地震对桥梁各部结构的破坏
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
地震对桥梁的破坏与加固方法摘要:我国都是个地震频发的区域,我国国土占地41% 的区域处于地震基本烈度七级以上。
地震的发生会严重的影响到桥梁结构,带来无法修复的损伤。
本篇论文结合以往的经验,分析了五种在地震中经常出现的桥梁破坏形式,并对桥梁的抗震设计进行了相关描述,总结了提高抗震等级的一些方法。
关键词:桥梁抗震设计;方法1.引言通常,地震的发生会带来很大的破坏,特别是交通,对于地震后的救援重建工作有很大影响。
桥梁对于救援非常重要。
所以,进行桥梁的设计时,抗震设计是极其重要的,特别是较易发生地震的地区,更应该加强重视。
1.地震对桥梁的主要损坏(一)桥梁地基与基础容易遭受的损坏在桥梁的建设过程中,地基与基础部分是十分重要的,地震时,会产生地质变动,会对于地层的稳定性有所破坏,从而使得桥梁会出现地层的水平滑移、下沉和断裂等情况,影响到桥梁的结构,使桥梁的结构发生损坏。
地震发生时,桥梁的桩机容易出现剪断、倾斜破坏的情况,对于救援的及时性有所影响。
(二)桥台沉陷在桥梁施工时,桥台后填土与桥台两者没有完全进行固结,所以当地震发生时,就会以很大的破坏力出现,使得桥梁填土会出现较大的纵向荷载,地层产生的破坏力将使得桥台填土承受较大的纵向荷载,而且在发生地震时,桥台会受到被动土压力,因为,桥梁中受到桥面的支撑作用,地震产生时,桥梁会产生纵向力,使得出现以桥台顶端为支撑的旋转,造成桥梁结构上的破坏,出现偏差或者错位的情况。
地震时出现的纵向荷载,不只是会使得桥梁出现竖向旋转的情况,还会使得桥台垂直沉陷的情况发生,在强大的作用下,出现桥面的损坏。
(三)墩柱破坏进行桥梁设计时,应该考虑到抗震问题,增加桥梁墩柱的弯曲强度、弯曲延性、抗弯能力以及剪切强度。
如果墩柱受到破坏,会使得桥梁承受地震的能力变弱,从而产生如落梁、倒塌等情况的出现。
(四)支座破坏发生地震时,因为地震产生的外力巨大,会出现桥梁上下位移的情况,从而出现破坏支座的问题,由于支座破坏,使得桥梁整体性荷载分布会出现很大变化。
地震作用下桥梁动态响应分析地震是一种破坏力极大的自然灾害,对桥梁等基础设施的安全构成严重威胁。
桥梁作为交通运输的关键节点,其在地震作用下的动态响应特性直接关系到人员生命和财产安全。
因此,深入研究地震作用下桥梁的动态响应具有重要的理论和实际意义。
一、桥梁在地震中的受力特点桥梁在地震作用下主要受到水平地震力和竖向地震力的影响。
水平地震力通常是导致桥梁结构破坏的主要因素,它会使桥梁产生水平位移、弯曲变形和剪切破坏。
竖向地震力虽然相对较小,但在某些情况下也可能引起桥梁的墩柱破坏、支座失效等问题。
此外,地震波的传播特性也会对桥梁的受力产生影响。
地震波包括纵波、横波和面波,它们的传播速度和振动方式不同,使得桥梁在不同部位受到的地震作用存在差异。
例如,面波在地表附近传播,其能量较大,对桥梁基础的影响较为显著。
二、桥梁结构对地震响应的影响1、桥梁的类型和跨度不同类型的桥梁(如梁桥、拱桥、斜拉桥等)在地震作用下的响应有所不同。
一般来说,梁桥的结构相对简单,但其跨度较小,在地震中的变形能力有限;拱桥具有较好的抗压性能,但对水平地震力的抵抗能力相对较弱;斜拉桥由于其复杂的结构体系,地震响应较为复杂,需要进行详细的分析。
