第四章四节 岩石的强度理论.
- 格式:ppt
- 大小:306.00 KB
- 文档页数:11
第四节岩石的强度理论•研究岩石破坏原因、过程及条件的理论—岩石的强度理论。
•将表征岩石强度条件的函数称为岩石的强度准则,•而将表征岩石破坏条件的函数称为岩石的破坏判据。
一、一点的应力状态•1、正负号的规定①压为正,拉为负;②剪应力是使物体产生逆时针转为正,反之为负;③角度以X轴正向沿逆时针方向转动所形成的夹角为正,反之为负。
•2、一点的应力的表示方法三个正应力:σx 、σy、σz,正应力的角标为正应力作用面的外法线方向;剪应力的角标为:第一个角标表示剪应力作用面的外法线方向;第二个角标表示剪应力作用的方向。
三对剪应力:在平面问题中,独立的应力分量只有三个,即:σx 、σy 、τxyτxy =τyxτyz =τzyτzx =τxz3、平面问题的简化•①平面应力问题(垂直于平面方向应力为零),•如薄板问题;•②平面应变问题(垂直于平面方向应变为零),•如大坝、路堤、隧道横断面等问题。
•不论那一种平面问题,用弹性力学的方法进行分析所得的结果,可以互相转换:平面应力计算公式中的E用E/(1-μ2)、μ用μ/ (1-μ)代入,即可将平面应力问题的计算公式转换成平面应变问题的计算公式。
4、基本应力公式如图所示:以二维平面问题为例任意角度倾斜截面上的应力计算公式下:τxyτyxτyxτxyσxσyσyσxσnτnαατ-ασ-σ+σ+σ=σ2sin 2cos 22xy yx yx n ατ+ασ-σ=τ2cos 2sin 2xy yx n 若上述公式对求导,即可求得最大、最小主应力的表达式如下:223122xy y x yx τ+⎪⎪⎭⎫ ⎝⎛σ+σ±σ+σ=σσ应力圆点面对应——应力圆上某一点的坐标值对应着微元某一方向面上的正应力和切应力;转向对应——半径旋转方向与方向面法线旋转方向一致;二倍角对应——半径转过的角度是方向面法线旋转角度的两倍。
最大主应力与σx 的夹角可按下式求得:yx xytg σστθ-+=22此外,在分析任意角的应力状态时,也常用最大、最小主应力表示:ασ-σ+σ+σ=σ2cos 223131n ασ-σ=τ2sin 231n莫尔应力圆的表示方法如下:231223122⎪⎭⎫ ⎝⎛σ-σ=τ+⎪⎭⎫ ⎝⎛σ+σ-σn n )0,2(31σσ+圆心为231σ-σ半径等于o ′σ3σ12αoστ2α-2ασ1σ1σ3σ3α-αDD ′τσσ1σ3ODD ′强度理论:关于材料破坏原因和条件的假说。
岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。
岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。
第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。
岩石是构成岩体的基本组成单元。
相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。
岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。
回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。
●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。
●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。
●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。
回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。
其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。
回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。
结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。
这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。
第一章 绪论1、岩石力学定义:岩石力学是研究岩石的力学性质的一门理论与应用科学;它是力学的一个分支;它探讨岩石对其周围物理环境中力场的反应。
2、岩石力学研究的目的:科学、合理、安全地维护井巷的稳定性,降低维护成本,减少支护事故。
