0或n ≠0”是“mn ≠0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵mn ≠0⇔m ≠0且n ≠0,故选A.6.(文)(2010·北京东城区)“x =π4”是“函数y =sin2x 取得最大值”的( ) A .充分不必要条件高考总复习含详解答案B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] x =π4时,y =sin2x 取最大值,但y =sin2x 取最大值时,2x =2k π+π2,k ∈Z ,不一定有x =π4. (理)“θ=2π3”是“tan θ=2cos ⎝⎛⎭⎫π2+θ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 解法1:∵θ=2π3为方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3是tan θ=2cos ⎝⎛⎭⎫π2+θ成立的充分条件; 又∵θ=8π3也是方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3不是tan θ=2cos ⎝⎛⎭⎫π2+θ的必要条件,故选A. 解法2:∵tan θ=2cos ⎝⎛⎭⎫π2+θ,∴sin θ=0或cos θ=-12, ∴方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解集为A =⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π或θ=2k π±23π,k ∈Z , 显然⎩⎨⎧⎭⎬⎫2π3A ,故选A. 7.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[答案] B[解析] 两直线垂直的充要条件是(m +2)(m -2)+3m (m +2)=0即m =12或m =-2,∴m =12是两直线相互垂直的充分而不必要条件. 8.(2010·浙江宁波统考)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内两条相交直线,则α⊥β的一个充分不必要条件是( )A .l 1⊥m ,l 1⊥nB .m ⊥l 1,m ⊥l 2C .m ⊥l 1,n ⊥l 2D .m ∥n ,l 1⊥n[答案] B[解析] 当m ⊥l 1,m ⊥l 2时,∵l 1与l 2是β内两条相交直线,∴m ⊥β,∵m ⊂α,∴α⊥β,但α⊥β时,未必有m ⊥l 1,m ⊥l 2.9.(2010·黑龙江哈三中)命题甲:⎝⎛⎭⎫12x,21-x,2x 2成等比数列;命题乙:lg x ,lg(x +1),lg(x+3)成等差数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] B[解析] 由条件知甲:(21-x )2=⎝⎛⎭⎫12x ·2x 2, ∴2(1-x )=-x +x 2,解得x =1或-2;命题乙:2lg(x +1)=lg x +lg(x +3), ∴⎩⎪⎨⎪⎧ (x +1)2=x (x +3)x +1>0x >0x +3>0,∴x =1,∴甲是乙的必要不充分条件.10.(2010·辽宁文,4)已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)高考总复习含详解答案C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)[答案] C[解析] ∵f ′(x )=2ax +b ,又2ax 0+b =0,∴有f ′(x 0)=0故f (x )在点x 0处切线斜率为0∵a >0 f (x )=ax 2+bx +c∴f (x 0)为f (x )的图象顶点的函数值∴f (x )≥f (x 0)恒成立故C 选项为假命题,选C.[点评] 可以用作差法比较.二、填空题11.给出以下四个命题:①若p ∨q 为真命题,则p ∧q 为真命题.②命题“若A ∩B =A ,则A ∪B =B ”的逆命题.③设a 、b 、c 分别是△ABC 三个内角A 、B 、C 所对的边,若a =1,b =3,则A =30°是B =60°的必要不充分条件.④命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题,其中真命题的序号是________.[答案] ②③④[解析] ①∵p ∨q 为真,∴p 真或q 真,故p ∧q 不一定为真命题,故①假.②逆命题:若A ∪B =B ,则A ∩B =A ,∵A ∪B =B ,A ⊆B ,∴A ∩B =A ,故②真.③由条件得,b a =sin B sin A =3,当B =60°时,有sin A =12,注意b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°,或B =120°.故③真; ④否命题:若f (x )不是奇函数,则f (-x )不是奇函数,这是一个真命题,假若f (-x )为奇函数,则f [-(-x )]=-f (-x ),即f (-x )=-f (x ),∴f (x )为奇函数,与条件矛盾.12.(文)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域.有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集;其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ①④[解析] 结合题设的定义,逐一判断,可知①④正确.