桥梁的跨度也是影响地震响应的重要因素。
跨度越大,桥梁的自振周期越长,与地震波的共振可能性就越大,从而导致更大的地震响应。
2、桥墩和桥台的形式桥墩和桥台是桥梁的重要支撑结构,它们的形式和尺寸对地震响应有显著影响。
实心桥墩的抗弯和抗剪能力较强,但在地震作用下容易产生较大的内力;空心桥墩则具有较好的延性,但在强震作用下可能发生局部屈曲。
桥台的类型(如重力式桥台、轻型桥台等)也会影响桥梁与地基的相互作用,进而改变地震响应。
3、支座和伸缩缝支座是连接桥梁上部结构和下部结构的关键部件,其力学性能直接影响桥梁在地震中的变形和受力。
常见的支座类型如板式橡胶支座、盆式支座等,它们在地震中的滑移和变形特性不同,会导致桥梁的地震响应有所差异。
地震作用建筑弯剪破坏实例地震作用建筑弯剪破坏实例地震是一种自然灾害,经常给人们的生命和财产带来巨大的损失。
在地震中,建筑物往往是最容易受到破坏的对象之一。
建筑物的破坏形式有很多种,其中最常见的是弯剪破坏。
本文将从以下几个方面详细介绍地震作用下建筑物弯剪破坏的实例。
一、地震作用地震是指地球内部因为各种原因而发生的振动现象。
它是一种自然灾害,可以给人类社会带来巨大的影响。
地震通常由地壳运动引起,其能量释放形式有两种:一种是弹性波,另一种是非弹性波。
这些波会传播到建筑物中,并对其造成不同程度的影响。
二、建筑物弯剪破坏在地震中,建筑物主要受到两种力的作用:水平力和垂直力。
水平力通常由横向或纵向运动引起,而垂直力则由重力和惯性力共同作用引起。
这些力会使建筑物产生弯曲和剪切变形,导致其结构破坏。
弯剪破坏是指建筑物在地震中由于受到水平力和垂直力的共同作用,导致其结构发生弯曲和剪切变形而破坏。
这种破坏形式在地震中非常常见,特别是在高层建筑、桥梁、大型厂房等结构中更为明显。
三、实例分析以下是几个具体的实例,说明了地震作用下建筑物弯剪破坏的情况。
1. 汶川地震2008年5月12日,中国四川省汶川县发生了7.8级地震。
这次地震造成了超过6万人死亡和数十万人受伤,并且给当地的建筑物造成了严重的损害。
其中最典型的就是当时被称为“鸟巢”的汶川县体育馆。
这座体育馆采用了钢筋混凝土框架结构,在地震中发生了严重的弯剪破坏。
整个建筑物呈现出明显的V形变形,部分墙体和屋顶坍塌。
2. 美国北岸地震1994年1月17日,美国加利福尼亚州北岸发生了6.7级地震。
这次地震造成了60人死亡和上万人受伤,并且给当地的建筑物造成了严重的损害。
其中最典型的就是奥克兰-圣弗朗西斯科湾桥。
这座桥梁采用了钢筋混凝土框架结构,在地震中发生了严重的弯剪破坏。
整个桥梁呈现出明显的S形变形,部分桥墩和桥面坍塌。
3. 日本东北地震2011年3月11日,日本东北海岸发生了9.0级地震和海啸。
地震作用下桥梁结构的抗震设计桥梁作为交通运输的重要枢纽,在地震作用下的安全性至关重要。
地震可能导致桥梁结构的损坏甚至倒塌,严重影响救援和灾后重建工作。
因此,对桥梁结构进行科学合理的抗震设计是保障桥梁安全的关键。
一、地震对桥梁结构的影响地震是一种突发的自然灾害,其释放的能量以地震波的形式传播。
当地震波到达桥梁所在地时,会对桥梁结构产生多种影响。
首先是水平地震力的作用。
水平地震力会使桥梁产生水平位移和加速度,导致桥墩、桥台等构件承受较大的弯矩和剪力。
