三角函数的图像和性质知识点讲解+例题讲解(含解析)
- 格式:docx
- 大小:92.81 KB
- 文档页数:14
三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。
注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。
三角函数的图象与性质考纲解读 1.结合y =sin x ,y =cos x ,y =tan x 的图象,进行简单的变换;2.利用y =sin x ,y =cos x ,y =tan x 在一个周期内的性质,求解简单的三角方程、不等式、周期性等.[基础梳理]1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,()π,-1,⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )且x ≠k π+(1)周期函数:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫作周期函数,非零常数T 叫作这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.[三基自测]1.函数y =12sin x ,x ∈[-π,π]的单调性是( )A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案:B2.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案:D3.f (x )=cos 2x 在x ∈⎣⎡⎦⎤0,π2上的值域为( ) A .[-1,1] B .[0,1] C .[-1,0] D .[0,π]答案:A4.(必修4·习题1.4B 组改编)函数y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为 __________________. 答案:⎝⎛⎭⎫π8+k 2π,58π+k2π,k ∈Z 5.(2017·高考全国卷Ⅱ改编)函数f (x )=3cos x -34的最小正周期为__________.答案:2π[考点例题]考点一 有关三角函数的定义域、值域、最值|模型突破角度1 单调性法求三角函数的最值(值域)[例1] 已知函数f (x )=(cos x -sin x )·sin 2xcos x .(1)求函数f (x )的定义域及最小正周期; (2)当x ∈⎝⎛⎦⎤-π2,0时,求函数f (x )的最值. [解析] (1)由cos x ≠0,得x ≠k π+π2,k ∈Z ,所以函数f (x )的定义域为{x |x ≠k π+π2,k ∈Z }.因为f (x )=(cos x -sin x )·2sin x ·cos xcos x=2sin x cos x -2sin 2x =sin 2x -(1-cos 2x )=2sin ⎝⎛⎭⎫2x +π4-1, 所以函数f (x )的最小正周期为T =2π2=π.(2)因为-π2<x ≤0,所以-3π4<2x +π4≤π4.令-3π4<2x +π4<-π2,则-π2<x <-3π8;令-π2≤2x +π4≤π4,则-3π8≤x ≤0,所以函数f (x )在⎝⎛⎭⎫-π2,-3π8上单调递减,在⎣⎡⎦⎤-3π8,0上单调递增. 所以当x =-3π8时,函数f (x )取得最小值,所以f (x )min =-2-1.因为f (0)=2sin π4-1=0,f ⎝⎛⎭⎫-π2=2sin ⎝⎛⎭⎫-π+π4-1=-2,所以f (x )max =0. 所以函数f (x )的最大值为0,最小值为-2-1. [模型解法]角度2 换元法求三角函数的最值(值域)[例2] 已知x ∈⎣⎡⎦⎤π6,5π6,则函数f (x )=-cos 2x -sin x sin π6+cos 2x +1716的最小值为__________.[解析] 因为f (x )=-cos 2x -sin x sin π6+cos 2x +1716,所以f (x )=2sin 2x -12sin x +cos 2x +116=sin 2x -sin x 2+1716=⎝⎛⎭⎫sin x -142+1. 设t =sin x ,则y =⎝⎛⎭⎫t -142+1. 因为x ∈⎣⎡⎦⎤π6,5π6, 所以12≤t ≤1.又函数y =⎝⎛⎭⎫t -142+1在⎣⎡⎦⎤12,1上单调递增, 所以当t =12时,y =⎝⎛⎭⎫t -142+1取得最小值y min =⎝⎛⎭⎫12-142+1=1716, 即函数f (x )的最小值为1716.[答案]1716[模型解法][高考类题](2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是__________. 解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:1考点二 三角函数的性质及应用|方法突破命题点1 三角函数的单调性[例3] (1)(2018·佛山模拟)已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的一个单调递减区间是( )A.⎝⎛⎭⎫π6,2π3B.⎝⎛⎭⎫π3,5π6 C.⎝⎛⎭⎫π2,πD.⎝⎛⎭⎫2π3,π(2)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23 B.32 C .2D .3(3)已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,74 C.⎣⎡⎦⎤34,94D.⎣⎡⎦⎤32,74[解析] (1)因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝⎛⎭⎫2×π3+φ=1,所以2×π3+φ=2k π+π2, 解得φ=2k π-π6,k ∈Z ,不妨取φ =-π6,此时f (x )=sin ⎝⎛⎭⎫2x -π6, 令2k π+π2<2x -π6<2k π+3π2可得k π+π3<x <k π+5π6,所以函数f (x )的单调递减区间为⎝⎛⎭⎫k π+π3,k π+5π6,k ∈Z ,结合选项可知当k =0时,函数的一个单调递减区间为⎝⎛⎭⎫π3,5π6. (2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. (3)函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,k ∈Z ,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎡⎦⎤32,74.[答案] (1)B (2)B (3)D [方法提升]1.求三角函数单调区间的方法2.[母题变式]1.若本例(2)的条件改为函数f (x )=m sin ωx (其中ω>0,m >0)在区间⎣⎡⎦⎤-π2,2π3上单调递增,则ω的取值范围是__________.解析:因为ω>0,m >0, 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是⎣⎡⎦⎤2k πω-π2ω,2k πω+π2ω,k ∈Z . 因为f (x )在⎣⎡⎦⎤-π2,2π3上单调递增,所以⎣⎡⎦⎤-π2,2π3⊆⎣⎡⎦⎤-π2ω,π2ω. 所以-π2≥-π2ω且2π3≤π2ω,所以ω∈⎝⎛⎦⎤0,34. 答案:⎝⎛⎦⎤0,34 2.将本例(3)改为:g (x )=-cos ⎝⎛⎭⎫-2x +π3⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2, 则g (x )的单调递增区间为__________. 解析:g (x )=-cos ⎝⎛⎭⎫-2x +π3=-cos ⎝⎛⎭⎫2x -π3, 欲求函数g (x )的单调递增区间, 只需求y =cos ⎝⎛⎭⎫2x -π3的单调递减区间. 