桥梁抗风与抗震
- 格式:doc
- 大小:57.50 KB
- 文档页数:11
桥梁结构的动力学特性分析桥梁是连接两个地理位置的重要交通设施,其稳定性和可靠性对交通运输的安全至关重要。
为确保桥梁结构的合理设计和使用,动力学特性分析是不可或缺的一项工作。
本文将对桥梁结构的动力学特性进行分析,并探讨其在桥梁工程中的应用。
1. 动力学特性的定义桥梁结构的动力学特性是指桥梁在受到外力作用下的运动规律和响应特性。
包括桥梁的固有频率、振型形态、自由振动和阻尼等内容。
通过分析桥梁的动力学特性,可以评估其抗风、抗震、抗振动等能力,为桥梁的设计、施工和维护提供依据。
2. 动力学特性分析的方法(1)模态分析:模态分析是一种常用的动力学特性分析方法,通过求解桥梁结构的振型形态和固有频率,得出结构的模态参数。
模态分析可以帮助设计师确定桥梁的固有振动频率,避免共振现象的发生,提高桥梁的稳定性。
(2)动力响应分析:动力响应分析是通过施加外力荷载,研究桥梁结构的动态响应行为。
通过对桥梁在不同荷载条件下的动态响应分析,可以评估桥梁的结构响应和变形情况,为桥梁结构的安全评估和设计提供依据。
3. 动力学特性分析的应用(1)抗风设计:桥梁结构在面对风荷载时容易发生振动,因此抗风设计是桥梁工程中的重要问题之一。
通过动力学特性分析,可以评估桥梁的固有振动频率和阻尼比,确定合理的抗风设计参数,提高桥梁的稳定性和抗风性能。
(2)抗震设计:地震是危及桥梁结构安全的主要自然灾害之一。
通过动力学特性分析,可以评估桥梁在地震作用下的动态响应和变形情况,确定合理的抗震设计参数,确保桥梁在地震中的安全性。
(3)振动控制:在某些情况下,桥梁的振动可能会对周围环境产生不利影响,如引起噪音、疲劳破坏等。
通过动力学特性分析,可以了解桥梁的振动特性,并采取相应的振动控制措施,降低桥梁振动对周围环境的影响。
总结:桥梁结构的动力学特性分析对于桥梁的设计、施工和维护具有重要意义。
通过分析桥梁的动力学特性,可以评估桥梁在受到外力作用下的响应和变形情况,为桥梁的抗风、抗震和抗振动设计提供依据。
桥梁防护工作实施方案一、前言。
桥梁是城市交通运输的重要组成部分,其安全性直接关系到人民群众的生命财产安全。
为了保障桥梁的安全运行,防护工作显得尤为重要。
本文档旨在制定桥梁防护工作的实施方案,确保桥梁的安全运行。
二、工作目标。
1. 提高桥梁的抗风、抗震能力,确保桥梁结构的稳定性;2. 加强桥梁的防腐蚀工作,延长桥梁的使用寿命;3. 完善桥梁的日常巡检和维护工作,发现问题及时处理,保障桥梁的正常运行。
三、实施方案。
1. 加强桥梁结构防护。
(1)提高桥梁的抗风、抗震能力,采用高强度材料进行加固和改造,确保桥梁在极端天气条件下的安全性;(2)对桥梁结构进行定期检测,发现裂缝、变形等问题及时修补,防止结构的进一步损坏;(3)加强桥梁的防火工作,设置消防设施,确保桥梁在火灾发生时能够及时疏散人员和防止火势蔓延。
2. 加强桥梁防腐蚀工作。
(1)对桥梁的金属结构进行防腐蚀处理,采用防腐蚀涂料进行覆盖,延长桥梁的使用寿命;(2)定期对桥梁进行防腐蚀检测,发现腐蚀问题及时修复,防止腐蚀对桥梁结构的影响。
3. 完善桥梁的日常巡检和维护工作。
(1)建立桥梁巡检制度,定期对桥梁进行巡视,发现问题及时上报并进行处理;(2)加强桥梁的维护工作,对桥梁的设施设备进行定期检修,保证设备的正常运行;(3)建立桥梁维护档案,记录桥梁的维护情况,为下一步的维护工作提供参考。