3、岩石力学的发展历史与概况: (1)初始阶段(19世纪末—20世纪初)1912年,海姆(A.Hmeim )提出了静水压力理论:金尼克(A.H.ΠHHHHK )的侧压理论: 朗金(W.J.M.Rankine )的侧压理论: (2)经验理论阶段( 20世纪初—20世纪30年代)普罗托吉雅克诺夫—普氏理论:顶板围岩冒落的自然平衡拱理论; 太沙基:塌落拱理论。
4、地下工程的特点:(1)岩石在组构和力学性质上与其他材料不同,如岩石具有节理和塑性段的扩容(剪胀)现象等; (2)地下工程是先受力(原岩应力),后挖洞(开巷); (3)深埋巷道属于无限域问题,影响圈内自重可以忽略; (4)大部分较长巷道可作为平面应变问题处理;(5)围岩与支护相互作用,共同决定着围岩的变形及支护所受的荷载与位移; (6)地下工程结构容许超负荷时具有可缩性; (7)地下工程结构在一定条件下出现围岩抗力; (8)几何不稳定结构在地下可以是稳定的; 5、影响岩石力学性质和物理性质的三个重要因素矿物:地壳中具有一定化学成分和物理性质的自然元素和化合物; 结构:组成岩石的物质成分、颗粒大小和形状以及相互结合的情况; 构造:组成成分的空间分布及其相互间排列关系;第二章 岩石力学的地质学基础 1、岩石硬度通常采用摩氏硬度,选十种矿物为标准,最软是一度,最硬十度。
这十种矿物由软到硬依次为:l-滑石; 2-石膏;3-方解石;Hγ1νλν=-H λγH λγ4-萤石;5-磷灰石;6-正长石;7-石英;8-黄玉; 9-刚玉;10-金刚石;2、解理:是指矿物受打击后,能沿一定方向裂开成光滑平面的性质,裂开的光滑平面称为解理面。
浅谈岩石的强度理论巖石强度反映材料的性质,岩石强度理论是研究岩石在各种应力状态下的强度准则的理论,它是岩土工程领域最重要、最基本的问题,用于岩石强度的预测和校核,确定岩石处于某种应力状态下是否破坏。
1900年莫尔教授建立了著名的莫尔-库仑理论。
100多年来,岩石强度理论的推广受到了各国工程地质学家物理学家的关注,对莫尔-库仑理论,中间主应力效应,双剪强度理论,统一强度理论进行了浅显研究。
标签:莫尔-库仑理论;中间主应力效应;双剪理论;统一强度理论1 引言岩体是由岩块和岩体结构组成的,在工程力学层次看,岩块强度反映的材料的性质,也可称之为岩石强度,岩体强度反映的是结构强度。
在工程的相关研究中,经常会遇到不同岩石强度理论选择的问题。
岩石强度理论是研究岩石在各种应力状态下的强度准则的理论。
岩石强度理论在矿山、地质、石油、水坝、桥梁、隧道的建设中应用十分广泛,用于岩石强度的预测和校核,确定岩石处于某种应力状态下是否破坏[1]。
到目前为止,在岩石的强度理论已经提出了上百个模型和准则,有关强度准则的应用研究论文则数以万计,但应用最广的强度理论是莫尔-库仑强度准则,莫尔理论中只认为最大主应力和最小主应力对材料破坏有影响,忽略了中间主应力的影响。
因此莫尔理论提出后的二十多年,它的理论一直受到检验和评论,直到20世纪30年代才开始被逐步认可才开始被逐步认可并应用到工程中来。
莫尔的单剪理论又受到各种真三轴试验的检验,并提出了各种修正的准则[2];中间主应力效应即德鲁克-普拉格理论又受到重视被广泛用于工程及计算程序中,后续出现了双剪强度理论。
现在出现了一种全新的将单剪理论和双剪理论有机地结合起来的统一强度理论。
2 几种常见的岩石强度理论2.1莫尔-库仑理论莫尔-库仑强度准则是岩石力学中重要的强度理论之一,是以强度理论的基本思想为指导,在公式的基础上导出的。
不仅能反映岩体的碎性破坏,而且能反映其塑性破坏特征。
自1900年建立以来为人类工程结构的强度计算,设计和应用力学学科的发展做出了巨大的贡献。
第四章岩石的强度岩石强度是岩石的一种重要的力学特性。
是指岩石抵抗载荷(外力)而不受屈服或破裂的能力,是岩石承受外力的极限应力值。
岩石受力后会发生变形,一旦应力达到岩石的极限应力值,岩石就会发生破坏。
在岩石强度应力值之前,存在屈服点(应变明显增大,而应力不再需要明显增大时的应力),超过屈服点和达到极限强度(岩石破裂要达到的最大应力值)前,一般仍有一些抵抗应变而恢复原形的能力,但达到极限强度后岩石破裂,就完全失去恢复能力。
通常所讲的岩石强度,一般是指岩石样件的测量强度,它仅代表岩体内岩块的强度,不能代表整个岩体的强度。
但在涉及岩石强度的工程问题中,一般是针对岩体的强度,而岩体往往包含一些软弱的结构面。
几组软弱结构面可以将岩体分割成各种形状和大小不同的岩块。
因此,岩体的强度取决于这些岩块强度和结构面的强度,岩块内微结构面的作用将直接反映到岩石的力学性质上。
岩石受力方式的不同,表现出的强度特性不尽相同。
如在张力、压力和剪切力的作用下,同种岩石会呈现出不同的强度特性。
因此岩石具有抗张、抗压和抗剪切强度等之分。
岩石受力条件的不同,可表现出变形、破裂、蠕变等现象,这些现象有着一定的规律性。
