实验二 阶跃响应与冲激响应(有数据)
- 格式:doc
- 大小:1.20 MB
- 文档页数:7
实验一 阶跃响应与冲激响应一、实验目的1、观察和测量RLC 串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2、掌握有关信号时域的测量分析方法。
二、实验仪器1、信号源及频率计模块S2 1块2、模块一S5 1块3、数字万用表 1台4、双踪示波器 1台三、实验原理以单位冲激信号()t δ作为激励,LTI 连续系统产生的零状态响应称为单位冲激响应,简称冲激响应,记为()h t 。
冲激响应示意图如图2-1:图2-1冲激响应示意图以单位阶跃信号()u t 作为激励,LTI 连续系统产生的零状态响应称为单位阶跃响应,简称阶跃响应,记为()g t 。
阶跃响应示意图如图2-2:tt)(t u )(tg图2-2阶跃响应示意图阶跃激励与阶跃响应的关系简单地表示为:t)(t δ)(t h[])()(t u H t g = 或者 )()(t g t u →如图2-3所示为RLC 串联电路的阶跃响应与冲激响应实验电路图,其响应有以下三种状态:1、当电阻R >2 LC时,称过阻尼状态; 2、当电阻R = 2 LC时,称临界状态; 3、当电阻R <2LC时,称欠阻尼状态。
图2-3(a) 阶跃响应电路连接示意图图2-3(b) 冲激响应电路连接示意图冲激信号是阶跃信号的导数,即⎰-=td h t g 0ττ)()(,所以对线性时不变电路冲激响应也是阶跃响应的导数。
为了便于用示波器观察响应波形,实验中用周期方波代替阶跃信号。
而用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。
四、实验内容1、阶跃响应实验波形观察与参数测量 设激励信号为方波,频率为500Hz 。
实验电路连接图如图2-3(a )所示。
① 调整激励信号源为方波(即从S2模块中的P2端口引出方波信号);调节频率调节旋钮ROL1,使频率计示数f=500Hz 。
②连接S2模块的方波信号输出端P2至S5模块中的P12。
③示波器CH1接于TP14,调整W1,使电路分别工作于欠阻尼、临界和过阻尼三种状态,观察各种状态下的输出波形,用万用表测量与波形对应的P12和P13两点间的电阻值(测量时应断开电源),并将实验数据填入表格2-1中。
实验一 二阶系统阶跃响应一、实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。
(2)学会根据模拟电路,确定系统传递函数。
二、实验内容二阶系统模拟电路图如图2-1 所示。
系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。
根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。
三、预习要求(1) 分别计算出T=,ξ= ,, 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=,ξ= ,σp =% , t s =6s ; T=,ξ= ,σp =% , t s =3s ; T=,ξ= ,σp =% , t s =2s ;(2) 分别计算出ξ= ,T=,, 时,系统阶跃响应的超调量σP 和过渡过程时间tS。
ξ= ,T=,σp=% , t s=;ξ= ,T=,σp=% , t s=6s;ξ= ,T=,σp=% , t s=12s;四、实验步骤(1)通过改变K,使ξ获得0,,,,等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。
(2)当ξ= 时,令T= 秒,秒,秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。
五、实验数据记录与处理:阶跃响应曲线图见后面附图。
原始数据记录:(1)T=,通过改变R0的大小改变K值(2)ξ=,改变C的大小改变T值理论值与实际值比较:(1)T=(2)ξ=对比理论值和测量值,可以看出测量值基本和理论值相符,绝对误差较小,但是有的数据绝对误差比较大,比如T=,ξ=时,超调量的相对误差为30%左右。
造成误差的原因主要有以下几个方面:(1)由于R0是认为调整的阻值,存在测量和调整误差,且不能精确地保证ξ的大小等于要求的数值;(2)在预习计算中我们使用了简化的公式,例如过渡时间大约为3~4T/ξ,这并不是一个精确的数值,且为了计算方便取3T/ξ作统一计算;(3)实际采样点的个数也可能造成一定误差,如果采样点过少,误差相对会大。
竭诚为您提供优质文档/双击可除冲激响应实验报告篇一:冲激响应与阶跃响应实验报告实验2冲激响应与阶跃响应一、实验目的1.观察和测量RLc串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。
二、实验原理说明实验如图1-1所示为RLc串联电路的阶跃响应与冲激响应的电路连接图,图2-1(a)为阶跃响应电路连接示意图;图2-1(b)为冲激响应电路连接示意图。
c20.1μ图2-1(a)阶跃响应电路连接示意图图2-1(b)冲激响应电路连接示意图其响应有以下三种状态:(1)当电阻R>2(2)当电阻R=2(3)当电阻R<2L时,称过阻尼状态;cL时,称临界状态;cL时,称欠阻尼状态。
cc20.1μ现将阶跃响应的动态指标定义如下:上升时间tr:y(t)从0到第一次达到稳态值y(∞)所需的时间。
峰值时间tp:y(t)从0上升到ymax所需的时间。
波通过微分电路后得到的尖顶脉冲代替冲激信号。
三、实验内容1.阶跃响应波形观察与参数测量设激励信号为方波,其幅度为1.5V,频率为500hz。
实验电路连接图如图2-1(a)所示。
①连接p04与p914。
②调节信号源,使p04输出f=500hz,占空比为50%的脉冲信号,幅度调节为1.5V;(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节)③示波器ch1接于Tp906,调整w902,使电路分别工作于欠阻尼、临界和过阻尼三种状态,并将实验数据填入表格2-1中。