四、工作保障。
1. 加强人员培训,提高工作人员的防护意识和技能水平;2. 定期进行桥梁安全知识培训,提高相关人员对桥梁安全工作的重视程度;3. 加强与相关部门的沟通协作,建立桥梁安全工作的联防联控机制,共同保障桥梁的安全运行。
五、总结。
桥梁是城市交通运输的重要组成部分,桥梁防护工作的实施方案对于保障桥梁的安全运行具有重要意义。
我们将严格按照本方案的要求,加强桥梁的结构防护、防腐蚀工作和日常巡检维护工作,确保桥梁的安全运行,为城市交通运输的发展做出贡献。
桥梁工程防灾减灾措施方案一、前言在桥梁建设和运行过程中,遭遇自然灾害的风险是不可避免的。
如地震、洪水、台风等灾害往往给桥梁带来巨大的破坏,甚至威胁到人民的生命财产安全。
为了提高桥梁的抗灾能力,减少灾害给人们带来的损失,本文将从地震、洪水和台风三个常见自然灾害的角度出发,提出桥梁工程中的防灾减灾措施方案。
二、地震防灾减灾措施方案1. 踏实可靠的桥梁设计要确保桥梁的抗震能力,必须在设计阶段充分考虑地震因素,采用可靠的抗震设计准则。
桥梁的结构、材料、连接部位等都必须经过严格的设计和计算,确保其在地震发生时不发生倒塌或破坏。
2. 强化桥梁的抗震能力在桥梁的施工过程中,必须严格按照抗震设计要求进行施工,确保桥梁的结构和连接等部位能够承受地震力的作用。
同时,在桥梁建成后,还需要定期进行抗震检测和维护,对可能出现的问题进行及时的修复和加固。
3. 搭建应急救援设施对于一些重要的桥梁,要在其附近搭建应急救援设施,包括临时医疗点、临时住所等,以便在地震发生后能够及时对桥梁周边的人员进行救援和安置,减少灾害造成的人员伤亡。
4. 建立地震监测系统在地震频发的地区,需要建立完善的地震监测系统,对地震的预警和监测进行及时的反馈和报警,以便能够提前预警并采取必要的应对措施,保障桥梁的安全。
5. 推广应急预案在桥梁周边的社区和单位,需要推广地震应急预案,加强人员的地震防灾意识和自救能力,以便在地震发生时能够快速、有效地进行应急处置和自我救援。
三、洪水防灾减灾措施方案1. 桥梁的设计高程在洪水频繁的地区,需要设计桥梁的高程要比洪水的水位高一定的安全高程,以确保桥梁在洪水期间不被淹没,避免洪水对桥梁的破坏。
2. 桥梁的抗洪性要采用适合的材料和结构设计,确保桥梁在洪水期间能够承受洪水冲击和浸泡,不发生倒塌或损坏。
需要通过工程实践和科学技术手段,在桥梁的设计和施工上加强抗洪性能的控制。
3. 洪水预警系统在洪水频发的地区,需要建立完善的洪水预警系统,包括水文监测站、气象预报站等,及时监测和预警洪水的发生,以便于采取必要的应对措施,保障桥梁的安全。
桥梁抗震与抗风设计理念及设计方法摘要:桥梁建设对交通发展具有重要意义,随着我国经济的发展,交通也在不断进步,桥梁建设的重要性也愈发突出。
目前,国内外对于大跨度桥梁的研究主要集中在桥梁地震反应特性方面,鲜有对桥梁结构桥梁抗震与抗风设计的研究。
对于桥梁而言,其抗震、抗风性能直接影响使用质量,特别是近年来地震等自然灾害频繁发生,桥梁抗震、抗风设计更为重要,文章主要对当前桥梁抗震、抗风设计理念及方法进行了探讨,以便于设计人员合理运用桥梁设计思想。
关键词:桥梁抗震;抗风设计理念;设计方法1桥梁抗震与抗风设计的重要性桥梁是连接两个地方的重要交通工具,其抗震和抗风设计的重要性不言而喻。
