• 科学归纳推理的推理形式可用公式表 示为: • Sl是P , • S2是P, • ……, • Sn是 P; • Sl,S2,……,Sn是S类的部分对象; 并且,S与P之间有内在联系。 • 所以,所有的S都是P。
典型归纳推理
• 典型归纳推理是这样一种推理:它是从一类事 物中选择一个标本作为典型,对它进行考察, 然后将其显示的某种属性概括为同类其它个体 对象共同具有的属性。 • 典型归纳体力是以研究作为类的标本代表性个 体为基础的。典型归纳能否具有有效性,不在 于考察对象数量的多少,而在于选出的标本是 否典型,是否为某类事物的代表性个体。例如 ,我们要研究某种动物的体型构造和生理功能 ,大可不必对这种动物的个体进行大量考察, 只要被选择的标本与被考察的属性具有典型意 义,就可以把考察代表性个体的结果推广到它 所属的类。
完全归纳推理的作用
• 因为完全归纳推理是由个别知识前提推出一般性 知识结论的推理,并且结论是由前提必然推出的 ,完全归纳推理的结论是对一类所有对象的认识 的概括,所以它能使人们的认识从个别上升到一 般,使人们对某一类事物的认识深化,这正是完 全归纳推理的认识作用。此外,完全归纳推理还 常常被用作科学发现的方法。 • 当然,由于完全归纳推理要求被讨论的某类事物 的所有对象必须一一列举出来,加以考察和断定 ,从而其对象的数量必须是有限的,因此,完全 归纳推理的应用就有一定的局限性,它只适用于 有限对象的事物类别,遇到一些对象无限的事物 类别时,就不能使用完全归纳推理了。
简单枚举法有不可忽视的认识作用
• 首先,在日常工作和生活中,它是初 步概括生活和实践经验的重要手段。 在工作和生活中,人们对一些重复出 现的情况,在没有遇到反例的情形下 ,往往用简单枚举法进行概括,探求 客观事物的规律,以指导自己的行动 。 • 第二,在科学研究中,简单枚举法是 初步发现客观规律以及提出关于这些 规律的假说的重要手段。如数学史上 著名的哥德巴赫猜想,即每个不小于4 的偶数都是两个素数之和,就是应用 简单枚举法提出来的。