天体质量的计算方法
- 格式:doc
- 大小:20.00 KB
- 文档页数:2
高中天体物理公式总结高中天体物理公式1. 开普勒第三定律:T2/R3=K(=4π2/GM){R: 轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2. 万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2 ,方向在它们的连线上)3. 天体上的重力和重力加速度:GMm/R2=mg;g=GM/R{2R: 天体半径(m) , M 天体质量(kg) }4. 卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5. 第一(二、三)宇宙速度V仁(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6. 地球同步卫星GMm/(r地+h)2=m4π2(r 地+h)/T2{h≈36000km ,h: 距地球表面的高度,r 地: 地球的半径}强调:(1) 天体运动所需的向心力由万有引力提供,F 向=F 万; (2) 应用万有引力定律可估算天体的质量密度等;(3) 地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4) 卫星轨道半径变小时, 势能变小、动能变大、速度变大、周期变小;(5) 地球卫星的最大环绕速度和最小发射速度均为7.9km/s 。
高中物理易错知识点1. 受力分析,往往漏“力”百出对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。
对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。
在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。
在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。
高中天体物理公式总结那么物理公式中关于天体运动公式有哪些呢?下面给大家带来高中天体物理公式,希望对你有帮助。
高中天体物理公式1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}强调:(1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
高中物理易错知识点1.受力分析,往往漏“力百出对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法与“隔离法两种。
对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。
在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。
在受力分析过程中,特别是在“力、电、磁综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。
计算天体的质量和密度知识梳理“天上”法“地上”法原理万有引力提供向心力:22m GMmv r r ==2m r ω=224m r T π=n ma万有引力等于重力:2GMmmg R=质量M=2324GT r π=2v r G =23rG ω=2n a r G2gR M G=需要已知量 G 、r 、T(或ω、v)G 、g 、R密度3233M r V GT R πρ==特例,当r=R 时:23GT πρ=34g GR ρπ=注意:计算天体质量需“一个中心、两个基本点”: “一个中心”即只能计算出中心天体的质量;“两个基本点” 即要计算中心天体的质量,除引力常量G 外,还要已知两个独立的物理量。
例题分析【例1】下列哪一组数据不能估算出地球的质量。
引力常量G 已知( )A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度【例2】已知引力常量G .月球中心到地球中心的距离R 和月球绕地球运行的周期T 。
仅利用这三个数据,可以估算出的物理量有( ) A .月球的质量 B .地球的密度C .地球的半径D .月球绕地球运行速度的大小【例3】(2006北京)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( )A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量【例4】(2005广东)已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。
某同学根据以上条件,提出一种估算地球质量M 的方法: 同步卫星绕地球作圆周运动,由得⑴请判断上面的结果是否正确,并说明理由。
如不正确,请给出正确的解法和结果。