在地震和台风等极端天气情况下,桥梁的结构易受到破坏,给行车和行人带来严重威胁。
因此,桥梁设计时必须考虑到地震和风的影响。
对于抗震设计,首先需要了解地震对桥梁的影响。
地震会产生地震波,对桥梁的结构造成冲击和剪切力,导致桥梁发生破坏。
因此,需要在设计中考虑地震波的频率、振幅和持续时间等因素,制定合理的抗震设计方案。
这些方案可能包括使用抗震材料、增加支撑和加固结构等方法,以提高桥梁的抗震能力。
对于抗风设计,桥梁结构也需要考虑到风的影响。
风力会对桥梁施加压力,导致结构失稳和破坏。
因此,需要在设计中考虑风的速度、方向和频率等因素,制定合理的抗风设计方案。
这些方案可能包括使用抗风材料、增加支撑和加固结构等方法,以提高桥梁的抗风能力。
2桥梁抗震设计理念与方法2.1场地选择除了要通过对地震危险性进行的分析选择安全度较高的厂址,还要充分考虑地区范围内场地选择。
对此应遵循以下各项基本原则:不选择地震发生后产生失效的场地,优先选择坚硬的场地。
在地基达到稳定的基础上,还应充分考虑桥梁结构和地基之间的振动特性,尽可能减少共振可能造成的影响。
对于软弱地基,在设计过程中要注意保证基础整体性,避免地震造成不均匀变形现象发生。
2.2结构体系整体性与规则性桥梁有良好的整体性,其上部结构必然保持连续。
桥梁抗震与抗风设计理念及设计方法探讨桥梁在地震和强风等极端天气条件下的抗震和抗风设计是非常重要的,因为这些天气条件可能给桥梁结构带来巨大的破坏风险。
在进行桥梁抗震和抗风设计时,需要考虑桥梁材料的强度、结构的刚度以及桥梁的几何形状等多个因素。
本文将探讨桥梁抗震和抗风设计的理念和方法。
首先,桥梁抗震设计是为了使桥梁能够在地震中保持其完整性和稳定性。
在进行抗震设计时,应考虑到地震引起的地震力和动力效应。
地震力是指地震引起的作用力,而动力效应是指地震波所产生的动力荷载对桥梁结构的作用。
为了抵抗这些力量和效应,可以采取多种措施,如增加桥墩的承受能力、加固桥梁结构内部的连接部分、采用一些减震设备等。
此外,还应根据地震水平和桥梁的重要性确定设计参数,以确保桥梁在地震中能够承受相应的力量。
其次,桥梁抗风设计是为了使桥梁能够在强风条件下保持其稳定性和安全性。
强风可能产生强大的风载荷,在桥梁表面、顶部和侧面产生巨大的压力。
为了抵抗这些风载荷,可以采用一些措施,如增加桥墩的宽度和高度、采用空气动力学构件以减少风阻力、使用减压通风口等。
此外,还应考虑到桥梁在不同风向下的稳定性以及风应力对桥梁材料和连接部件的影响,以确保桥梁在强风中能够承受相应的力量。
在进行桥梁的抗震和抗风设计时,可以应用一些设计方法来评估桥梁结构的性能。
其中一个常用的方法是地震和风载荷的时间历程分析。
通过对地震波和风速的变化进行模拟计算,可以得到桥梁结构在地震和强风条件下的动态响应。
另一个常用的方法是使用有限元分析软件来建模和分析桥梁结构的行为。
通过将桥梁结构划分为多个小元素,并对每个小元素进行力学分析,可以得到桥梁结构在地震和强风作用下的应力、应变和位移等参数。
此外,还可以使用试验来评估桥梁结构的性能,例如通过对小样品进行抗震和抗风试验来研究桥梁的破坏机制和受力特点,以制定相应的设计规范。
综上所述,桥梁的抗震和抗风设计是非常重要的。
在进行抗震和抗风设计时,需要考虑地震和风载荷的作用,并采取一些措施来增加桥梁结构的稳定性。