如果这些构件的强度和刚度不足,就可能发生开裂、屈服甚至破坏。
其次是竖向地震力的影响。
虽然竖向地震力通常比水平地震力小,但在某些情况下,如近断层地震或大跨径桥梁中,竖向地震力也不可忽视。
它可能导致桥梁支座脱空、梁体与墩台的碰撞等问题。
此外,地震还可能引起地基土的液化、滑坡等现象,削弱桥梁基础的承载能力,导致桥梁整体失稳。
二、桥梁结构抗震设计的原则为了确保桥梁在地震作用下的安全性,抗震设计应遵循以下原则:1、多道防线原则在桥梁结构中设置多个抗震防线,当第一道防线失效后,后续的防线能够继续发挥作用,从而提高桥梁的抗震能力。
例如,墩柱可以作为第一道防线,当墩柱破坏后,支座、伸缩缝等构件能够起到一定的耗能作用。
2、能力设计原则通过合理的设计,使桥梁结构的各个构件在地震作用下能够按照预定的方式屈服和破坏,避免出现脆性破坏和不合理的破坏模式。
例如,应确保桥墩的塑性铰出现在预期的位置,并且具有足够的变形能力。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够协同工作,共同抵抗地震作用。
例如,通过合理设置系梁、盖梁等构件,增强桥墩之间的连接,提高桥梁的整体刚度和稳定性。
三、桥梁结构抗震设计的方法1、静力法静力法是一种简单的抗震设计方法,它将地震作用等效为一个静态的水平力,作用在桥梁结构上。
这种方法适用于规则、简单的桥梁结构,但对于复杂的桥梁结构,其计算结果可能不够准确。
桥梁设计中的抗震技术与应用研究桥梁作为交通基础设施的重要组成部分,在保障人员和物资的流通方面发挥着关键作用。
然而,地震作为一种不可预测且破坏力巨大的自然灾害,对桥梁的安全构成了严重威胁。
因此,在桥梁设计中充分考虑抗震因素,采用先进的抗震技术,对于提高桥梁在地震中的稳定性和安全性至关重要。
一、桥梁在地震中的破坏形式要有效地设计桥梁的抗震性能,首先需要了解桥梁在地震中可能出现的破坏形式。
常见的有以下几种:1、桥墩破坏桥墩是桥梁的主要支撑结构,在地震中容易受到水平力和弯矩的作用。
可能出现的破坏形式包括混凝土开裂、钢筋屈服、墩身倾斜甚至折断。
2、桥台破坏桥台与路堤的连接部位在地震中容易产生不均匀沉降和位移,导致桥台开裂、倾斜或坍塌。
3、支座破坏支座是连接桥梁上部结构和下部结构的重要部件,在地震中可能会发生移位、脱落或损坏,从而影响桥梁的整体受力性能。
4、梁体破坏梁体在地震作用下可能会出现裂缝、断裂或移位,严重影响桥梁的通行能力。
二、桥梁抗震设计的基本原则为了提高桥梁的抗震性能,在设计过程中需要遵循以下基本原则:1、场地选择应尽量选择地质条件良好、地势平坦的场地建设桥梁,避免在地震断层、软弱土层等不利地段建造。
2、合理的结构体系选择具有良好抗震性能的结构形式,如连续梁桥、刚构桥等,避免采用抗震性能较差的结构。
3、强度和延性设计既要保证桥梁结构在地震作用下具有足够的强度,能够承受地震力的作用,又要具备一定的延性,能够通过塑性变形来消耗地震能量。
4、多道抗震防线通过设置多个抗震构件和体系,形成多道抗震防线,当一道防线失效时,其他防线能够继续发挥作用,保证桥梁的整体稳定性。
三、桥梁抗震技术1、基础隔震技术基础隔震是通过在桥梁基础和上部结构之间设置隔震装置,如橡胶支座、摩擦摆支座等,来延长结构的自振周期,减少地震能量的输入。
隔震装置能够有效地隔离水平地震作用,降低上部结构的地震响应。