⑵请根据已知条件再提出两种估算地球质量的方法并解得结果。
同步练习1.已知下面的哪组数据可以计算出地球的质量?引力常量G 已知( )A .月球绕地球运动的周期和月球的半径B .地球同步卫星离地面的高度C .地球绕太阳运动的周期和地球到太阳中心的距离D .人造卫星在地面附近的运动速度和周期2.下列哪一组数据能够估算出地球的密度。
第23讲 应用万有引力定律估算天体质量和密度1.(2021·全国)卡文迪许用扭秤实验测定了引力常量,以实验验证了万有引力定律的正确性。
应用引力常量还可以计算出地球的质量,卡文迪许也因此被称为“能称出地球质量的人”。
已知引力常量G =6.67×10﹣11N •m 2/kg 2,地面上的重力加速度g =9.8m/s 2,地球半径R =6.4×106m ,则地球质量约为( ) A .6×1018kg B .6×1020 kgC .6×1022 kgD .6×1024 kg【解答】解:根据公式GMm R 2=mg 可得M =gR 2G =9.8×(6.4×106)26.67×10−11kg =6×1024kg ,故ABC 错误,D 正确。
故选:D 。
2.(2021·乙卷)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。
科学家认为S2的运动轨迹是半长轴约为1000AU (太阳到地球的距离为1AU )的椭圆,银河系中心可能存在超大质量黑洞。
这项研究工作获得了2020年诺贝尔物理学奖。
若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104MB .4×106MC .4×108MD .4×1010M【解答】解:设地球的质量为m ,地球到太阳的距离为r =1AU ,地球的公转周期为T =1年;由万有引力提供向心力可得:GMm r 2=mr4π2T 2,解得:M =4π2r 3GT 2; 对于S2受到黑洞的作用,椭圆轨迹半长轴R =1000AU , 根据图中数据结合图象可以得到S2运动的半周期T′2=(2002﹣1994)年=8年,则周期为T ′=16年,根据开普勒第三定律结合万有引力公式可以得出:M 黑=4π2R 3GT′2,其中R 为S 2的轨迹半长轴, 因此有:M 黑=R 3T 2r 3T′2M ,代入数据解得:M黑≈4×106M ,故B 正确,ACD 错误。
万有引力理论的成就之天体的计算方法一、计算天体的质量基本思路1.地球质量的计算利用地球表面的物体,若不考虑地球自转,质量为m的物体的重力等于地球对物体的万有引力,即mg=^,则譽,由于g、R已经测岀,因此可计算出地球的质量.2.太阳质量的计算利用某一行星:由于行星绕太阳的运动,可看做匀速圆周运动,行星与太阳间的万有引力充当向心力,即G^=mu)2r,而3 =罕则可以通过测岀行星绕太阳运转的周期和轨道半径,得到太阳质攀.3.其他行星质量的计算利用绕行星运转的卫星,若测出该卫星绕行星运转的周期和轨道半径同样可得出行星的质量.二、讣算天体的质量具体方法1.“称量”地球的质量如果不考虑地球自转的影响,地球上的物体所受重力等于地球对它的万有引力.由万有引力左律m鉀瞥得恋=譬,苴中g为地球表面的重力加速度,R为地球半径,G为万有引力常量.从而得到地球质星:M=5.96x10“ kg.通过上而的过程我们可以计算地球的质量,通过其它的方法,或者说已知另外的一些条件能否测出地球质量.2.天体质量计算的几种方法(1)若已知月球绕地球做匀速圆周运动的周期为T,半径为r,根据万有引力等于向心力, 即"恋严111 =m月罕P,可求得地球质量M地=¥?"・(2)若已知月球绕地球做匀速圆周运动的半径I•和月球运动的线速度v,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二圧律,得也・HH V 2G~p —=m n~.解得地球的质量为M 地=W/G ・ (3) 若已知月球运行的线速度v 和运行周期T,由于地球对月球的引力等于月球做匀速圆 周运动的向心力,根据牛顿第二宦律,得^Mifeinuv 2 G —p —=m以上两式消去门解得M^=vT7(2nG)・(4) 若已知地球的半径R 和地球表而的重力加速度由 根据物体的重力近似等于地球对 物体的引力,得解得地球质量为"地=野.由以上论述可知,在万有引力泄律这一章中,求天体质量的方法主要有两种:一种方法 是根据天体表面的重力加速度来求天体质量,即g=G 帶,则譽,另一种方法是根据天 体的圆周运动,即根据天体做匀速圆周运动的向心力由万有引力提供,列岀方程:4/J 2 v 2 , “士4nV v 2r 3 hG-p-=m-^rr =in-=mo)午来、k 得质量 M= 面厂=否=飞一用第二种方法只能求出圆心处天体质量(即中心天体). 3・天体密度的计算(1) 利用天体表而的重力加速度来求天体的自身密度.由卑严和M = p -^nR\得P 二爲其中g 为天体表面重力加速度,R 为天体半径.(2) 利用天体的卫星来求天体的密度.设卫星绕天体运动的轨道半径为r ,周期为T ,天体半径为R ,则可列出方程:=m ;rv- 2/7 〒•M 4jfr3/Gr 3nr3当天体的卫星环绕天体表而运动时,其轨道半径I•等于天体半径R・则天体密度为:3/rP ~GT-名师点拨:在已知重力加速度求天体质量或密度时,通常可以利用重力等于万有引力, 重力就是环绕天体运动的向心力以及圆周运动的规律求解.名师点拨:在行星表而的物体的重力等于行星对它的万有引力,在行星附近飞行的飞船, 由万有引力提供其做圆周运动的向心力.。