桥梁抗震与抗风设计理念及设计方法1. 桥梁抗震设计理念:桥梁抗震设计的主要目的是在地震发生时,确保桥梁结构能够安全地承受地震力的作用,避免结构破坏或倒塌。
2. 桥梁抗震设计方法:桥梁抗震设计方法包括强度设计、刚度设计、能量耗散设计和容限状态设计等。
3. 强度设计:强度设计是指根据地震力要求确定结构的强度,确保桥梁在地震力作用下不会发生破坏。
通常采用抗震设防烈度等级来确定设计地震力。
4. 刚度设计:刚度设计是指通过控制桥梁结构的刚度,使其能够在地震作用下产生足够的变形和位移,分散地震能量,减少对结构的破坏。
5. 能量耗散设计:能量耗散设计是指通过设计合理的耗能装置,将地震能量引导到可控制的耗能装置中,从而减少对桥梁结构的破坏。
6. 容限状态设计:容限状态设计是指在地震作用下,桥梁结构仍然能够保持可用性和安全性,不会发生严重的破坏。
7. 桥梁抗风设计理念:桥梁抗风设计的主要目的是确保桥梁结构能够抵御风力的作用,避免结构受到风灾的影响。
8. 桥梁抗风设计方法:桥梁抗风设计方法包括风洞试验、计算模拟等。
9. 风洞试验:风洞试验是通过建立模型,在风洞中模拟不同的风速和风向条件,测试桥梁模型在风力作用下的响应,从而得到设计所需的抗风能力。
10. 计算模拟:计算模拟是通过建立桥梁结构的数值模型,在计算机上模拟不同风速和风向下的风力作用,分析桥梁结构的响应。
11. 桥梁抗震设计中的设计地震力:设计地震力是指根据所在地区的抗震设防烈度等级,确定桥梁结构所需的地震力。
12. 桥梁抗震设计中的土动力性能:土动力性能是指土壤在地震作用下的变形和位移特性,对桥梁结构的抗震性能有重要影响。
13. 桥梁抗震设计中的结构可靠性:结构可靠性是指桥梁结构在地震作用下的安全性能,包括结构的强度、刚度和位移控制等。
14. 桥梁抗风设计中的风压计算:风压计算是确定桥梁结构受风力作用下的压力分布和大小,从而进行结构设计。
15. 桥梁抗风设计中的风荷载选择:风荷载选择是根据所在地区的设计风速和风向,确定桥梁结构所需的抗风能力。
桥梁抗震与抗风设计理念及设计方法探讨摘要:我国在经历了几十年的高速发展之后,各级公路网络已经基本形成,目前我国公路桥梁数量已超过80万座。
桥梁结构是公路上跨越沟谷、河道、道路、其他障碍物等的主要方式,公路桥梁多数位于地形地质和气象复杂的野外,而桥型样式丰富,其力学性能就变得更复杂了。
在世界范围内,由于地震及极端天气事件频繁发生,使得桥梁在运行过程中将承受着地震与风荷载的共同作用,若其抗风、抗震性能不够完善,将导致其失稳、颤振等病害,甚至导致其坍塌,造成巨大的经济损失,也不利于抗灾救灾工作的开展。
当前,关于桥梁抗震抗风设计的研究已在国内外引起了广泛关注,虽然已形成较为系统的理论及规范,通常仅限于某一种设计理念和计算方法,鲜有对比分析桥梁结构抗震抗风设计的报道。
所以,对桥梁的抗震、抗风设计的理念和方法进行深入的探讨是非常有意义的。
关键词:公路桥梁;抗震与抗风;设计理念;设计方法1地震和风的特性分析除了汽车人群作用和其他偶然作用外,地震和风荷载是影响桥梁安全运营的两个重要因素,对大跨径桥梁的影响尤为突出。
然而,地震与风因其自身特点不同,对桥梁结构产生的作用也不尽相同,这就导致了桥梁结构在抗震与抗风设计理念与设计方法上也存在着不同。
地震,又称地动、地振动,是地壳快速释放能量过程中造成的振动,期间会产生地震波的一种自然现象。
