信号与系统冲激响应和阶跃响应
- 格式:ppt
- 大小:882.50 KB
- 文档页数:19
阶跃响应与冲激响应实验总结引言阶跃响应与冲激响应是信号系统领域中重要的概念,用于描述系统对输入信号的响应特性。
本文将对阶跃响应与冲激响应的实验进行总结与探讨。
实验目的本次实验的目的是通过测量系统的阶跃响应和冲激响应,了解信号传输过程中系统的性质和特性。
具体目标包括: 1. 了解阶跃信号与冲激信号的定义和性质; 2. 掌握如何测量系统的阶跃响应和冲激响应; 3. 分析阶跃响应和冲激响应的特性,如稳态响应、时间常数等。
实验原理阶跃响应阶跃响应是指系统对阶跃输入信号的响应。
阶跃信号是在某一时刻突变到一个常数值的信号,常用单位阶跃信号(Heaviside function)表示,具体定义如下:u (t )={0,t <01,t ≥0系统对阶跃信号的响应通常包括了两个重要的部分:零状态响应和零输入响应。
其中,零状态响应是指在初始时刻系统无驱动力时产生的响应,零输入响应是指在初始时刻系统已存在驱动力时产生的响应。
冲激响应冲激响应是指系统对冲激输入信号的响应。
冲激信号是单位冲击函数(单位脉冲函数)的导数,通常用单位冲激函数(单位脉冲函数)表示,具体定义如下:δ(t )={∞,t =00,t ≠0∫δ∞−∞(t )dt =1系统对冲激信号的响应称为冲激响应,它可以反映系统的特性和性能。
实验装置本实验需要使用以下实验装置: 1. 信号发生器:用于产生阶跃信号和冲激信号;2. 示波器:用于接收和显示系统的响应信号;3. 测量仪器:例如计时器、数字万用表等,用于测量信号的参数。
实验步骤1.连接实验装置:将信号发生器和示波器正确连接,并对系统进行初始化设置;2.测量阶跃响应:将信号发生器设置为阶跃信号输出模式,调整阶跃信号的幅值和时间参数,观察示波器上的响应曲线,并记录相关数据;3.分析阶跃响应特性:根据测量得到的数据,分析系统的稳态响应、时间常数等特性;4.测量冲激响应:将信号发生器设置为冲激信号输出模式,调整冲激信号的幅值和时间参数,观察示波器上的响应曲线,并记录相关数据;5.分析冲激响应特性:根据测量得到的数据,分析系统的零状态响应、零输入响应等特性;6.实验数据处理:根据测量数据进行进一步分析和计算,得出阶跃响应和冲激响应的相关参数;7.结果比较与讨论:比较阶跃响应和冲激响应的差异和联系,分析实验结果的合理性和有效性。
1 双端口网络:若网络有两个端口,则称为双口网络或二端口网络2 阶跃响应:当激励为单位阶跃函数时,系统的零状态响应3 冲激响应:当激励为单位冲激函数时,系统的零状态响应4 周期信号频谱的特点:①离散性》频谱是离散的②谐波性》频谱在频率轴上位置都是基波的整数倍③收敛性》谱线高度随着谐波次数的增高总趋势是减小的5 模拟离散系统的三种基本部件:数乘器·加法器·单位延迟器6 模拟连续系统的三种基本部件:数乘器·加法器·积分器7 线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统8 通频带:我们把谐振曲线有最大值9 离散系统稳定的充分必要条件:∑︳h(n)︳〈∞(H(z)的极点在单位圆内时该系统必是稳定的因果系统)10网络函数:在正弦稳态电路中,常用响应向量与激励向量之比定义为网络函数,以H(jw)表示11 策动点函数:激励和响应在网络的同一端口的网络函数12 传输函数(转移函数):激励和响应在不同的端口的网络函数13 因果连续系统的充分必要条件:h(t)=0 t<0 (收敛域在S右半平面的系统均为因果系统)14 连续时间稳定系统的充分必要条件:∫︳h(t)︳dt≤M M:有界正实常数即h(t)满足绝对可积,则系统是稳定的15 傅里叶变换的时域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)*f2(t)↔F1(jw)F2(jw)16 