力科示波器眼图测试设置步骤
- 格式:pdf
- 大小:4.35 MB
- 文档页数:27
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
示波器测试项目操作方法示波器是一种用来显示电压信号随时间的变化情况的仪器。
它主要由探头、控制面板和显示屏组成。
探头用来将要测量的电压信号接入示波器,控制面板用来设置示波器的各项参数,显示屏用来显示测量结果。
下面将为您介绍示波器的一般操作方法。
1.接线:首先,将要测量的电压信号的探头插入示波器的输入端口。
示波器通常有两个输入通道,可以同时测量两个信号。
如果有需要,还可以通过外部扩展模块进行更多通道的扩展。
2.设置时间轴:示波器的时间轴是用来表示时间的横轴,通过它可以观察电压信号随时间的变化情况。
在控制面板上设置水平偏移量和时间基准,以及选择适当的时间量程,确保电压信号的波形能够完整地显示在屏幕上。
3.设置电压轴:示波器的电压轴是用来表示电压的纵轴,通过它可以观察电压信号的振幅大小。
在控制面板上设置垂直偏移量和电压基准,以及选择适当的电压量程,确保电压信号的波形能够在屏幕上显示清晰。
4.触发设置:示波器的触发功能用来确定信号开始采样和显示的时间点,以确保测量结果的准确性。
在控制面板上设置触发类型(边沿触发、脉宽触发等)、触发电平和触发通道。
适当调整触发设置,确保电压信号的波形稳定地显示在屏幕上。
5.检查波形:设置完以上参数后,可以开始测量。
观察屏幕上显示的波形,并通过水平和垂直控制旋钮进行调整,使波形显示清晰、稳定。
如果观察到异常情况,可以重新调整相应的参数,直到得到满意的测量结果。
6.高级功能:示波器还有一些高级功能,如自动测量、存储和回放波形、设置标记和测量参数等。
这些功能可以根据实际需求进行设置和使用,以提高测量效率和准确性。
除了上述一般操作方法外,示波器还有许多其他的操作功能,如选择不同的触发源、调整屏幕亮度和对比度、设置尺度和标尺、调整触发灵敏度等。
在实际使用过程中,根据具体测量需求,可以结合手册和操作指南进行更详细的操作和设置。
需要注意的是,示波器是一种高精度的仪器,操作前应确保所有电路与电源的连接正确并可靠,以避免任何可能的电击风险。
SDA3 Step by Step设置水平参数-获得足够的采样点2、调节timebase,满足采样点的要求 1.固定采样率,保证足够的采样率第2页设置垂直参数尽量占满整个屏幕,充分利 用ADC的8bit分辨率使用可变增益调节垂直刻度第3页进入SDAIII第4页SDAIII界面Step1: 打开SDAIII Step2: 打开4个通道中的任意一个或多个第5页输入信号设置Step1: 选择输入信号源Step2: 选择信号类型第6页CDR设置Step1: 计算信号速率Step2: 设置PLL第7页进入眼图测试菜单Step1: 打开眼图测试Step2: 显示眼图第8页眼图模板显示Step1: 选择眼图模板类型Step2: 显示眼图模板第9页眼图相关测量参数Step2: 眼图参数测量结果Step1: 选择眼图测量参数第10页眼图MarginStep1: 调整眼图模板的X和Y方向,验证眼图的MarginISOBERISOBER可以推算出更多样本时的眼图张开度眼图Fail定位Step1: 定位触碰模板的每一个bit位进入抖动测试菜单Step1: 打开抖动测试抖动测试结果Step2: 选择抖动参数Step1: 选择抖动分析模型,频谱分析方法结果与其他品牌示波器结果相似,NQ-Scale方法与BERT结果相似浴盆曲线Step2: 选择浴盆曲线、直方图等Step1:选择抖动直方图抖动频谱分析-Pj来自于哪些频率抖动的频谱可以缩放,可标注抖动峰值的频率Step1:显示Rj和BUj的频谱在抖动频谱分析中可以查找周期性抖动的来源Step2: 显示峰值码型分析分析ISI jitter进入噪声分析界面噪声参数结果Step3:Step1: 选择噪声分析模型,Step2: 选择噪声参数噪声直方图Step1: 