地球上板块与板块之间相互挤压碰撞,造成板块边沿及板块内部产生错动和破裂,是引起地震的主要原因。
强震的发生具有很大的偶然性,同时也有一定的必然性。
强震常常造成严重财产损失和人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。
据统计,地球上每年约发生500多万次地震,即每天要发生上万次的地震。
其中绝大多数太小或太远,以至于人类感觉不到;真正能对人类造成严重危害的地震大约有二十次;能造成特别严重灾害的地震大约有一两次。
人类感觉不到的地震,必须用地震仪才能记录下来;不同类型的地震仪能记录不同强度、不同远近的地震。
浙江工业大学《桥梁抗风与抗震》课程综述报告姓名:王昭学号:2111406033导师:袁伟斌日期:2015.01.09目录1桥梁的震害及破坏机理 (3)1.1 桥梁震害 (3)1.2破坏机理分析 (6)1.3 抗震设计及加固技术措施 (7)2桥梁抗震分析理论 (9)2.1抗震设计流程 (9)2.2抗震设计基本原理 (10)3延性抗震和减隔震抗震设计 (12)3.1桥梁延性抗震设计 (12)3.2桥梁减隔震抗震设计 (15)3.3减隔震技术与延性抗震设计的比较 (16)4风对桥梁的作用及风致振动 (17)4.1风对桥梁作用的现象及作用机制 (17)4.2风致振动 (18)参考文献 (21)桥梁抗风与抗震课程综述报告1桥梁的震害及破坏机理1.1桥梁震害地震是地球内部某部分急剧运动而发生的传播振动的现象,是迄今人类力量无法控制的自然灾害。
地球上平均每年都要发生近千次的破坏性地震,其中破坏力巨大的灾难性大地震即达十几次,这些地震在它们波及的范围内,均造成惨重的生命财产损失。
桥梁作为重要的社会基础设施,是生命线工程中的关键部分,在地震发生后的紧急救援和抗震救灾、灾后恢复重建中具有极其重要的地位。
强烈地震可能导致桥梁受到严重损伤或倒塌,造成交通中断,使抗震救灾工作受阻,以致造成生命和财产的更大损失,使震害程度扩大。
因此对桥梁震害及其机理的清晰认识,对于桥梁的设计、采取合理有效的抗震对策,保证桥梁在地震中的安全和正常使用具有重要意义。
桥梁结构受到的地震影响从结构抗震设计的角度讲主要有两种形式:即地基失效引起的破坏和结构强烈振动引起的破坏。
两者破坏的原因不同:前者属于静力作用,是由于地基失效产生的相对位移引起的结构破坏;后者属于动力作用,是由于振动产生的惯性力引起的破坏。
根据以往的震害情况分析,桥梁震害主要分为上部结构震害、支座震害、下部结构震害和基础震害[1]。
1.1.1上部结构震害由于受到桥梁墩台、支座的隔离作用,在地震中,桥梁上部结构因直接受惯性力作用而破坏的情况较少在发现的少数此类震害中,主要是钢结构的局部屈曲破坏,如图1(a)。
桥梁抗风与抗震1.桥梁抗震1.1桥梁的震害及破坏机理调查与分析桥梁的震害及其破坏机理是建立正确的抗震设计方法,采取有效抗震措施的科学依据。
国内外学者对桥梁震害的调查研究结果表明,桥梁震害主要表现为:(1)上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于桥梁结构的其他部位的毁坏而引起的。
如落梁,一种是由于弹性设计理论采用毛截面刚度,这样就会低估横向地震作用和位移。