2、耗能减震技术耗能减震技术是在桥梁结构中设置耗能装置,如金属阻尼器、粘滞阻尼器等,在地震作用下,耗能装置通过自身的变形和摩擦来消耗地震能量,从而减轻结构的破坏。
市政桥梁设计的防震设计市政工程是指由政府出资或适当组织,为了满足城市的发展需求,对城市基础设施进行规划、设计、建设、运营和管理的一类特殊工程。
在市政工程中,桥梁设计是非常重要的一部分,而防震设计是桥梁设计中不可或缺的一个环节。
鉴于近年来频繁发生的地震灾害,地震对桥梁结构的影响成为了工程设计和施工中极其关键的问题。
本文将针对市政桥梁设计的防震设计进行详细分析和探讨。
一、地震对桥梁结构的危害地震是一种自然灾害,特别是对于一些架设在地震活跃地带的城市,在地震发生时,桥梁结构往往会受到严重威胁。
地震对桥梁结构的危害主要有以下几个方面:1. 水平地震力导致桥梁结构产生严重变形。
地震时,桥梁结构受到水平地震力的冲击,容易导致结构产生严重的位移和变形,甚至造成结构的崩塌。
2. 地震会引起桥梁结构的振动。
地震产生的振动会对桥梁结构造成不同程度的破坏,特别是对于跨度较长的大型桥梁来说,振动会更加明显。
3. 地震会加速桥梁结构的老化和破坏。
地震产生的冲击力和振动会加速桥梁结构的老化和破坏,影响桥梁的使用寿命和安全性。
二、市政桥梁设计的防震设计为了有效应对地震对桥梁结构的危害,市政桥梁设计需要进行防震设计。
防震设计是指在桥梁结构设计的过程中,充分考虑地震对结构的影响,采取相应的技术措施来降低地震灾害对桥梁结构的破坏性。
1. 合理选择材料和结构形式在市政桥梁设计中,我们需要合理选择材料和结构形式来提高桥梁的抗震性能。
在材料的选择上,我们应考虑选用高强度、耐震性能好的材料,如高强度混凝土、钢筋混凝土等。
在结构形式上,我们应采用抗震性能好、刚度和稳定性好的结构形式,如刚性框架结构、剪力墙结构等。
2. 考虑地震影响下的荷载效应在市政桥梁设计中,我们需要考虑地震影响下的荷载效应。
地震产生的地震作用是一种周期性的荷载作用,具有很大的不确定性和随机性,因此在设计中需要考虑地震下结构的承载能力和变形性能,合理确定结构的截面尺寸、钢筋配筋等。
桥梁结构的地震易损性分析与改进地震是一种具有破坏性的自然灾害,造成了大量人员伤亡和财产损失。
对于桥梁结构来说,地震易损性是一个至关重要的问题。
因此,对桥梁结构的地震易损性进行分析和改进是非常必要的。
桥梁结构在地震中遭受破坏的原因主要包括以下几点:首先,地震产生的震动会使桥梁产生共振,从而增大桥梁受力;其次,地震会引起桥梁结构的变形,从而导致桥梁的屈曲和断裂;最后,地震可能引起桥梁基础的沉降和移动,导致桥梁整体的失稳。
为了减少桥梁结构在地震中的损伤,可以从以下几个方面进行改进:1. 结构设计的改进:在桥梁结构的设计阶段,应运用先进的分析方法和工程软件,对结构进行合理的布局和优化的设计。
通过提高结构的刚度和抗震能力,可以有效地减少地震对桥梁的影响。
2. 材料选择的改进:桥梁结构的材料选择也是减少地震损伤的关键。
使用具有较高抗震性能的钢材和混凝土可以提高桥梁的抗震性能。
同时,还可以采用新型的抗震材料,如纤维增强复合材料等,来增强桥梁的抗震能力。
3. 桥梁维护的改进:桥梁的维护工作也是保证桥梁在地震中不受损坏的重要环节。
定期对桥梁进行检查和维修,防止因老化和磨损等原因导致桥梁在地震中失稳。