1.欠阻尼状态2.临界状态3,过阻尼状态注:描绘波形要使三种状态的x轴坐标(扫描时间)一致。
2.冲激响应的波形观察冲激信号是由阶跃信号经过微分电路而得到。
激励信号为方波,其幅度为1.5V,频率为2K。
实验电路如图2-1(b)所示。
①连接p04与p912;②将示波器的ch1接于Tp913,观察经微分后响应波形(等效为冲激激励信号);③连接p913与p914;④将示波器的ch2接于Tp906,调整w902,使电路分别工作于欠阻尼、临界和过阻尼三种状态;⑤观察Tp906端(:冲激响应实验报告)三种状态波形,并填于表2-2中。
二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。
实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。
在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。
实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。
2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。
3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。
实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。
2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。
3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。
结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。
通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。
实验一 二阶系统阶跃响应一、 实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。
(2)学会根据模拟电路,确定系统传递函数。
二、实验内容二阶系统模拟电路图如图2-1 所示。
系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。
根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。
三、 预习要求(1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=0.5,ξ= 0.25,σp =44.43% , t s =6s ; T=0.5,ξ= 0.5,σp =16.3% , t s =3s ; T=0.5,ξ= 0.75,σp =2.84% , t s =2s ;(2) 分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
ξ= 0.25,T=0.2,σp =44.43% , t s =2.4s ; ξ= 0.25,T=0.5,σp =44.43% , t s =6s ; ξ= 0.25,T=1.0,σp =44.43% , t s =12s ;四、 实验步骤(1) 通过改变K ,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。
(2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。
五、实验数据记录与处理:阶跃响应曲线图见后面附图。
原始数据记录:(2)ξ=0.25,改变C的大小改变T值理论值与实际值比较:对误差比较大,比如T=0.5,ξ=0.75时,超调量的相对误差为30%左右。
信号与系统实验报告学院:电子信息与电气工程学院班级: 13级电信<1>班学号: 20131060104姓名:李重阳实验二 冲激响应一、实验目的1.观察和测量RLC 串联电路的阶跃响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。
二、实验原理说明实验如图2-1所示为RLC 串联电路的冲激响应的电路连接图。
图2-1 冲激响应电路连接示意图其响应有以下三种状态:(1) 当电阻R >2 LC时,称过阻尼状态; (2) 当电阻R = 2 LC时,称临界状态; (3) 当电阻R <2LC时,称欠阻尼状态。
现将阶跃响应的动态指标定义如下:上升时间t r :y(t)从0到第一次达到稳态值y (∞)所需的时间。
峰值时间t p :y(t)从0上升到y max 所需的时间。
调节时间t s :y(t)的振荡包络线进入到稳态值的5±%误差范围所需的时间。
最大超调量δ:100%y y )(y max δp ⨯∞∞-=⎪⎪⎭⎫ ⎝⎛0.1μC2数。
为了便于用示波器观察响应波形,实验中用周期方波代替阶跃信号。
而用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。
三、实验内容1.冲激响应的波形观察冲激信号是由阶跃信号经过微分电路而得到。
激励信号为方波,其幅度为1.5V ,频率为2K 。
实验电路如图2-1所示。
①连接P04与P912;②将示波器的CH1接于TP913,观察经微分后响应波形(等效为冲激激励信号); ③连接P913与P914;④将示波器的CH2接于TP906,调整W902,使电路分别工作于欠阻尼、临界和过阻尼三种状态;⑤观察TP906端三种状态波形,并填于表2-1中 表2-1:1.欠阻尼状态2.临界状态3.过阻尼状态表中的激励波形为在测量点TP913观测到的波形(冲激激励信号)。
四、实验报告要求1.描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时,要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。