选择噪声直方图Step2: 选择随机噪声直方图噪声频谱分析 - Pn来自于哪些频率噪声的频谱可以缩放,可标注抖动峰值的频率Step1:显示Rn和BUn的频谱在噪声频谱分析中可以 查找周期性噪声的来源Step2: 显示峰值第21页噪声追踪-查看噪声时域变化规律Step1: RnBUn的追踪第22页串扰眼图-查看在更低误码率下噪声的影响Step1: 显示串扰眼图Step2: 设置误码率第23页串扰眼图对比Step1: 快速对比任意两个 通道的串扰眼图第24页参考通道Step1:将任意一个通道保存 为参考,方便对比第25页LaneScape 对比模式可以选择1个/2个或所有 通道结果对比第26页谢谢关注!。
示波器的测量步骤示波器是一种用来显示电信号波形的仪器,常用于电子工程、通信、医疗等领域。
下面将介绍示波器的测量步骤,以及示波器电源测试的几个步骤。
步骤一:准备工作1.确保示波器和被测电路的电源都已关闭,避免电路故障和触电的风险。
2.确保示波器与被测电路的地连接好,以避免测量误差。
步骤二:连接电缆和探头1.将示波器的输入端的探头插头连接到被测电路的信号输出端口上。
2.将示波器的地端的探头插头连接到被测电路的地端口上。
步骤三:调整示波器的设置1.打开示波器,并设置合适的竖直和水平的尺度范围,以便能够清晰地显示被测信号的波形。
2.根据被测信号的频率和波形特点,调整示波器的触发模式和触发电平,确保波形能够稳定地显示在屏幕上。
步骤四:进行测量1.打开被测电路的电源,使其正常工作。
2.在示波器的屏幕上观察和记录被测信号的波形,并测量出相关的参数,如幅值、频率、占空比等。
1.关闭被测电路的电源,以确保安全。
2.关闭示波器和电源,并拔掉相应的电缆和探头。
示波器电源测试的几个步骤:步骤一:准备工作1.确定目标电源的额定电压和电流范围,确保示波器的设置能够满足测试需求。
2.关闭目标电源和示波器,确保安全。
步骤二:连接示波器测量端口1.将示波器的地端探头插头连接到目标电源的地端口上。
2.将示波器的探头插头连接到目标电源的输出端,确保连接良好。
步骤三:调整示波器的设置1.打开示波器,并设置合适的竖直和水平的尺度范围,以便能够清晰地显示电源波形。
2.根据目标电源的特点,调整示波器的触发模式和触发电平,确保波形能够稳定地显示在屏幕上。
步骤四:进行电源测试1.打开目标电源,使其正常工作。
2.在示波器的屏幕上观察和记录电源波形,检查其稳定性和纹波情况,并测量相关的参数,如电压和电流的波形、幅值、频率等。
1.关闭目标电源,以确保安全。
2.关闭示波器和电源,并拔掉相应的电缆和探头。
在进行示波器的测量步骤及示波器电源测试时,需要注意安全,避免电路故障和触电风险。
常规的眼图测量眼图测试是高速串行信号物理层测试的一个重要项目。
眼图是由多个比特的波形叠加后的图形,从眼图中可以看到:数字信号1电平、0电平,信号是否存在过冲、振铃?抖动是否很大?眼图的信噪比?上升下降时间是否对称(占空比)?眼图反映了大数据量时的信号质量,可以最直观的描述高速数字信号的质量与性能。
如图1所示为某1.25G信号的眼图。
可以看到该信号的抖动较大。
另外,在很多高速数字信号的标准中,定义了不同测量点的眼图模板。
图1的深蓝色部分是眼图模板,测量到的眼图不能触碰到该模板。
在实时示波器中,通常使用连续比特位的眼图生成方法。
力科于2002年在业界最早采用连续比特位的眼图测试方法。
首先,示波器采集到一长串连续的数据波形;然后,使用软件CDR恢复时钟,用恢复的时钟切割每个比特的波形,从第1个、第2个、第3个、一直到第n-1个、第n个比特;最后一步是把所有比特重叠,得到眼图。
什么是BER?在数字电路系统中,发送端发送出多个比特的数据,由于多种因素的影响,接收端可能会接收到一些错误的比特(即误码)。
错误的比特数与总的比特数之比称为误码率,即Bit Error Ratio,简称BER。
误码率是描述数字电路系统性能的最重要的参数。