此外,还可以在桥梁上设置抗震装置,如阻尼器和增稳支座,来减少地震的影响。
4. 可行性研究的改进:在设计桥梁结构时,应对其所在区域的地震条件进行详细研究,并进行地震承载力和地震易损性的分析。
通过合理的地震设计计算,可以精确地评估桥梁的地震易损性,并采取相应的改进措施。
总结起来,桥梁结构的地震易损性分析与改进是保障桥梁安全的重要环节。
通过改进结构设计、优化材料选择、加强桥梁维护和进行详细的可行性研究,可以有效地减少桥梁在地震中的损坏。
这些改进措施不仅能够提高桥梁的抗震能力,还能够保护人民的生命财产安全,为社会的发展做出贡献。
虽然桥梁结构的地震易损性分析与改进是一项复杂的工作,但是随着科技的发展和工程经验的积累,我们相信,在专家学者和工程师们的努力下,桥梁结构的抗震能力一定会不断提高,为人们的出行和交流提供更加安全可靠的保障。
公路桥梁抗震设计细则分析摘要:本文对公路桥梁抗震细则进行了分析,并例举实际案例进行说明解析,以供大家借鉴参考。
关键词:公路桥梁抗震设计细则前言公路桥梁是交通重要通道,在抗震救灾过程中更是发挥重要作用。
在地震中,一些公路桥梁也会受到不同程度的损坏。
让我们感印象最深的是四川汶川发生8.0 级大地震,交通中断,桥梁崩塌,造成了极大经济损失。
一地震对桥梁的破坏1上部结构的破坏上部结构自身因直接受地震力而破坏的现象极为少见,但因支撑面过小、支承连接件失效或下部结构失效等引起的落梁现象在破坏性地震中常有发生。
而在落梁破坏中,顺桥向的落梁占绝大多数。
梁在顺桥向发生坠落时,梁端撞击下部结构常常使桥墩受到很大的破坏。
要避免上部结构的破坏,应该从如何使梁与支撑连接件连接更可靠、使下部结构以及基础更稳定、变形更小来考虑。
2支座的破坏桥梁支座是桥墩与梁体联系、传力的关键部位,它的破坏直接影响到梁体和桥墩。
强大的地震力导致支座连接件的破坏,严重的造成桥梁上下部结构失去联系,引起落梁。
支座的破坏形式主要表现为支座锚固螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏。
地震中桥梁支座的破坏较为普遍。
3下部结构的破坏下部结构的震害是由于受到较大水平地震力瞬间反复的震动,引起下部结构损坏,轻微的破坏造成混凝土保护层剥落、墩台身开裂和纵向钢筋屈曲等,严重的破坏造成墩台的严重倾斜、剪断或折断、倒塌等。
公路桥梁中广泛采用的钢筋混凝土柱式墩,在历次地震中的破坏大多发生在盖梁下方或柱身与基础的连接处。
4基础的破坏扩大基础自身的震害很少发生,主要由于地质条件不良而出现基础沉降、滑移和倾斜等;桩基础的破坏现象则时有发生,而且不易及早发现。
基础是直接建在地基上的,因此选择合适的桥位能给桥梁抗震减少很多的麻烦。
二桥梁抗震设防标准过去几十年里, 研究者和工程师都提出分级抗震设防的原则: 即小震不坏; 中震发生有限的结构或非结构构件的破坏; 大震发生严重的结构和非结构构件的破坏, 但不产生严重的人员伤亡; 而在可能袭击工程场地最严重的地震作用下,结构不倒塌。
地震作用下公路桥梁工程设施的破坏机理与加固措施地震是地球上常见的自然灾害之一,给人们的生命和财产造成巨大损失。
公路桥梁作为交通运输的重要组成部分,一旦遭受地震影响,会引起桥梁结构的破坏和功能的丧失,从而影响交通的正常运行。