导致活动节点处所设置的支座长度明显不足以及相邻梁体之间因横向距离不足而引起的相互冲击,造成落梁及相邻结构的撞击破坏;另外一种是由于地基土的作用造成大的地震位移,这种桥梁震害主要发生在建在软土或者可能液化的地基土上的桥梁上。
软土通常会使结构的振动反应放大,使得落梁的可能性增加。
(2)支座连接部位的破坏:这中破坏比较常见,由于连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。
这种破坏是抗震设计中最关注的问题之一。
(3)下部结构和基础的破坏:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。
除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。
地基破坏主要表现为砂土液化,地基失效,基础沉降和不均匀沉降破坏及由于其上承载力和稳定性不够,导致地面产生大变形,地层发生水平滑移,下沉,断裂。
(4)桥台沉陷,当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨方向移动的趋势。
由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。
如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。
以上所介绍桥梁的几种破坏形式是相互影响的,不同的地质条件和不同的抗震措施所造成的破坏程度和类型往往是不同的。
这就要求我们在桥梁设计中尤其是不规则桥梁和大跨度桥梁,必须从整体分析桥梁的抗震性能。
1.2抗震分析理论桥梁结构的地震反应分析应以地震场地运动为依据。
目前确定性的地震反应分析方法有静力法,动力反应谱法和动态时程分析法。
静力法假定结构与地震动具有相同的振动,把结构在地面运动加速度作用下产生的惯性力视为静力作用于结构物上做抗震计算。
动力反应谱法也是采用“地震荷载”的概念,从地震动出发求结构的最大地震反应,但同时考虑了地面运动和结构的动力特性,比静力法有很大进步。
反应谱法概念简单,计算方便,可用较少的计算量获得结构的最大反应值。
目前大多数分析软件都能很好的处理反应谱计算的问题。
但是反应谱只是弹性范围内的概念,当结构在强烈地震下进入塑性工作阶段时即不能直接应用。
同时,地震作用是一个时间过程,但反应谱方法只能得到最大反应,不能反映结构在地震动过程中的经历。
而且针对大跨桥梁不能忽视的行波效应和多点激振都不能很好的考虑。
故大跨度桥梁的方案设计阶段,可以应用反应谱方法进行抗震概念设计以选择一个较好的抗震体系,在加以修正。
动态时程分析法从选定合适的地震动输入(地震动加速度时程)出发,采用多节点多自由度的结构有限元动力计算模型建立的地震动方程,然后采用逐步积分法对方程进行求解,计算地震过程中每一瞬时结构的位移,速度和加速度反应,从而分析出结构在地震作用下弹性和非弹性阶段的内力变化以及构件逐步开裂,损坏直至倒塌的全过程。
动态时程分析法可以使桥梁的抗震设计从单一的强度保证转入强度,变形(延性)的双重保证,同时使我们更清楚了解结构地震动力破坏的机理。
此外还有功率谱法,Push-over分析方法等,这些分析方法也日益引起人们的重视。
1.3延性抗震和减隔震抗震设计(1)延性抗震所谓延性是指构件或结构具有承载能力不降低或基本不降低的塑性变形能力的一种性能,一般用延性比指标来衡量。
