asgAAA万有引力计算天体的质量和密度
- 格式:doc
- 大小:64.50 KB
- 文档页数:7
万有引力求天体的质量编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(万有引力求天体的质量)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为万有引力求天体的质量的全部内容。
求天体的质量(密度,加速度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 2RMm得 G g R M 2=。
(式中M 、g 、R 分别表示天体的质量、天体表面的重力加速度和天体的半径.)2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得222224Tmr mr r v m r Mm G πω===若已知卫星的轨道半径r 和卫星的运行周期T 、角速度ω或线速度v ,可求得中心天体的质量为G r GT r G rv M 3223224ωπ===1。
下列几组数据中能算出地球质量的是(万有引力常量G 是已知的)( ) A.地球绕太阳运行的周期T 和地球中心离太阳中心的距离r B 。
月球绕地球运行的周期T 和地球的半径rC 。
月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T 和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A 项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由22ωmr rMm G =可以求出中心天体地球的质量,所以C 项正确.由2224T mr r Mm G π=求得地球质量为2324GT r M π=,所以D 项正确2。
万有引力与航天考点微专题3 天体质量和密度的计算一 知能掌握1、解决天体(卫星)运动问题的基本思路 (1)把天体的椭圆运动看做匀速圆周运动(2)是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r Tm 224πr m 2ω=;(3)地球对物体的万有引力近似等于物体的重力,由于地球自转缓慢,所以大量的近似计算中忽略了自转的影响,认为地球表面处物体所受到的地球引力近似等于其重力,即G 2R mM=mg (g 表示天体表面的重力加速度). 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G , 天体密度ρ=M V =M 43πR3=3g 4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r3GT 2;②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR3=3πr3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.3.估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径. 4. 天体质量、密度的计算方法汇总二 探索提升【典例1】地球可近视为一个R=6400km 的球体,在地面附近的重力加速度g=9.8m/s 2,试估算地球的平均密度ρ。
【答案】33/105.54334m kg GRgGR g ⨯===πρρπ【典例2】1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度【答案】AB【解析】对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G,选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,B 项正确.对月球绕地球运动来说,能求地球的质量,不知道月球的相关参量及月球的卫星的运动参量,无法求出它的质量和密度,C 、D 项错误. 【典例3】中子星是恒星演化过程的一种可能结果,它的密度很大。
物理天体运动的基本公式
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=1
6.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
强调:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
第23讲应用万有引力定律估算天体质量和密度1.(2021·全国)卡文迪许用扭秤实验测定了引力常量,以实验验证了万有引力定律的正确性。
应用引力常量还可以计算出地球的质量,卡文迪许也因此被称为“能称出地球质量的人”。
已知引力常量G =6.67×10﹣11N •m 2/kg 2,地面上的重力加速度g =9.8m/s 2,地球半径R =6.4×106m ,则地球质量约为( )A .6×1018kgB .6×1020 kgC .6×1022 kgD .6×1024 kg2.(2021·乙卷)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。
科学家认为S2的运动轨迹是半长轴约为1000AU (太阳到地球的距离为1AU )的椭圆,银河系中心可能存在超大质量黑洞。
这项研究工作获得了2020年诺贝尔物理学奖。
若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104MB .4×106MC .4×108MD .4×1010M 一.知识回顾1.万有引力定律F =G m 1m 2r 2,式中G 为引力常量,在数值上等于两个质量都是1 kg 的质点相距1 m 时的相互吸引力。
引力常量由英国物理学家卡文迪什在实验室中比较准确地测出。
测定G 值的意义:①引力常量的普适性成了万有引力定律正确性的有力证据;②使万有引力定律有了真正的实用价值。
(1).万有引力的特点(2)应用万有引力定律的注意事项在以下三种情况下可以直接使用公式F =G m 1m 2r2计算:①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r 表示两质点间的距离。
②求两个质量分布均匀的球体间的万有引力:公式中的r 为两个球心间的距离。
万有引力和航天
第一节:计算天体的质量和密度
基础知识填空
1、卡普勒第一定律是: ;
卡普勒第二定律是: ;
卡普勒第三定律是: ,
其表达式是 ,当把轨道近似看作圆时,表达式可改写
为 ,其中常数k 由 决定。
2、通过计算推导可得太阳对行星的引力F ∝2