因此,深入研究地震作用下公路桥梁工程设施的破坏机理以及有效的加固措施,对于提高桥梁结构的抗震能力和减少地震灾害的影响具有重要意义。
首先,我们来探讨地震作用下公路桥梁工程设施的破坏机理。
地震震源能量释放后,地震波将传播到桥梁结构中,桥梁的抗震能力直接受到地震波的影响。
公路桥梁的破坏机理主要包括四个方面:1. 桥梁结构的动力响应:地震波的振动会使桥梁产生横向、纵向和扭转等多个自由度的振动,引起结构的动力响应。
这种响应可能导致桥梁产生位移、应力和变形等,如果超过了结构的承载能力范围,就会引发破坏。
2. 支座和墩台的破坏:地震波会使桥梁支座和墩台产生振动,长时间的振动作用下,支座和墩台的基础土体可能发生液化或失稳现象,导致桥梁支撑体系的破坏。
3. 桥梁构件的损伤:地震波的振动会引起桥梁各个构件的相互碰撞和摩擦,从而损伤构件的连接点和材料,降低构件的强度和刚度。
4. 地质灾害的影响:地震往往伴随着地质灾害,如山体滑坡、土石流等,这些地质灾害会直接影响桥梁的结构完整性和稳定性。
针对地震作用下公路桥梁工程设施的破坏机理,我们可以采取一系列加固措施来提升桥梁的抗震能力和减少地震灾害的影响。
1. 构造设计的考虑:在桥梁的构造设计中,应充分考虑地震荷载的作用,选用适当的结构形式和材料,并进行合理的强度、刚度和稳定性计算。
2. 增加结构的抗震能力:可以通过增加桥梁的自重和地基的基准强度,提高桥梁的承载能力和抗震能力。
可以采用增加墩台和桥面板的厚度,增加桥墩的数量和高度等措施,以增加桥梁结构的刚度和稳定性。
3. 使用抗震材料和技术:采用抗震设备、抗震支座和减震器等材料和技术,可以有效减小桥梁受地震波作用的振动幅度,降低结构的损伤程度。
桥梁工程中的震害及防治1摘要:地震作为自然灾害的一种,它的发生将带来毁灭性的破坏。
震害是桥梁工程中最严重的灾害之一,地震会导致桥梁不同程度的破坏,损害桥梁的使用性能。
本文简述了地震对桥梁的破坏形式,提出了防震减灾方法,综述了几种常见的减、隔震设置。
对汶川地震下典型的桥梁破坏进行了分析,并给出了相应的抗震设防建议。
关键词:桥梁;地震;减、隔震;防震减灾.0引言地震对桥梁的破坏主要是由于地表破坏和桥梁受震破坏引起的。
其中地表破坏有地裂、滑坡、塌方、岸坡滑移和砂土液化等现象。
地震会使桥梁发生竖向和横向的位移,造成桥梁跨度的缩短、伸长或墩台下沉。
在陡峻山区或砂性土和软黏土河岸处,强烈地震引起的塌方、岸坡滑动以及山石滚落,可使桥梁遭到破坏。
在浅层的饱和或疏松砂土处,地震作用易引起砂土液化,致使桥梁突然下沉或不均匀下沉,甚至使桥梁倾倒。
在坡边土岸或古河道处,地震则往往引起岸坡滑移、开裂和崩坍等现象,造成桥梁破坏。
桥梁受震破坏的表现梁桥受震破坏的表现形式1.墩台开裂、倾斜、折断或下沉;2.支座弯扭、断裂、倾倒或脱落;3.桥梁上部结构和下部结构间相对位移;4.落梁。
拱桥受震破坏的表现形式1.拱圈开裂;2.墩台下沉;3.多孔时墩身开裂、折断;4.落拱。
1、桥梁减震、隔震技术减隔震技术是减震、隔震技术的总称。
减震技术是指在结构中安装具有特殊性能的特制装置,发生强震时该特制装置能率先进入塑性,产生比较大的阻尼,消耗输入到结构中的大量地震能量;而隔震技术是指利用隔震装置,将结构与地面运动隔离开,从而大幅减小进入到结构的地震能量。
实际应用中,常将两种技术合二为一。
1.1、减、隔震技术原理减隔震技术利用隔震和阻尼耗能双重作用来达到减隔震目的。