高中物理万有引力公式大全万有引力公式都有什么1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N&;m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
万有引力定律是什么万有引力定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适的万有引力定律表示如下:任何两个粒子都通过连线方向的力相互吸引。
这种引力与它们质量的乘积成正比,与它们距离的平方成反比,与两个物体的化学成分和它们之间的介质类型无关。
伽利略在1632年实际上已经提出离心力和向心力的初步想法。
布里阿德在1645年提出了引力平方比关系的思想.牛顿在1665~1666年的手稿中,用自己的方式证明了离心力定律,但向心力这个词可能首先出现在《论运动》的第一个手稿中。
一般人认为离心力定律是惠更斯在1673年发表的《摆钟》一书中提出来的。
计算天体的质量五个公式
计算天体的质量是天文学家们一直在研究的课题,它可以帮助我们更好地了解宇宙中的物质组成。
目前,有五种公式可以用来计算天体的质量,它们分别是:质量-光度关系,质量-半径关系,质量-轨道速度关系,质量-轨道半径关系和质量-轨道周期关系。
首先,质量-光度关系是一种计算天体质量的方法,它基于宇宙中的星系和星云的质量与其发出的光量之间的关系。
根据这一关系,可以通过测量星系和星云发出的光量来估算它们的质量。
其次,质量-半径关系是一种计算天体质量的方法,它基于宇宙中的星系和星云的质量与其半径之间的关系。
根据这一关系,可以通过测量星系和星云的半径来估算它们的质量。
第三,质量-轨道速度关系是一种计算天体质量的方法,它基于宇宙中的星系和星云的质量与其轨道速度之间的关系。
根据这一关系,可以通过测量星系和星云的轨道速度来估算它们的质量。
第四,质量-轨道半径关系是一种计算天体质量的方法,它基于宇宙中的星系和星云的质量与其轨道半径之间的关系。
根据这一关系,可以通过测量星系和星云的轨道半径来估算它们的质量。
最后,质量-轨道周期关系是一种计算天体质量的方法,它基于宇宙中的星系和星云的质量与其轨道周期之间的关系。
根据这一关系,可以通过测量星系和星云的轨道周期来估算它们的质量。
以上就是计算天体质量的五种公式,它们可以帮助我们更好地了解宇宙中的物质组成,从而更好地探索宇宙的奥秘。
天体运动密度的公式总结如下:
线密度(Linear Density):线密度表示单位长度上的质量分布情况,可以用下式计算:λ = M / L 其中,λ为线密度,M为天体的质量,L为天体的长度。
表面密度(Surface Density):表面密度表示单位面积上的质量分布情况,可以用下式计算:Σ = M / A 其中,Σ为表面密度,M为天体的质量,A为天体的表面积。
体密度(Volume Density):体密度表示单位体积上的质量分布情况,可以用下式计算:ρ = M / V 其中,ρ为体密度,M为天体的质量,V为天体的体积。
这些公式可以用于描述天体运动中质量的分布情况,对于研究天体物理学和天文学等领域非常有用。
在具体应用中,需要根据实际情况选择合适的密度定义和相应的计算公式。
天体质量的计算
1. 开普勒第三定律法
这种方法适用于双星系统,根据两颗星球周期运行的关系,可以推导出它们的质量比值。
这种方法经常用于计算暗物质组分。
2. 视质量法
利用天体的光度和光谱型推算出它的质量。
这种方法需要先从已知质量和光度的恒星样本建立经验关系。
3. 轨道理论法
观测一颗天体的卫星或伴星的运动,通过牛顿万有引力定理计算出中心天体的质量。
这是测量行星或恒星质量的经典方法。
4. 星团动力学法
通过研究球状星团或星系球状成分中恒星的运动状态,借助维里定理推算整个系统的质量。
5. 离心曲线法
观测活动星系核中气体的旋转曲线,通过牛顿动力学方程推算内部存在的暗物质质量。
6. 引力透镜效应
根据引力场对背景光源像的畸变程度,可以反推出造成透镜效应的天体质量。
不同方法在不同情况下具有优势,需要结合具体天体特征选择合适的方法进行质量测定。
准确的天体质量数据是探索宇宙奥秘的基础。
一、计算天体的质量基本思路
1.地球质量的计算
利用地球表面的物体,若不考虑地球自转,质量为m 的物体的重力等于地球对物体的万有引
力,即mg =GMm R 2,则M =gR 2G
,由于g 、R 已经测出,因此可计算出地球的质量.