在GHz比特率的通信电路系统中(比如Fibre Channel、PCIe、SONET、SATA),通常要求BER小于或等于。
BER= 指的是发送/接收了10 个比特,只允许1个比特出错。
误码率较大时,通信系统的效率低、性能不稳定。
影响误码率的因素包括抖动、噪声、信道的损耗、信号的比特率等等。
基于误码率的眼图轮廓测试(BER Eye Contour)-力科称为ISOBER在上文中提到眼图是多个比特位的信号叠加得到的测量结果,所以测试中需要注意眼图是由多少个比特组成的?使用常规的实时示波器来测量高速串行信号的眼图,在几秒钟内可以生成1万个比特叠加的眼图。
力科示波器使用了创新的XStream II专利技术,可以快速的生成眼图,以SDA816Zi测量3.125Gbps的XAUI信号为例,大概几秒就可以得到上百万个比特的眼图。
力科示波器自定义眼高测量方法美国力科公司深圳代表处 曹刘 前言示波器的五大基本功能之一就是测量,通过示波器的测量功能可以直观地体现波形的基本特征,如波形的上升下降时间,幅值,周期,频率等等。
测量的方法包括使用光标,使用示波器自带的测量参数,必要时需使用其他特别的测量方法。
对于目前GHz 以上的信号,最常表征信号特征的方式就是使用眼图,通过观察,测量以及分析眼图就可以非常直观地了解信号质量,如比如幅度(包括噪声,过冲等)和时序(上升下降时间,抖动等)特征。
下面我们以眼高测量为例来介绍一台高端示波器在测量上的特点。
眼高参数定义与眼图相关的最重要的测量参数包括眼高,眼宽,1电平,0电平等等。
这些参数的定义,如下图所示,10电平表示选取眼图中间部分20%的UI 向垂直轴做直方图,其中出现概率最大点的高低电平分别定义为1点平和0电平,眼幅度即为“1”电平与“0”电平差值。
眼幅度减去高低电平标准偏差值的3倍即为眼高。
光标光标测量方法测量方法对于眼高的测量,示波器提供不同的方法,若用户对测试的准确度要求不高可以使用光标直接测量。
光标测量是从模拟示波器沿用过来的,特点时容易设置,直观,但是测试精度有限但是测试精度有限但是测试精度有限,,它无法利用示波器的处理精度与处理速度它无法利用示波器的处理精度与处理速度,,不同的使用者测量出来的结果的使用者测量出来的结果可能会差别很大可能会差别很大可能会差别很大。
我们可以说这种方法并不能真正反映真实的眼高,但在客户要求测量精度不高的情况下可以使用,非常直观。
One(Eye)Zero(Eye)自定义眼高测量有经验的工程师可能遇到过这种情况,就是眼图质量很差的情况下,比如眼图即将闭合时,眼高的测试有时候无法进行,或者说无法准确的测量出来,这个时候需要用户使用其他的方法来测试,下面我就给大家介绍一下自定义眼高测量,或称为手动测试方法。
1)如下图所示,示波器生成眼图之后,我们对眼图做垂直直方图,F8=Phistogram(Eye);Step1:设置F8为eye的垂直直方图Step2:设为Vertical0电平的直方图分布1左上角的直方图即为0电平与1电平的直方图分布,如上图所示。
广州致远电子有限公司百兆以太网眼图测试概述电子测量仪器-示波器修订历史目录1. 100Base-TX测试概述 (1)2. 测试方法 (2)2.1非屏蔽双绞线(UTP)测试负载 (2)2.2测试夹具及连接方法 (2)3. 测量项目 (3)3.1眼图 (3)3.2非屏蔽双绞线(UTP)差分输出电压(DOV) (3)3.3信号幅度对称性 (4)3.4过冲 (4)3.5上升下降时间及对称性 (4)3.6占空比失真(DCD) (5)3.7抖动(Jitter) (5)4. 报告生成 (6)1. 100Base-TX测试概述以太网连接的种类很多,包括10M,100M,1000M等速度,不同材质如双绞线,光纤等,叫的名字各不相同(10Base-T,100Base-TX,100Base-FX)。
现在通用的网络通信方案在两个端口连接时会自协商通信模式。
本文主要描述100Base-TX测试,示波器目前只支持100Base-TX测试,且只能500M带宽的示波器型号上支持。