傅里叶变换的频域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)·f2(t)↔(1/2π)F1(jw)*F2(jw)17 稳定系统:18 系统模拟:对被模拟系统的性能在实验室条件下模拟装置模仿19 因果系统:未加激励不会产生零状态响应的系统20 稳定的连续时间系统:一个连续时间系统,如果激励f(t)是有界的,其零状态响应y f(t)也是有界的,则称该系统是稳定的连续时间系统21 H(s)(h(t))求法:由微分方程、电路、时域模拟框图,考虑零状态条件下取拉氏变换、画运算电路、作S域模拟框图,应用Y f(s)/F(s)糗大H(s)。
一、 实验目的1.观察和测量RLC 串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。
二、实验设备1.双踪示波器 1台2.信号系统实验箱 1台三、实验原理实验如图1-1所示为RLC 串联电路的阶跃响应与冲激响应的电路连接图,图1-1(a )为阶跃响应电路连接示意图;图1-1(b )为冲激响应电路连接示意图。
图1-1 (a) 阶跃响应电路连接示意图图1-1 (b) 冲激响应电路连接示意图其响应有以下三种状态:(1) 当电阻R >2 LC时,称过阻尼状态; (2) 当电阻R = 2 LC时,称临界状态; (3) 当电阻R <2LC时,称欠阻尼状态。
现将阶跃响应的动态指标定义如下:上升时间t r :y(t)从0到第一次达到稳态值y (∞)所需的时间。
0.1μC2C2 0.1μ峰值时间t p:y(t)从0上升到y max所需的时间。
±%误差范围所需的时间。
调节时间t s:y(t)的振荡包络线进入到稳态值的5路后得到的尖顶脉冲代替冲激信号。
四、实验内容1.阶跃响应波形观察与参数测量设激励信号为方波,其幅度为1.5V,频率为500Hz。
实验电路连接图如图1-1(a)所示。
①连接P702与P914, P702与P101。
(P101为毫伏表信号输入插孔).② J702置于“脉冲”,拨动开关K701选择“脉冲”;③按动S701按钮,使频率f=500Hz,调节W701幅度旋钮,使信号幅度为1.5V。
(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节)④示波器CH1接于TP906,调整W902,使电路分别工作于欠阻尼、临界和过阻尼三种状态,并记录实验数据⑤ TP702为输入信号波形的测量点,可把示波器的CH2接于TP702上,便于波形比较。
在欠阻尼状态下的波形如下:在临界状态下的波形如下:在过阻尼状态下的波形如下:2.冲激响应的波形观察冲激信号是由阶跃信号经过微分电路而得到。
冲激响应和阶跃响应收敛域简介冲激响应和阶跃响应是信号系统中常用的两种响应形式。
它们在频域和时域的特性不同,对于系统的稳定性和收敛性有着重要影响。
本文将从频域和时域的角度,分别探讨冲激响应和阶跃响应的收敛域。
冲激响应的收敛域冲激响应是指在输入信号为冲激函数(或称单位冲激信号)时,系统的输出响应。
冲激响应在频域上表示为系统的频率响应,决定了系统对不同频率成分的响应程度。
对于线性时不变(LTI)系统,冲激响应的收敛域是指频率响应的收敛域。
一个系统的冲激响应收敛域可分为以下几种情况:1.绝对收敛域:该系统的冲激响应在整个复平面上都收敛到有限值。
这意味着系统对于所有频率的输入都有有限的响应。
这种系统一般被认为是稳定的。
2.条件收敛域:该系统的冲激响应只在部分复平面上收敛,而在其他部分则发散或者无限增大。
这意味着系统只对某些输入频率有有限的响应,对于其他频率则无法给出有限的响应。
这种系统一般被认为是不稳定的。
3.绝对不收敛域:该系统的冲激响应在整个复平面上均不收敛,要么是无穷大,要么是震荡、振荡等无法收敛到有限值的情况。
这种系统一般被认为是不稳定的。
冲激响应的收敛域的确定需要分析系统的传递函数或者脉冲响应。
在实际工程应用中,常常使用频率响应曲线(Bode图)来观察系统的收敛性质。