岩石的强度是衡量岩石基本力学性质的重要指标,是建立岩石破坏判据的重要指标,还可估计其他力学参数。
岩石的这些力学特性广泛用于建筑行业、水利水电工程、地质灾害研究与预防、断裂构造研究等方面。
4.1影响岩石强度的主要因素1)岩石成分和结构组成岩石的矿物种类及含量、矿物颗粒大小、固结程度、胶结物种类、矿物形态与分布等均影响到岩石的各种强度。
固结程度高、硅质胶结、细粒、交错结构的强度大。
2)岩石中不连续面和间断面岩石中微裂缝、微小断裂、节理层理等的发育程度和分布情况直接影响到岩石的强度,这些不连续或间断面会降低岩石在不同方向上的强度。
3)岩石孔隙度及流体性状岩石的孔隙度以及其中所含流体种类、饱和度、渗透率等因素以较复杂的关系影响着岩石强度。
第四节岩石的强度理论•研究岩石破坏原因、过程及条件的理论—岩石的强度理论。
•将表征岩石强度条件的函数称为岩石的强度准则,•而将表征岩石破坏条件的函数称为岩石的破坏判据。
一、一点的应力状态•1、正负号的规定①压为正,拉为负;②剪应力是使物体产生逆时针转为正,反之为负;③角度以X轴正向沿逆时针方向转动所形成的夹角为正,反之为负。
•2、一点的应力的表示方法三个正应力:σx 、σy、σz,正应力的角标为正应力作用面的外法线方向;剪应力的角标为:第一个角标表示剪应力作用面的外法线方向; 第二个角标表示剪应力作用的方向。
三对剪应力: 在平面问题中,独立的应力分量只有三个,即: σx 、σy 、 τxyτxy = τyxτyz = τzyτzx = τxz3、平面问题的简化•①平面应力问题(垂直于平面方向应力为零),•如薄板问题;•②平面应变问题(垂直于平面方向应变为零), •如大坝、路堤、隧道横断面等问题。
•不论那一种平面问题,用弹性力学的方法进行分析所得的结果,可以互相转换:平面应力计算公式中的E用 E /(1- μ2)、μ用μ/ (1- μ)代入,即可将平面应力问题的计算公式转换成平面应变问题的计算公式。
4、基本应力公式如图所示:以二维平面问题为例任意角度倾斜截面上的应力计算公式下:τxyτyxτyxτxyσxσyσyσxσnτnαατ-ασ-σ+σ+σ=σ2sin 2cos 22xy yx yx n ατ+ασ-σ=τ2cos 2sin 2xy yx n 若上述公式对求导,即可求得最大、最小主应力的表达式如下:223122xy y x yx τ+⎪⎪⎭⎫ ⎝⎛σ+σ±σ+σ=σσ应力圆点面对应——应力圆上某一点的坐标值对应着微元某一方向面上的正应力和切应力;转向对应——半径旋转方向与方向面法线旋转方向一致;二倍角对应——半径转过的角度是方向面法线旋转角度的两倍。
最大主应力与σx 的夹角可按下式求得:yx xytg σστθ-+=22此外,在分析任意角的应力状态时, 也常用最大、最小主应力表示:ασ-σ+σ+σ=σ2cos 223131n ασ-σ=τ2sin 231n莫尔应力圆的表示方法如下: 231223122⎪⎭⎫ ⎝⎛σ-σ=τ+⎪⎭⎫ ⎝⎛σ+σ-σn n )0,2(31σσ+圆心为 231σ-σ半径等于o ′σ3σ12αo στ2α-2ασ1σ1σ3σ3α-αDD ′τσσ1 σ3O DD ′强度理论:关于材料破坏原因和条件的假说。
(1)材料应力-应变关系与时间因素有关的性质,称为流变性。
材料变形过程中具有时间效应的现象,称为流变现象。
蠕变:应力不变,应变随时间而增加
松弛:应变不变,应力随时间而减少
弹性后效:加载或卸载时,弹性应变滞后于应力的现象
(2)瞬时强度:岩石单轴抗压强度长期强度:荷载作用时间t→∞的强度
岩石承受的荷载低于其瞬时强度的情况下,如持续作用较长时间,由于流变作用,岩石也可能发生破坏。
岩石强度随外载作用时间的延长而降低。
(3)三种基本元件:弹性、塑性、粘性;串并联机制;马克斯威尔(弹粘串);开尔文(弹粘并);伯格斯(马开串);三者的本构方程,蠕变方程,松弛方程,卸载方程;以及分析,略(4)强度理论的描述:
库伦准则:岩石的破坏主要是剪切破坏,岩石的强度,即抗摩擦强度等于岩石本身抗剪切摩擦的粘结力和剪切面上法向力产生的摩擦力
莫尔强度理论:把库仑准则推广到考虑三向应力状态,认识到材料性本身也是应力的函数。
格里菲斯强度理论:在不考虑摩擦对压缩下闭合裂纹的影响和假定椭圆裂纹将从最大拉应力集中点开始扩展的情况下,考虑裂纹随机排列的岩石中最不利方向上的裂缝周边应力最大处首先达到张裂状态而建立的岩石破裂理论。
(只适用于脆性的岩石材料)
MC准则:由库伦公式表示莫尔包线的土体抗剪强度理论
体现了岩石材料压剪破坏的实质,应用广泛
没有反映中间主应力的影响,不能解释岩石材料在静水压力下也能屈服或破坏的现象,只适用于剪破坏,不适用于膨胀或蠕变破坏。
(5)MC不同的表达方法,略。