延性抗震不同与强度理论的是它通过选定结构部位的塑性变形来抵抗地震作用,塑性作用一方面通过塑性变形来耗散地震能量,另一方面塑性铰的出现使结构周期延长,从而减小地震产生的惯性力。
延性抗震验算所采用的破坏准则主要有:强度破坏准则,变形破坏准则,能量破坏准则,基于低周期疲劳特征的破坏准则以及用最大变形和滞回耗能来表达的双重指标破坏准则等。
强度破坏准则应用比较广泛,随着抗震研究的发展,人们逐步认识到强度条件并不能恰当的估价结构的抗震能力。
这是由于结构在强烈地震中往往会进入弹塑性阶段。
这时结构的塑性变形消耗输入的地震能量。
结构的自振周期也会随塑性变形的扩展而变长!从而改变地震反应的特性;结构是否破坏将取决于塑性变形的大小或塑性消耗的能量,而不是或不完全是取决于结构的强度。
抗震设防标准总结起来“小震不坏,中震可修,大震不倒”。
这些标准意味着在遭遇到多遇地震时结构应该处于弹性状态。
在遭遇到中等程度地震时,结构应该处于弹塑性状态,但非弹性变形应该发生在结构的选定部位(塑性铰)。
当遭遇强烈地震时,结构可以经历较大非弹性变形并且出现一定程度的损伤,但结构的变形不应该危机生命和造成结构丧失整体性。
对中等程度和强烈地震,规范推荐的设计地震作用的大小取决于结构的重要性、结构的延性以及允许多大程度的损伤。
延性抗震理论包括两个内容:1.在结构不发生大的破坏和丧失稳定性的前提下,提高构件的滞回耗能能力。
2.在结构遭遇罕遇地震时,允许结构上选定部位出现塑性铰,以达到改变结构动力特性,减小地震影响的目的。
桥梁延性抗震设计的两个阶段:1.对预期会出现塑性铰的部位进行详细的配筋设计2.对整个桥梁结构进行抗震能力分析验算,确保其抗震安全性。
影响延性的因素和延性抗震措施:材料:钢材是延性很好的材料,砖石砌体的延性则很差,钢筋混凝土介于二者之间。
组合结构的出现可以弥补现在桥梁结构延性设计的不足。
如型钢混凝土结构,钢骨混凝土等,其承载力可以高于同样外形的钢筋混凝土一倍以上,具有较好的抗剪能力,延性比明显高于钢筋混凝土结构;滞回曲线较为饱满,耗散能力有显著提高,从而呈现出良好的抗震性能。
能够隔离、吸收和耗散地震能量,减小桥梁结构的地震反应,使桥梁的变形限制在弹性范围,避免由于产生塑性变形而造成累积损伤破坏和永久残余变形,这大大提高了桥梁结构的安全度;同时可以节约材料,降低造价。
构件的受力状态受弯构件梁的延性较大,而压弯构件柱的延性较小,桁架中压杆延性较差,尤其在钢结构中,很多有限元分析软件在考虑杆件受压是就认为其退出工作。
所以在延性设计中一定要考虑构件的受力状态,合理的控制轴压比对结构的延性有巨大的作用。
构件形式同是压弯构件,细长杆件延性比粗短杆件好。
在桥梁桥墩设计中,对于粗大的柱可以分成几个长细比较大的柱,通过类似连梁的构件连接成整体。
这样不仅不会改变结构的强度而且能极大的提高柱子的延性。
这种方式逐渐被应用到实际的工程中。
构件的破坏形态钢筋混凝土构件的破坏形态对延性影响很大,适筋梁及大偏压柱的受弯破坏时延性较好(钢筋先屈服,混凝土后压坏),剪切破坏延性较小。
斜破坏是突发的脆性破坏。
在桥梁尤其是桥墩设计中要绝对避免。
构件延性会直接影响结构的延性,有破坏形式的好坏可知构件不能过早剪坏。
对于桥梁结构,上部结构的设计主要受恒载、活载和温度等而不是受地震作用的控制。