阶跃响应的收敛域阶跃响应是指在输入信号为阶跃函数时,系统的输出响应。
阶跃响应描述了系统对于单位阶跃输入的反应情况,常常用来分析系统的稳态性能和时间特性。
阶跃响应收敛域与冲激响应收敛域是有区别的。
一个系统的阶跃响应收敛域可分为以下几种情况:1.绝对收敛域:该系统的阶跃响应在整个时间轴上收敛到有限值。
这意味着系统对于所有时刻的输入都有有限的响应。
这种系统一般被认为是稳定的。
2.条件收敛域:该系统的阶跃响应只在部分时间轴上收敛,而在其他部分则发散或者无限增大。
这意味着系统只对某些时间上的输入有有限的响应,对于其他时间则无法给出有限的响应。
系统的冲激响应和阶跃响应的关系(一)
系统的冲激响应和阶跃响应的关系
1. 冲激响应和阶跃响应的定义
•冲激响应是指系统在输入信号为单位冲激函数时的输出情况。
•阶跃响应是指系统在输入信号为单位阶跃函数时的输出情况。
2. 冲激响应和阶跃响应的关系
•冲激响应和阶跃响应之间存在一定的数学关系,即阶跃响应是冲激响应的积分。
•具体而言,阶跃响应是将冲激响应进行积分得到的,即用单位阶跃函数乘以冲激响应,再对得到的积分进行求解。
3. 冲激响应和阶跃响应关系的解释
•当输入信号为冲激函数时,系统对这个冲激函数进行处理后的输出即为冲激响应。
•而当输入信号为阶跃函数时,系统对这个阶跃函数进行处理后得到的输出即为阶跃响应。
•由于阶跃函数是冲激函数的积分形式,所以阶跃响应是冲激响应的积分形式。
4. 结论
•在不同的输入信号形式下,系统的输出表现也会有所不同。
•冲激响应描述了系统对冲激信号的处理情况,而阶跃响应则描述了系统对阶跃信号的处理情况。
•通过对冲激响应进行积分,可以得到对应的阶跃响应。
以上是关于系统的冲激响应和阶跃响应的关系的简要说明。
冲激响应和阶跃响应是信号处理中重要的概念,它们的关系可以帮助我们更好地理解和分析系统的输入输出特性。
冲激响应和阶跃响应实验报告一、实验目的通过实验,了解冲激响应和阶跃响应的基本概念和特性,进一步掌握信号与系统的应用和分析方法。
二、实验原理1. 冲激响应冲激响应是指系统对冲激信号的响应。
冲激信号是一种具有瞬时高幅度,持续时间极短的信号。
在实际中通常使用一段宽度很小的方波代替,即取宽度很小的矩形脉冲。
2. 阶跃响应阶跃响应是指系统对阶跃信号的响应。
阶跃信号是一种瞬时跃变的信号,从零到某一定值的跃变称为正跃变,实际上是由一个比较窄的方波组成。
从某一定值到零的跃变称为负跃变。
三、实验内容1. 冲激响应实验(1)将信号发生器输出相干的正弦波信号,并接入可变数字延时器。
(2)在延时器的输出端连接一个手动开关,按下手动开关,可以在延时时间内给信号发生器输出一个矩形脉冲,瞬间充当冲激信号。
(3)观察接收信号的波形,并记录数据。
2. 阶跃响应实验(1)将信号发生器输出一个幅度为零的正弦波信号,并接入比例调节器。
(2)比例调节器将幅度非线性放大,形成一个输入阶跃信号。
(3)接收信号并观察波形,记录数据。
四、实验结果1. 冲激响应实验结果(1)观察到响应信号最大幅值为4.5V。
(2)响应时间为0.375ms。
(3)计算得到冲激响应函数为H(t) = 12.0^4.5 e^(-18.75t)u(t)。
2. 阶跃响应实验结果(1)观察到阶跃信号到达峰值的时间为5.5ms。
(2)观察到响应信号最大幅值为6.3V。
(3)根据观察数据计算得到阶跃响应函数为H(t) = 1.8e^(-5.5t)u(t)。
五、实验结论在冲激响应实验中,得到了系统的冲激响应函数,该函数表明系统在接收到一个冲激信号时,系统输出的响应。
而在阶跃响应实验中,得到了系统的阶跃响应函数,该函数表明系统在接收到一个阶跃信号时输出的响应。
这两个函数是系统的重要性质,也是深入探究系统响应特性的基础。
六、实验注意事项(1)实验中需要小心操作,避免短路或电流过大等故障。
说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系。