100Base-TX又称为快速以太网,通常使用CA T5线传输,只能达到100MHz,且使用4B/5B编码,使100Mb/s数据流变成125Mb/s数据流,所以100Base-TX同时采用了MLT-3(三电平编码)的信道编码方法,经过MLT-3编码后,原来的125MHz变成31.25MHz的信号。
简单来说,100Base-TX是双线(差分)三态(1,0,-1)的信号,双绞线传输,每条线上的电压为[-0.5V, +0.5V],差分后信号为[-1V, +1V]。
2. 测试方法2.1 非屏蔽双绞线(UTP)测试负载100Base-TX测试有如下图所示的两种测量方法,图1是使用差分探头接入示波器,图2是使用两根SMA线分别接入两个通道。
示波器目前采用图2 的测量方法。
注意,通道的输入阻抗需设置为50Ω(示波器在开启测量时会自动设置为50Ω)。
力科WP7100A示波器在测量眼图时就用该方法,这里的线要尽可能短图1差分测量方法(要注意探头带宽)图2单端测量方法(推荐)2.2 测试夹具及连接方法测试100Base-TX信号需要一个夹具来将双绞线信号接到示波器通道上。
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
SDA3 Step by Step设置水平参数-获得足够的采样点2、调节timebase,满足采样点的要求 1.固定采样率,保证足够的采样率第2页设置垂直参数尽量占满整个屏幕,充分利 用ADC的8bit分辨率使用可变增益调节垂直刻度第3页进入SDAIII第4页SDAIII界面Step1: 打开SDAIII Step2: 打开4个通道中的任意一个或多个第5页输入信号设置Step1: 选择输入信号源Step2: 选择信号类型第6页CDR设置Step1: 计算信号速率Step2: 设置PLL第7页进入眼图测试菜单Step1: 打开眼图测试Step2: 显示眼图第8页眼图模板显示Step1: 选择眼图模板类型Step2: 显示眼图模板第9页眼图相关测量参数Step2: 眼图参数测量结果Step1: 选择眼图测量参数第10页眼图MarginStep1: 调整眼图模板的X和Y方向,验证眼图的MarginISOBERISOBER可以推算出更多样本时的眼图张开度眼图Fail定位Step1: 定位触碰模板的每一个bit位进入抖动测试菜单Step1: 打开抖动测试抖动测试结果Step2: 选择抖动参数Step1: 选择抖动分析模型,频谱分析方法结果与其他品牌示波器结果相似,NQ-Scale方法与BERT结果相似浴盆曲线Step2: 选择浴盆曲线、直方图等Step1:选择抖动直方图抖动频谱分析-Pj来自于哪些频率抖动的频谱可以缩放,可标注抖动峰值的频率Step1:显示Rj和BUj的频谱在抖动频谱分析中可以查找周期性抖动的来源Step2: 显示峰值码型分析分析ISI jitter进入噪声分析界面噪声参数结果Step3:Step1: 选择噪声分析模型,Step2: 选择噪声参数噪声直方图Step1: 选择噪声直方图Step2: 选择随机噪声直方图噪声频谱分析 - Pn来自于哪些频率噪声的频谱可以缩放,可标注抖动峰值的频率Step1:显示Rn和BUn的频谱在噪声频谱分析中可以 查找周期性噪声的来源Step2: 显示峰值第21页噪声追踪-查看噪声时域变化规律Step1: RnBUn的追踪第22页串扰眼图-查看在更低误码率下噪声的影响Step1: 显示串扰眼图Step2: 设置误码率第23页串扰眼图对比Step1: 快速对比任意两个 通道的串扰眼图第24页参考通道Step1:将任意一个通道保存 为参考,方便对比第25页LaneScape 对比模式可以选择1个/2个或所有 通道结果对比第26页谢谢关注!。