由于地震力仅仅对柱、墩和基础这些下部结构施加巨大的应力,所以柱、墩和基础是设计的主要部位。
在结构的能力设计中,桥梁下部设计地震惯性力可以小于由地震所产生的弹性惯性力,从而使下部结构形成塑性铰并消耗掉一部分地震能量,桥梁的其他部分提供足够的强度保证所选定的能量耗散机制能在地震中形成。
所以利用桥墩延性抗震是当前桥梁抗震设计中常用的方法。
桥墩延性抗震是将桥墩某些部位设计的具有足够的延性,以使在强震作用下使这些部位形成稳定的延性塑性铰产生弹塑性变形来延长结构周期、耗散地震能量。
在进行延性抗震设计时,按弹性反应谱计算塑性反应的地震荷载需要修正,桥梁抗震设计规范采用了综合影响系数来反映塑性变形的影响。
在具体的细部上:墩柱设计中应尽可能的使用螺旋形箍筋以便为墩柱提供足够的约束,如果采用的是箍筋,应控制箍筋间距(箍筋间距越小,其所能达到的最大延性比就越大)。
另外墩身及基础的纵向钢筋伸入盖梁和承台应有一定的锚固长度以增强连接点的延性并且桥墩基脚处应有足够的抵抗墩柱弯矩与剪力的能力,不允许有塑性铰接。
对于较高的排架桥墩,墩间应增设横系梁以减少墩柱的横向位移和设计弯矩!采用将桥墩某些部位(如墩脚)设计成具有足够的延性,以使在强震作用下使该部位形成稳定的延性塑性铰,并产生弹塑性变形来延长结构的振动周期,耗散地震力!针对目前大量高架桥倒塌毁坏的教训,必须加强对抗震支座、各种形式桥墩的延性研究,利用约束混凝土的概念提高它的延性。
(2)减隔震设计减震、隔振技术是简便、经济、先进的工程抗震手段。
减震是利用特制减震构件或装置,使之在强震时率先进入塑性区,产生大阻尼,大量消耗进入结构体系的能量;而隔振则是利用隔振体系,设法阻止地震能量进入主体结构。
在实践中,有时把这两中体系合二为一。
与依靠增加结构构件自身强度、变形能力来抵抗地震反应的传统结构的抗震设计方法相比,结构的减、隔震技术无论在提高结构的整体抗震性能方面还是在降低结构的工程造价方面都具有很明显的好处。
减震、隔震的基本原理:1.采用柔性支撑以增加结构的周期,减小结构地震反应。
2.采用阻尼器式能量耗散元件,以减小柔性支承处的相对位移。
3.在使用荷载作用下结构具有足够的刚性。
减隔震的基本原理可以用能量的观点来理解。
减、隔震结构在任意时刻的能量方程为: Ein = Eve + Ec+ Ep + Ei。
式中Ein为地震输入到结构中的总能量; Eve为结构的动能与弹性势能之和; Ec为结构的自身阻尼耗能; Ep为结构的弹塑性变形耗能; Ei为减隔震装置的耗能。
减隔震的原理可以认为减隔震装置比结构率先进入塑性阶段,利用自身消耗大量的能量,从而减小结构自身的耗能与塑性耗能,减轻结构的损伤破坏。
减隔震技术设计原则:采用减隔震技术可以有效地提高桥梁结构的抗震能力。
在设计时要分析其适用条件,正确选择、合理布置减隔震装置,并重视细部构件和构造的合理设计,以确保减隔震设计的效果。
减隔震技术并不是适合应用于各种情况。
场地比较软弱、不稳定、或延长桥梁结构周期后容易发生共振等情况,不宜使用隔震技术。
因此,在进行桥梁结构的抗震设计之前需要判断该桥是否适合采用隔震技术。
经研究表明,只要满足下面任何一项件,就可以尝试采用隔震技术进行桥梁结构的抗震设计。
(1)地震波的角度:适用于能量集中于高频的波。
(2)结构的角度:桥梁是高度不规则的,例如相邻桥墩的高度显著不同,因而可能存在对某个墩延性要求很高的情况。