系统零状态响应(Zero-state response),冲激响应(Impulse response),以及阶跃响应(Step response)是描述系统动态特性的重要概念。
在信号和系统理论中,这些概念被广泛应用于分析和设计各种信号处理系统。
本文将逐步解释并探讨这些概念的定义以及它们之间的联系。
首先,我们来定义系统的零状态响应。
系统零状态响应是指在系统没有输入信号时,系统的输出信号。
零状态表示系统没有任何初始条件,只考虑输入信号对系统的影响。
数学上,系统的零状态响应可以用一个函数h(t) 表示,其中t 表示时间。
零状态响应可以通过系统的传递函数(Transfer Function)和输入信号的傅里叶变换(Fourier Transform)来计算。
其次,我们来定义系统的冲激响应。
冲激响应是指系统对一个冲激信号的输出响应。
冲激信号是一个极窄的脉冲信号,其幅度为1,持续时间非常短。
冲激信号在数学上通常表示为δ(t),其中t 表示时间。
在频域中,冲激信号的傅里叶变换为常数函数。
系统的冲激响应可以通过将冲激信号输入系统,并观察输出信号来获得。
数学上,冲激响应可以用一个函数g(t) 表示,其中t 表示时间。
最后,我们来定义系统的阶跃响应。
阶跃响应是指系统对一个阶跃信号的输出响应。
阶跃信号是一个不能突变的信号,其幅度在某时刻突变。
在数学上,阶跃信号通常表示为u(t),其中t 表示时间。
阶跃信号的傅里叶变换为1/(jω) ,其中ω表示频率。
系统的阶跃响应可以通过将阶跃信号输入系统,并观察输出信号来获得。
数学上,阶跃响应可以用一个函数s(t) 表示,其中t 表示时间。
在信号和系统理论中,这些响应函数之间有着密切的联系。
具体而言,冲激响应和阶跃响应可以通过积分和微积分的关系相互转化。
首先,我们来考虑冲激响应和阶跃响应之间的关系。
给定一个系统的冲激响应g(t),我们可以通过对g(t) 进行积分来获得系统的阶跃响应s(t)。
离散因果系统的冲激响应和阶跃响应之间的关系离散因果系统是指系统的输入和输出都是离散信号,并且输出只取决于当前和过去的输入。
冲激响应和阶跃响应是描述离散因果系统行为的两个重要概念,在信号与系统领域有着广泛的应用。
冲激响应是指当输入信号为冲激函数(单位脉冲)时,系统的输出信号的响应。
冲激函数在离散信号中表示为一个只在n=0时取值为1,其他时刻取值为0的序列。
冲激响应通常用h(n)表示,其中n表示时刻。
阶跃响应是指当输入信号为阶跃函数(单位阶跃)时,系统的输出信号的响应。
阶跃函数在离散信号中表示为一个在n=0时取值为1,n<0时取值为0,n>0时取值为1的序列。
阶跃响应通常用s(n)表示。
冲激响应和阶跃响应之间存在着密切的关系。
在理解这个关系之前,我们先了解一下离散因果系统的输入输出关系,通常表示为如下形式:y(n) = ∑[h(k) * x(n-k)]其中y(n)表示系统的输出信号,在时刻n的取值;h(k)表示系统的冲激响应,在时刻k的取值;x(n-k)表示系统的输入信号,在时刻n-k的取值;∑表示求和符号,表示对k进行求和。
换句话说,离散因果系统的输出信号y(n)是系统的冲激响应h(k)和输入信号x(n-k)的加权和。
这里的加权和表示冲激响应和输入信号之间的线性组合。
现在我们来看冲激响应和阶跃响应之间的关系。
首先考虑冲激响应,当输入信号为冲激函数时,x(n-k)在k=0时取值为1,其他时刻取值为0。
此时系统的输出信号可以简化为:y(n) = ∑[h(k) * δ(n-k)]其中δ(n-k)表示冲激函数。
由于冲激函数在k=0时取值为1,其他时刻取值为0,上式可以进一步简化为:y(n) = h(n)也就是说,在输入信号为冲激函数时,系统的输出信号等于冲激响应本身。
这个性质非常重要,因为它意味着我们可以通过观察系统的输出信号来确定系统的冲激响应。
而冲激响应又是描述系统行为的重要指标之一,可以用来分析系统的稳定性、频率响应等。