m r (m 是行星质量),由于太阳与行星间相互作用,两者的地位是相同的,既然太阳吸引行星,行星也必然吸引太阳,所以可推得
行星对太阳的引力F’(设太阳质量为M )满足 ,而根据作用力和
反作用力的关系,F 和F’的大小是相等的,所以我们可以推得太阳与行星间的引力满
足 ,加入比例系数G ,写成等式就是 ,这就是 定律的表达式,(其中G 是 ,由 通过著名的 实验测量得到的)根据等式,该定律可表述为 。
3、不考虑地球自转时,万有引力等于 ,公式表达
为 ,化简后得到黄金代换式 。
4、环绕模型算中心天体质量: 提供向心力,表达式写作
=F n ,若向心力表达式用2n F m r ω=,则中心天体质量M = ,若向心力表达式用2
2n F m r T π⎛⎫= ⎪⎝⎭
,则中心天体质量M = ,若向心力表达式用2
n v F m r
=,则中心天体质量M = 。
若该天体的半径为R ,则以上3种表达式下中心天体的密度可分别写作 , ,。
(请区分环绕半径r 和星球半径R )
练习题
(多选为7、8、9)
1、在力学理论建立的过程中有许多伟大的科学家做出了贡献,下列有关科学家和
他们的贡献说法错误的是( )
A .卡文迪许通过实验测出了引力常量G
B .惯性定律是可以被实验直接验证的
C .伽利略斜面实验合理外推解释了自由落体是匀变速运动
D .开普勒发现了行星运动的规律
2、宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗均匀球形天体,两天体各有一
颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是( )
A.天体A 、B 的质量一定相等
B.两颗卫星的线速度一定相等
C.天体A 、B 表面的重力加速度一定相等
D.天体A 、B 的密度一定相等
3、已知引力常量为G,根据下列所给条件不能估算出地球质量的是()
A.月球绕地球的运行周期T和月球中心到地球中心间距离R
B.人造地球卫星在地面附近运行的速度v和运行周期T
C.地球绕太阳运行的周期T和地球中心到太阳中心的距离R
D.地球半径R和地球表面重力加速度g
4、据报道,一颗来自太阳系外的彗星于2014年10月20日擦火星而过.如图所示,设火星绕太阳在圆轨道上运动,运动半径为r,周期为T.该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A点“擦肩而过”.已知万有引力恒量G,则()
A.可计算出彗星的质量
B.可计算出彗星经过A点时受到的引力
C.可计算出彗星经过A点的速度大小
D.可确定彗星在A点的速度大于火星绕太阳的速度
5、2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的“神舟七号”飞船在中国酒泉卫星发射中心发射成功.如果“神舟七号”飞船在离地球表面h高处的轨道上做周期为T的匀速圆周运动,已知地球的半径为R,引力常量为G,在该轨道上,关于“神舟七号”飞船,下列说法中正确的是()
A.运行的角速度为ω2R
B.地球表面的重力加速度大小可表示为
C.运行时的向心加速度大小为
D.运行的线速度大小为
6、绕地球做匀速圆周运动的两颗卫星a、b,已知a的轨道半径大于b的轨道半径,则对于两颗卫星下列说法正确的是()
A.a周期大 B.a角速度变大
C.a速度大 D.a向心加速度大
7、已知引力常量是G,在下列各组物理数据中,能够估算月球质量的是()A.月球绕地球运行的周期及月、地中心距离
B.绕月球表面运行的飞船的周期及月球的半径
C.绕月球表面运行的飞船的周期及线速度
D.月球表面的重力加速度
8、宇航员在宇宙飞船中测出自己绕地球做圆周运动的周期为T,离地高度为H,地球半径为R,则根据T、H、R和引力常量G,能计算出的物理量是()
A.地球的质量和飞船的质量 B.地球的平均密度
C.飞船线速度的大小 D.飞船所需的向心力
9、假如一颗做匀速圆周运动的人造地球卫星的轨道半径增加为原来的2倍,仍做匀速圆周运动,则()
A.根据公式F=,可知地球提供的向心力将减小为原来的
B.根据公式v=,可知卫星运动的线速度将减小为原来的
C.根据公式a=rω2可知卫星的向心力加速度将减小为原来的
D.根据公式F=m rω2,可知地球提供的向心力将增大为原来的2倍
10、2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h的圆形轨道.已知地球半径为R,地面处的重力加速度为g,引力常量为G,求:
⑴地球的质量;⑵飞船在上述圆形轨道上运行的周期T.
11、对某行星的一颗卫星进行观测,已知运行的轨迹是半径为r的圆周,周期为T,已知万有引力常量G,求:
(1)该行星的质量多少?
(2)测得行星的半径为卫星轨道半径的,则此行星表面重力加速度为多大?
12、物体在月球表面上的重力加速度等于地球表面上重力加速度的,将物体以
10m/s的初速度竖直上抛,(g地取10m/s2)求:
(1)物体上升的最大高度是多少?
(2)物体落回地面的时间是多少?
13、一艘宇宙飞船绕一个不知名的、半径为R的行星表面飞行,环绕一周飞行时间为T (万有引力常量为G),求:该行星的质量M和平均密度ρ
14、宇航员站在星球表面上某高处,沿水平方向抛出一小球,经过时间t小球落回星球表面,测得抛出点和落地点之间的距离为L.若抛出时的速度增大为原来的2倍,则抛出点到落地点之间的距离为L.已知两落地点在同一水平面上,该星球半径为R,已知引力常量为G,求该星球的质量及其表面的重力加速度大小.
15、2005年10月12日,我国继“神舟”五号载人宇宙飞船后又成功地发射了“神舟”六号载人宇宙飞船.飞船入轨运行若干圈后成功实施变轨进入圆轨道运行,经过了近5天的运行后,飞船的返回舱于10月17日凌晨顺利降落在预定地点,两名宇航员安全返回祖国的怀抱.设“神舟”六号载人飞船在圆轨道上绕地球运行n圈所用的时间为t,若地球表面的重力加速度为g,地球半径为R.求:
(1)飞船的圆轨道离地面的高度;
(2)飞船在圆轨道上运行的角速度.
计算天体的质量和密度参考答案
1、【答案】B
2、【答案】D
3、【答案】C
4、【答案】D
5、【答案】C
6、【答案】A
7、【答案】BC
8、【答案】BC
9、【答案】AB
10、【答案】(1)
2
gR
M
G
=(2)
3
2
()
2
R h
T
gR
π
+
=
11、【答案】(1)该行星的质量是.
(2)测得行星的半径为卫星轨道半径的,则此行星表面重力加速度为
12、【答案】(1)物体上升的最大高度为30m;
(2)物体落回地面的时间为12s
13、【答案】该行星的质量M是,平均密度是
14、【答案】该星球的质量为,其表面的重力加速度大小为.
15、【答案】(1)飞船的圆轨道离地面的高度是﹣R;
(2)飞船在圆轨道上运行的角速度是.。