当结构周期超过一定值以后,结构的地震响应是随着周期的增加而减小的。
同时,结构阻尼在运动中能大量吸收耗散地震能量。
阻尼力与位移之间存在一定的关系,结构的阻尼越大,结构耗散的能量越多,结构的地震响应值在周期不变的情况下是随着阻尼的增加而降低。
地震对桥梁的危害浅谈及防治摘要强烈地震时,公路桥梁将遭受严重的破坏,为了减轻地震造成的损失,要求地震区的桥梁在抗震、防震方面贯彻预防为主的方针。
本文针对及防治进行详细阐述。
对现有的桥梁要做好防震加固工作,新建的桥梁要从设计上采取措施,并应进行抗震强度和稳定性的验算,以适应抗震的要求。
1 、地震引起的桥梁病害地震对桥梁的破坏常指由于地震波传播到地基引起桥梁震动,对桥梁结构及附属设施造成的损坏。
地震引起常见损坏如下。
1.1 墩台下沉和位移在砂性土和软黏土地区,地震使土的抗剪力大幅度降低,从而降低了土的承载力,导致墩台大幅度下沉。
构造地裂缝使墩台产生水平、竖直、倾斜变形。
1.2 砂土液化、地基和岸坡滑移砂土液化、地基失效和岸坡滑移也将导致桥梁大幅度破坏乃至倒塌,如裂缝、落梁等。
2、桥梁震害的基本规律2.1 高烈度震害比低烈度震害严重地震具有一定的时空分布规律。
从时间上看,地震有活跃期和平静期交替出现的周期性现象。
从空间上看,地震的分布呈一定的带状,称地震带,主要集中在环太平洋和地中海—喜马拉雅两大地震带。
太平洋地震带几乎集中了全世界80%以上的浅源地震0千米~70千米,全部的中源70千米~300千米和深源地震,所释放的地震能量约占全部能量的80%。
震级震级是指地震的大小,是表征地震强弱的量度,是以地震仪测定的每次地震活动释放的能量多少来确定的。
震级通常用字母M表示。
我国目前使用的震级标准,是国际上通用的里氏分级表,共分9个等级。
通常把小于2.5级的地震叫小地震,2.5-4.7级地震叫有感地震,大于4.7级地震称为破坏性地震。
震级每相差1.0级,能量相差大约30倍;每相差2.0级,能量相差约900多倍。
比如说,一个6级地震释放的能量相当于美国投掷在日本广岛的原子弹所具有的能量。
一个7级地震相当于32个6级地震,或相当于1000个5级地震按震级大小可把地震划分为以下几类:弱震震级小于3级。
有感地震震级等于或大于3级、小于或等于4.5级。
地震对桥梁结构的影响与对策地震,这一自然界的强大力量,常常给人类社会带来巨大的破坏和损失。
桥梁作为交通基础设施的重要组成部分,在地震中面临着严峻的考验。
了解地震对桥梁结构的影响,并采取有效的对策,对于保障桥梁的安全和交通的畅通至关重要。
一、地震对桥梁结构的影响1、水平地震力地震产生的水平震动是对桥梁结构最主要的影响之一。
这种强大的水平力会使桥梁的墩柱、梁体等主要构件发生位移和变形。
如果水平力超过了桥梁结构的承载能力,就可能导致墩柱开裂、倾斜甚至倒塌,梁体滑落等严重破坏。
2、竖向地震力虽然竖向地震力相对水平地震力较小,但在某些情况下也不能忽视。
它可能会增加桥梁结构的竖向荷载,导致桥墩的受压破坏,或者使梁体与支座之间产生过大的压力,影响结构的稳定性。
3、地基失效地震可能会引起地基的液化、不均匀沉降等问题。
地基的不稳定会削弱桥梁基础对上部结构的支撑作用,使桥梁整体发生倾斜、下沉甚至垮塌。
4、结构共振桥梁结构具有自身的固有频率,如果地震波的频率与桥梁的固有频率接近,就会发生共振现象。