(理)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ③④[解析] ①整数a =2,b =4,a b不是整数; ②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ;③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.13.(2010·辽宁葫芦岛四校联考)设有两个命题:p :不等式⎝⎛⎭⎫13x +4>m >2x -x 2对一切实数x 恒成立;q :f (x )=-(7-2m )x 是R 上的减函数,如果p 且q 为真命题,则实数m 的取值范围是________.[答案] (1,3)[解析] ∵⎝⎛⎭⎫13x =4>4,2x -x 2=-(x -1)2+1≤1, ∴要使⎝⎛⎭⎫13x +4>m >2x -x 2对一切x ∈R 都成立,应有1<m ≤4;由f (x )=-(7-2m )x 在R上是单调减函数得,7-2m >1,∴m <3,∵p 且q 为真命题,∴p 真且q 真,∴1<m <3.高考总复习含详解答案14.(2010·福建理)已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2-x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k +1).其中所有正确结论的序号是________.[答案] ①②④[解析] 对于①,f (2)=0,又f (2)=2f (1)=0,∴f (1)=0,同理f (4)=2f (2)=0,f (8)=0……f (1)=2f (12)=0, ∴f (12)=0,f (14)=0…… 归纳可得,正确.对于②④当1<x ≤2时,f (2x )=4-2x ,而2<2x ≤4,∴当2<x ≤4时,f (x )=4-x同理,当4<x ≤8时,f (x )=8-x ……∴当2m -1<x ≤2m 时,f (x )=2m -x ,故②正确,④也正确.而③中,若f (2n +1)=9,∵2n <2n +1≤2n +1∴f (x )=2n +1-x ,∴f (2n +1)=2n +1-2n -1=9,∴2n =10,∴n ∉Z ,故错误.三、解答题15.已知c >0.设命题P :函数y =log c x 为减函数.命题Q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果P 或Q 为真命题,P 且Q 为假命题,求c 的取值范围.[解析] 由y =log c x 为减函数得0<c <1当x ∈⎣⎡⎦⎤12,2时,因为f ′(x )=1-1x 2,故函数f (x )在⎣⎡⎦⎤12,1上为减函数,在(1,2]上为增函数.∴f (x )=x +1x在x ∈⎣⎡⎦⎤12,2上的最小值为f (1)=2 当x ∈⎣⎡⎦⎤12,2时,由函数f (x )=x +1x >1c 恒成立.得2>1c ,解得c >12如果P 真,且Q 假,则0<c ≤12如果P 假,且Q 真,则c ≥1所以c 的取值范围为(0,12]∪[1,+∞). 16.给出下列命题:(1)p :x -2=0,q :(x -2)(x -3)=0.(2)p :m <-2;q :方程x 2-x -m =0无实根.(3)已知四边形M ,p :M 是矩形;q :M 的对角线相等.试分别指出p 是q 的什么条件.[解析] (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0⇒/ x -2=0.∴p 是q 的充分不必要条件.(2)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根⇒/ m <-2.∴p 是q 的充分不必要条件.(3)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形.∴q ⇒/ p .∴p 是q 的充分不必要条件.17.(文)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且q ≠1),求数列{a n }成等比数列的充要条件.[解析] 当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=(p -1)p n -1,由于p ≠0,q ≠1,高考总复习含详解答案∴当n ≥2时,{a n }为公比为p 的等比数列.要使{a n }是等比数列(当n ∈N *时),则a 2a 1=p . 又a 2=(p -1)p ,∴(p -1)p p +q=p ,∴p 2-p =p 2+pq ,∴q =-1,即{a n }是等比数列的必要条件是p ≠0,且p ≠1,且q =-1.再证充分性:当p ≠0,且p ≠1,且q =-1时,S n =p n -1.当n =1时,S 1=a 1=p -1≠0;当n ≥2时,a n =S n -S n -1=(p -1)p n -1.显然当n =1时也满足上式,∴a n =(p -1)p n -1,n ∈N *,∴a n a n -1=p (n ≥2),∴{a n }是等比数列. 综上可知,数列{a n }成等比数列的充要条件是p ≠0,p ≠1,且q =-1.(理)(2010·哈三中模拟)已知函数f (x )=12(x -1)2+ln x -ax +a . (1)若x =2为函数极值点,求a 的值;(2)若x ∈(1,3)时,f (x )>0恒成立,求a 的取值范围.[解析] (1)f ′(x )=(x -1)+1x -a ,由f ′(2)=0得,a =32; (2)当a ≤1时,∵x ∈(1,3),∴f ′(x )=⎝⎛⎭⎫x +1x -(1+a )≥2-2=0成立,所以函数y =f (x )在(1,3)上为增函数,对任意的x ∈(1,3),f (x )>f (1)=0,所以a ≤1时命题成立;当a >1时,令f ′(x )=(x -1)+1x -a =0得,x =(a +1)±(a +1)2-42,则函数在 (0,(a +1)-(a +1)2-42)上为增函数, 在((a +1)-(a +1)2-42,(a +1)+(a +1)2-42)上为减函数,在((a +1)+(a +1)2-42,+∞)上为增函数, 当a ≤73时,1≤(a +1)+(a +1)2-42≤3, 则f (1)>f ((a +1)+(a +1)2-42),不合题意,舍去. 当a >73时,函数在(1,3)上是减函数,f (x )<f (3)<0,不合题意,舍去. 综上,a ≤1.。