2.太阳质量的计算
利用某一行星:由于行星绕太阳的运动,可看做匀速圆周运动,行星与太阳间的万有引
力充当向心力,即G Mm r 2=mω2r ,而ω=2πT
,则可以通过测出行星绕太阳运转的周期和轨道半径,得到太阳质量M =4π2r 3GT 2. 3.其他行星质量的计算
利用绕行星运转的卫星,若测出该卫星绕行星运转的周期和轨道半径同样可得出行星的质量.
二、计算天体的质量具体方法
1.“称量”地球的质量
如果不考虑地球自转的影响,地球上的物体所受重力等于地球对它的万有引力.
由万有引力定律mg =GMm R 2 得M =gR 2G
,其中g 为地球表面的重力加速度,R 为地球半径,G 为万有引力常量. 从而得到地球质量M =×1024 kg .
通过上面的过程我们可以计算地球的质量,通过其它的方法,或者说已知另外的一些条件能否测出地球质量.
2.天体质量计算的几种方法
(1)若已知月球绕地球做匀速圆周运动的周期为T ,半径为r ,根据万有引力等于向心力,
即GM 地·m 月r 2=m 月r ⎝ ⎛⎭
⎪⎫2πT 2,可求得地球质量M 地=4π2r 3GT 2. (2)若已知月球绕地球做匀速圆周运动的半径r 和月球运动的线速度v ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得
G M 地·m 月r 2=m 月v 2r
. 解得地球的质量为M 地=rv 2/G.
(3)若已知月球运行的线速度v 和运行周期T ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得
G M 地·m 月r 2=m 月·v·2πT
. G M 地·m 月r 2=m 月v 2r
. 以上两式消去r ,解得
M 地=v 3T/(2πG).
(4)若已知地球的半径R 和地球表面的重力加速度g ,根据物体的重力近似等于地球对物体的引力,得
mg =G M 地·m R 2, 解得地球质量为M 地=R 2g G .
由以上论述可知,在万有引力定律这一章中,求天体质量的方法主要有两种:一种方法
是根据天体表面的重力加速度来求天体质量,即g =G M R 2,则M =gR 2G
,另一种方法是根据天体的圆周运动,即根据天体做匀速圆周运动的向心力由万有引力提供,列出方程:
G Mm r 2=m 4π2T 2r =m v 2r =mω2r 来求得质量M =4π2r 3GT 2=v 2r G =ω2r 3G
用第二种方法只能求出圆心处天体质量(即中心天体).
3.天体密度的计算
(1)利用天体表面的重力加速度来求天体的自身密度.
由mg =GMm R 2和M =ρ·43
πR 3, 得ρ=3g 4πGR
. 其中g 为天体表面重力加速度,R 为天体半径.
(2)利用天体的卫星来求天体的密度.
设卫星绕天体运动的轨道半径为r ,周期为T ,天体半径为R ,则可列出方程:
G Mm r 2=m 4π2T 2r ,M =ρ·43
πR 3, 得ρ=M 43πR 3=4π2r 3/GT 243
πR 3=3πr 3GT 2R 3. 当天体的卫星环绕天体表面运动时,其轨道半径r 等于天体半径R ,则天体密度为:
ρ=3πGT 2. 名师点拨:在已知重力加速度求天体质量或密度时,通常可以利用重力等于万有引力,重力就是环绕天体运动的向心力以及圆周运动的规律求解.
名师点拨:在行星表面的物体的重力等于行星对它的万有引力,在行星附近飞行的飞船,由万有引力提供其做圆周运动的向心力.。