共振会使结构的振动幅度急剧增大,从而加重结构的破坏程度。
5、构件破坏地震作用下,桥梁的各个构件,如桥墩的混凝土开裂、钢筋屈服,桥梁支座的损坏,伸缩缝的破坏等,都会影响桥梁的正常使用功能。
二、桥梁结构在地震中的破坏形式1、墩柱破坏墩柱是桥梁的主要竖向支撑构件,在地震中容易出现弯曲破坏、剪切破坏和受压破坏。
弯曲破坏表现为墩柱的混凝土开裂、钢筋屈服,墩柱发生较大的弯曲变形;剪切破坏则是墩柱在水平剪力作用下混凝土破碎、钢筋剪断;受压破坏通常是由于竖向荷载过大导致墩柱混凝土被压碎。
2、梁体破坏梁体可能会因为与墩柱的连接失效而发生滑落,或者由于自身的弯曲、剪切变形过大而出现裂缝甚至断裂。
3、支座破坏支座在地震中起到传递荷载和缓冲震动的作用,但其往往容易受到损坏。
常见的支座破坏形式包括支座的移位、剪断、脱落等。
4、基础破坏基础的破坏主要包括桩基础的断裂、承台的开裂以及地基的液化和不均匀沉降等。
土木1103班谢立忠111120107(06)
地震对桥梁的影响
一、地震对桥梁的危害
桥台的震害
桥台是桥梁两侧岸边的支撑部分,一般是在岸边的原域填土上,用钢筋混凝土修建三角形或矩形的支台。
因为桥台的路基高且三面临空,振动大,桥台和下面土的刚度不同,又相互作用,土体本身在地震中会产生液化、震陷破坏。
桥墩震害
桥墩是支撑桥身的主要构件,其震害主要包括桥墩的断裂、剪断和裂缝,其次还有桩柱因埋入深度不够等原因遭受破坏。
落梁震害
落梁是桥梁最严重的震害现象。
地震时梁与桩柱发生位移,两岸桥台往河心滑移,引起岸坡滑移破坏。
对于钢筋混凝土梁式桥,地震时该桥活动支座上的梁均从支座上脱落,固定支座钢板焊接缝均被破坏,桥墩压碎。
不良基础导致桥梁破坏
地震中大部分桥梁倒塌都是由于地基失效和砂土液化造成的,砂土液化通常指饱和粉细砂,在地震作用下失去抗剪能力,变为流动状态。
地基失去承载力,使得位于上部土层的桥墩倾斜、滑移。
支座破坏
支座在桥梁结构中是一个非常重要的部分。
桥梁的桥身并不是直接架放在桥墩上,必须安装防落梁支座,用来防止地震时位移过大而造成落梁。
支座破坏是桥梁上部结构中最常见的一种破坏现象,相邻梁互相碰撞或梁的纵、横向位移,大多数都是以支座破坏为前导,强震时支座受到很大剪力和变形,这是桥梁上部就会脱离支座,产生落梁现象。
二、桥梁防震措施
隔震支座法
隔震支座法是在抗震应用的较为广泛的方法。
这种方法是通过增加结构的柔性和阻尼来减小桥梁的地震反应的。
采用减、隔震支座在梁体与墩、台的连接处,通过设计或是应用新材料来实现结构柔性和阻尼的增加。
可以有效的减小墩、台所受的水平地震力,从根本上减小了地震的影响,提高了桥梁的抗震性能。
利用桥墩延性
桥墩的延性是抗震设计中可以加以利用的特点。
由于桥墩自身是具有延性
的,将这一性质加强。
在强震时,这些部位形成的稳定延性塑性铰可以产生弹塑性变形,这样变形将延长结构的周期同时耗散地震的能量。
利用桥墩自身加强的延性,将地震力通过限度内的塑性变形渐渐分散,是在桥梁设计中比较容易实现的抗震方法。
采用隔震支座和阻尼器相结合的系统
隔震支座法可以提高桥梁的抗震性能,增加对地震力的阻尼也是提高桥梁性能的方法,将二者结合起来,抗震性能加倍。
隔震支座和阻尼器可以在地震的作用下,加强桥墩的弹塑性变形从而耗散地震能量,使地震的危害减小,也就是加强了桥梁的抗震性。