2.1 充分条件与必要条件 2.2 充分条件与判定定理 2.3 必要条件与性质定理学习目标:1.理解充分条件、必要条件的概念.(重点) 2.掌握充分条件、必要条件的判断.(易混点、难点)充分条件与必要条件命题真假“若p,则q”为真命题“若p,则q”为假命题推出关系p⇒q p q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件思考:(1)数学中的判定定理给出了结论成立的什么条件?[提示]判定定理给出了结论成立的充分条件.(2)性质定理给出了结论成立的什么条件?[提示]性质定理给出了结论成立的必要条件.1.判断正误(1)若p是q的必要条件,则q是p的充分条件.( )(2)若p是q的充分条件,则若p则q是真命题.( )(3)“两角不相等”是“两角不是对顶角”的必要条件.( )[答案](1)√(2)√(3)×2.下列命题中,真命题是( )A.“x2>0”是“x>0”的充分条件B.“xy=0”是“x=0”的必要条件C.“|a|=|b|”是“a=b”的充分条件D.“|x|>1”是“x2不小于1”的必要条件B[“x2>0”是“x>0”的必要条件;“xy=0”是“x=0”的必要条件;“|a|=|b|”是“a=b”的必要条件;“|x|>1”是“x2不小于1”的充分条件.故选B.]3.若p是q的充分条件,q是r的充分条件,则p是r的________条件.充分[∵p⇒q,q⇒r,∴p⇒r.]4.“ab>0”是“a>0,b>0”的________条件(填“充分”或“必要”).必要[∵a>0,b>0,∴ab>0.反之,不一定成立,故“ab>0”是“a>0,b>0”的必要条件.]充分条件【例1】(1) “a+b>2c”的一个充分条件是( )A.a>c或b>c B.a>c或b<cC.a>c且b<c D.a>c且b>c(2)下列各题中,p是q的充分条件的是________.①p:(x-2)(x-3)=0,q:x-2=0;②p:两个三角形相似,q:两个三角形全等;③p:m<-2,q:方程x2-x-m=0无实根.(1)D(2)③[(1)a>c且b>c⇒a+b>2c,a+b>2c a>c且b>c,故选D.(2)①∵(x-2)(x-3)=0,∴x=2或x=3,不能推出x-2=0.∴p不是q的充分条件.②∵两个三角形相似,不能推出两个三角形全等,∴p不是q的充分条件.③∵m<-2,∴Δ=12+4m<0,∴方程x2-x-m=0无实根,∴p是q的充分条件.]1.判定p是q的充分条件要先分清什么是p,什么是q,即转化成p⇒q问题.2.除了用定义判断充分条件还可以利用集合间的关系判断,若p构成的集合为A,q构成的集合为B,A⊆B,则p是q的充分条件.1.(1)“a>b,b>2”是“a+b>4,ab>4”的________条件.(2)设命题甲为0<x<5,命题乙为|x-2|<3,那么甲是乙的________条件.(1)充分(2)充分[(1)由a>b,b>2⇒a+b>4,ab>4,∴是充分条件.(2)解不等式|x-2|<3得-1<x<5,∵0<x<5⇒-1<x<5,∴甲是乙的充分条件.]必要条件的判断p q(1)p:x>2且y>3,q:x+y>5;(2)p:y=x2,q:函数是偶函数;(3)p:一个四边形的四个角都相等,q:四边形是正方形.[思路探究]要判断p与q的关系,主要看是p⇒q,还是q⇒p.[解](1)由于p⇒q,故p是q的充分条件,q是p的必要条件.(2)由于p⇒q,故p是q的充分条件,q是p的必要条件.(3)由于q⇒p,故q是p的充分条件,p是q的必要条件.1.判断p是q的什么条件,主要判断若p成立时,能否推出q成立,反过来,若q成立时,能否推出p成立;若p⇒q为真,则p是q的充分条件,若q⇒p为真,则p是q的必要条件.2.可利用集合的关系判断,如果条件甲“x∈A”,条件乙“x∈B”.若A⊇B,则甲是乙的必要条件.2.“0<x<5”的一个必要条件是( )A.x>5 B.x2-5x>0C.0<x<4 D.x<5D[∵0<x<5⇒x<5,∴x<5是0<x<5的一个必要条件.故选D.]充分条件与必要条件的应用1.从集合的角度如何判断充分条件、必要条件?[提示]设A={x|p(x)},B={x|q(x)},若x具有性质p,则x∈A;若x具有性质q,则x∈B.若A⊆B,就是说x具有性质p,则x必具有性质q,即p⇒q,p是q的充分条件.同理,若B⊆A,即q⇒p,p是q的必要条件.2.“p是q的充分条件”与“p的充分条件是q”相同吗?[提示]不同. 若p是q的充分条件则p是条件,q是结论;若p的充分条件是q,则p 是结论,q是条件.【例3】已知p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0.若q是p的必要条件,求实数a的取值范围.[思路探究]q是p的必要条件等价于p⇒q,可借助集合的知识求解.[解]由x2-4ax+3a2<0且a<0得3a<x<a,所以p:3a<x<a,即集合A={x|3a<x<a}.由x2-x-6≤0得-2≤x≤3,所以q:-2≤x≤3,即集合B={x|-2≤x≤3}.因为q 是p 的必要条件,所以p ⇒q ,所以A ⊆B , 所以⎩⎪⎨⎪⎧3a ≥-2,a ≤3,a <0⇒-23≤a <0,所以a 的取值范围是⎣⎢⎡⎭⎪⎫-23,0.1.