Agilent-86100A眼图仪设定指引内容Agilent 86100设定指引内容设定指引是您可以使用仪器去执行许多一般工作的逐步程序1、NRZ眼图2、RZ眼图3、示波器量测4、TDR/TDT量测5、模板测试6、校准7、设定和使用印表机8、管理的档案NRZ眼图量测设定指引设定指引是您可以使用仪器去执行许多一般工作的逐步程序1、消减率2、颤动3、平均功率4、交叉百分比5、上升时间6、下降时间7、位元率8、0位准9、1位准10、眼状高度11、眼状宽度12、信噪比13、信号周期失真14、眼状振幅消减率概念您可以量测NRZ肯眼图的消减率。
消减率是眼图的1位准和0位准比率1、选择NRZ的Eye/Mask(眼状./模板)模式2、执行消减率校准3、定义眼状视窗界限。
4、定义量测单位5、执行消减率量测选择NRZ眼状/模板模式A)按仪器前面板上的Eye /Mask Mode(眼状/模板模式)按钮。
您也可以开启(Setup(设定)功能表然后按一下/轻触Eye /Mask Mode。
B)如果仪器处于RZ眼状模式,请按一下/轻触位于仪器工具列底下的RZ/NRZ按钮以显示NRZ眼状模式量测C)按仪器前纲板上的Autoscale (自动刻度选择)按钮以便快带将眼图的水平和垂直的水平和垂直刻度最佳化。
您也可以开启Control(控制)功能表然后按一下/轻触Autoscale.执行减率校准执行消减率校准A)在Cakuvrate(校准)功能表上选择All Calibrations(所有校准)。
All Calibrations(所有校准)对话方会开启。
B)按一下/轻触Extinction ratio(消减率)标识。
消减率标识页面开启并允许您在仪器频道之一减謴校准确。
C)移除所有至即将进行校准频道的讯号D)按一下/轻触(Calibrate (校准)。
将会出现进度表作为校准状太的目测指示器E)完成校准时按一下/轻触Close关闭。
定义眼状视窗界限A)请在Measure(测量)功能表选取Configure Meas (设定量测)。
2 眼图的生成方法探讨一般而言,生成眼图需要通过测量大量的数据,然后再从其中恢复得到。
示波器测量眼图中,经过前期的数据采集,其内存中可以获得完整的数据记录。
然后,利用硬件或者软件对时钟进行恢复或提取得到同步时钟信号,用此时钟信号与数据记录中的数据同步到每个比特,此时时钟信号与数据信号在相位上是对齐的。
通过恢复时钟的触发,把数据流中捕获的多个1 UI(单位间隔,相当于一个时钟周期)的信号重叠起来,也即将每个比特的数据波形重叠,最后得到眼图。
力科公司提供的示波器资料中,描述了目前用到的两种眼图的测量方法,即传统眼图测量方法与现代眼图测量方法,详细介绍如下:2.1 传统眼图测量方法示波器中传统的眼图测量方法就是同步触发一次,叠加一次,然后再触发再叠加。
每触发一次,眼图上增加一个UI,每个UI 的数据是相对于触发点排列的,因此是“Single-Bit Eye”,其形成过程如下图所示:图传统眼图形成方法传统的同步触发原理,也就是说如何使每个UI 的数据相对于触发点对齐排列,有两种方法,如下:(1) 在被测电路板上找到和串行数据同步的时钟,将此时钟作为示波器的触发源,且时钟的边沿作为触发的条件。
来一个时钟边沿则触发一次,从而使每个UI 的数据相对于触发排列,实现同步触发。
(2) 一般传输的串行数据信号中混合数据信号与时钟信号,将待测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR 恢复出串行数据里内嵌的时钟,以恢复出的时钟信号作为示波器的触发源,利用时钟边沿实现触发,从而使每个UI 的数据相对于触发排列,实现同步触发。
用传统的眼图测量方法,我们可以得到整个系统的眼图,从而可以评估系统的性能。
但是,对于现代系统的评估而言,它还存在如下的缺陷:(1) 效率比较低。
如果需要测量高速信号,则需要测量大量的数据,如1 百万个UI 的眼图,触发时间花费较长。
(2) 器件触发抖动影响。
由于每次触发只能叠加一个UI,形成1 百万个UI 的眼图就需要触发1 百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。