(变条件)本例中条件“a <0”改为“a >0”,若q 是p 的充分条件,求实数a 的取值范围.[解] 由x 2-4ax +3a 2<0且a >0得a <x <3a , 所以p :a <x <3a ,即集合A ={x |a <x <3a }. 由x 2-x -6≤0得-2≤x ≤3,所以q :-2≤x ≤3,即集合B ={x |-2≤x ≤3}. 因为q 是p 的充分条件,所以q ⇒p ,所以B ⊆A , 所以⎩⎪⎨⎪⎧3a ≥3,a ≤-2,⇒a ∈.a >02.(变条件)将“q :实数x 满足x 2-x -6≤0”改为“q :实数x 满足x 2+3x ≤0”,其他条件不变,求实数a 的取值范围.[解] 由x 2-4ax +3a 2<0且a <0得3a <x <a . 所以p :3a <x <a ,即集合A ={x |3a <x <a }. 由x 2+3x ≤0得-3≤x ≤0,所以q :-3≤x ≤0,即集合B ={x |-3≤x ≤0}. 因为q 是p 的必要条件,所以p ⇒q ,所以A ⊆B , 所以⎩⎪⎨⎪⎧3a ≥-3,a ≤0,a <0⇒-1≤a <0.所以a 的取值范围是[-1,0).充分条件与必要条件的应用技巧1.应用:可利用充分性与必要性进行相关问题的求解,特别是求参数的值或取值范围问题.2.求解步骤:先把p ,q 等价转化,利用充分条件、必要条件与集合间的包含关系,建立关于参数的不等式(组)进行求解.1.若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分条件B.必要条件C.既不充分也不必要条件D.无法判断A[由(a-1)(a-2)=0得a=1或a=2,所以“a=2”是“(a-1)(a-2)=0”的充分条件,故选A.]2.设x∈R,则x>2的一个必要条件是( )A.x>1 B.x<1C.x>3 D.x<3A[x>2⇒x>1,∴x>1是x>2的必要条件.]3.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,那么( )A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙既不是甲的充分条件,也不是甲的必要条件D.无法判断A[∵乙⇒甲,丙⇒乙,乙丙,∴丙⇒甲,甲丙,∴丙是甲的充分条件,但不是甲的必要条件.故选A.]4.从“充分条件”“必要条件”中选出适当的一种填空:(1)“ax2+bx+c=0(a≠0)有实根”是“ac<0”的________.(2)“△ABC≌△A′B′C′”是“△ABC∽△A′B′C′”的________.(1)必要条件(2)充分条件[(1) 当ac<0时,Δ=b2-4ac>0,此时ax2+bx+c=0(a≠0)有实根,反之不一定成立,故“ax2+bx+c=0(a≠0)有实根”是“ac<0”的必要条件.(2)△ABC≌△A′B′C′可推出△ABC∽△A′B′C′,反之不一定成立,故“△ABC≌△A′B′C′”是“△ABC∽△A′B′C′”的充分条件.]5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围.[解]由(x-1)(x-2)>0可得x>2或x<1,由已知条件,知{x|x<m}{x|x>2或x<1}.∴m≤1.。
高中数学人教A版(2019)必修一第一章第四节充分条件和必要条件一、单选题(共16题;共80分)1.(5分)设a∈R,则“a<1”是“a2<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要2.(5分)若不等式|x−1|<a的一个充分条件为0<x<1,则实数a的取值范围是()A.a>0B.a≥0C.a>1D.a≥1 3.(5分)设a∈R,则“ 0<a<1”是“ a2<a”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)下列说法正确的是()A.ac=bc是a=b的充分条件B.x≥1是x2≥1的必要条件C.四边形对角线互相垂直是四边形为菱形的充要条件D.“ 1<x<3”是“ x≥0” 的充分不必要条件5.(5分)已知a,b∈R且a>0,则“ a>b”是“ ba<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.(5分)已知a,b,c是实数,则“a≥b”是“ac2≥bc2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件7.(5分)“ (x−1)(x+2)>0”是“ x−1x+2>0”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分非必要条件8.(5分)“ x∈(1,2)”是“ x∈(0,3)”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件9.(5分)x>3是x2>9的_________条件;()A.必要不充分B.充要C.充分不必要D.既不充分也不必要10.(5分)已知p:m−2<x<m+1,q:x2−8x+12<0,且q是p的必要不充分条件,则实数m 的取值范围为()A.4<m<5B.4≤m≤5C.m>5或m<4D.m>5或m≤411.(5分)“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(5分)“|x-2|≤5”是“-3≤x≤8”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.(5分)已知实数a、b满足ab>0,则“ 1a<1b成立”是“ a>b成立”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件14.(5分)“x >2”是“x2+x﹣6 >0”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件15.(5分)条件p:-2<x<4,条件q:(x+2)(x+a)<0;若q是p的必要而不充分条件,则a的取值范围是()A.(4,+∞)B.(-∞,-4)C.(-∞,-4]D.[4,+∞)16.(5分)设x>0,y∈R,则“ x>y”是“ x>|y|”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件二、填空题(共4题;共20分)17.(5分)若不等式|x|<a的一个充分条件为−2<x<0,则实数a的最小值是.18.(5分)“ x<−2”的一个必要非充分条件是.19.(5分)ax2+2x+1=0只有负实根的充要条件是.20.(5分)设α:4x+m<0,m∈R,β:x2−x−2>0.若α是β的充分条件,则实数m的取值范围是.三、解答题(共4题;共40分)21.(10分)已知集合A={x|x2−5x+6<0},B={x|(x−a)(x−3a)<0}.(1)(5分)若x∈A是x∈B的充分条件,求a的取值范围;(2)(5分)若A∩B=∅,求a的取值范围.22.(10分)已知A={x|x2−2x−3>0},B={x|x2−(2a+1)x+a2+a<0}.(1)(5分)求A,B;(2)(5分)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.23.(10分)已知集合A={x|2−a≤x≤2+a}( a>0), B={x|x2+3x−4≤0}.(1)(5分)若a=3,求A∪B;(2)(5分)若“ x∈A”是“ x∈B”的必要条件,求实数a的取值范围.24.(10分)已知条件p:x2−3x−4≤0;条件q:x2−6x+9−m2≤0,若p是q的充分不必要条件,则m的取值范围是什么?答案解析部分1.【答案】B【解析】【解答】由题意,解不等式a 2<1,得−1<a <1,根据充分条件、必要条件、充要条件的定义,又(−1,1)⊂(−∞,1),即满足由条件p 不能推出结论q ,且结论q 推出条件p , 故答案为:B.【分析】由a 2<1得到−1<a <1,即可判断。
充分条件与必要条件例题解析能力素质例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ]A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔∵是成立的充要条件,∴③C B C B由①③得A C ④由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇ 当且仅当A =B 时,甲为乙的充要条件.例5 设A 、B 、C 三个集合,为使A (B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件分析 可以结合图形分析.请同学们自己画图.∴A (B ∪C).但是,当B =N ,C =R ,A =Z 时,显然A (B ∪C),但AB 不成立, 综上所述:“A B ”“A (B ∪C)”,而 “A(B ∪C)”“A B ”. 即“A B ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根;(4)p :|x -1|>2,q :x <-1.其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质.解 (1)p 是q 的必要条件(2)p 是q 充要条件(3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系. 解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”. x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <b e ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题),∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x = -.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时 1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422a a2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442a a 综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s)r 是q 的充要条件;(r q ,q s r)p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0A B A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a .解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy 故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏. 例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ]A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A .说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。