由2k π≤2x -π3≤2k π+π,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z .故所给函数的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 因为x ∈⎣⎡⎦⎤-π2,π2, 所以函数g (x )的单调递增区间是⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2命题点2 三角函数的奇偶性、对称性、周期性[例4] (1)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3(2)函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2(3)若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8(4)(2018·湘西自治州模拟)已知函数f (x )=sin(ωx -ωπ)(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π12等于( )A.12 B .-12C.32D .-32[解析] (1)由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.(2)∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.(3)由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.(4)由题意得2πω=π,所以ω=2,所以f (x )=sin(2x -2π)=sin 2x , 所以f ⎝⎛⎭⎫π12=sin π6=12. [答案] (1)C (2)C (3)B (4)A [方法提升][跟踪训练]3.(2018·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6D .-π3解析:由已知得f (x )=2cos ⎣⎡⎦⎤3x +⎝⎛⎭⎫φ+π3为偶函数,由诱导公式可知φ+π3=k π.(k ∈Z ) 当k =0时,φ=-π3.答案:D4.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6-1最小正周期为2π3,则f (x )的图象的一条对称轴的方程是( )A .x =π9B .x =π6C .x =π3D .x =π2解析:已知函数f (x )的最小正周期为T =2πω=2π3,∴ω=3,则其对称轴方程为3x +π6=π2+k π,k ∈Z ,即x =π9+k π3,k ∈Z ,当k =0时,x =π9,故选A.答案:A5.同时具有性质:①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎡⎦⎤-π6,π3上是增函数的一个函数是( )A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =cos ⎝⎛⎭⎫2x +π3 C .y =sin ⎝⎛⎭⎫2x -π6 D .y =cos ⎝⎛⎭⎫x 2-π6解析:对于选项A ,y =sin ⎝⎛⎭⎫x 2+π6的最小正周期T =2π12=4π,故不满足①;对于选项B ,y =cos ⎝⎛⎭⎫2x +π3,由2k π≤2x +π3≤2k π+π,k ∈Z 可解得其单调递减区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z ,故不符合③;对于选项C ,令y =f (x )=sin ⎝⎛⎭⎫2x -π6,则f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3-π6=sin π2=1,为最大值,所以f (x )=sin ⎝⎛⎭⎫2x -π6的图象关于直线x =π3对称,且其周期T =2π2=π,具有性质①、②,由2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,解得:x ∈⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z ,从而当k =0时,有函数f (x )=sin ⎝⎛⎭⎫2x -π6在⎝⎛⎭⎫-π6,π3上是增函数,具有性质③,符合题意.对于选项D ,y =cos ⎝⎛⎭⎫x 2-π6的最小正周期T =2π12=4π,故不满足①. 答案:C[真题感悟]1.(2017·高考全国卷Ⅱ)函数f (x )=sin(2x +π3)的最小正周期为( )A .4πB .2πC .πD.π2解析:依题意得,函数f (x )=sin(2x +π3)的最小正周期T =2π2=π,选C.答案:C2.(2017·高考山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( ) A.π2 B.2π3 C .πD .2π解析:y =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6,T =2π2=π. 答案:C3.(2016·高考全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7D .5解析:由题意知:⎩⎨⎧-π4ω+φ=k 1π,π4ω+φ=k 2π+π2,则ω=2k +1,其中k ∈Z .因为f (x )在⎝⎛⎭⎫π18,5π36上单调, 所以5π36-π18=π12≤12×2πω,ω≤12.接下来用排除法.若ω=11,φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4, f (x )在⎝⎛⎭⎫π18,3π44上单调递增,在⎝⎛⎭⎫3π44,5π36上单调递减,不满足f (x )在⎝⎛⎭⎫π18,5π36上单调,若ω=9,φ=π4,此时f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在⎝⎛⎭⎫π18,5π36上单调递减.答案:B。
三角函数的图像与性质模块一、三角函数的图像和性质要点一、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0)余弦函数y=cosxx ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 要点二、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+时,max 1y =;当22x k ππ=-时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.在[]2,2k k πππ-上是增函数;在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数. 对称性对称中心(),0k π对称轴2x k ππ=+对称中心,02k ππ⎛⎫+⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函 数性质模块二、函数sin()y A x ωϕ=+(A≠0,ω≠0)的图像与性质要点三、几个物理量:A 为振幅;2πωT =为周期;1f T=为频率(周期的倒数);x ωϕ+为相位;ϕ为初相(x=0时的相位);要点四、函数sin()y A x ωϕ=+图象的画法:①“五点法”――设X x ωϕ=+,令X =0,3,,,222ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。
专题七《三角函数》讲义7.3 三角函数的图像与性质知识梳理.三角函数的图像与性质1.正弦、余弦、正切函数的图象与性质函数y=sin x y=cos x y=tan x 图象定义域R R错误!值域[-1,1][-1,1]R奇偶性奇函数偶函数奇函数单调性在⎣⎡⎦⎤-π2+2kπ,π2+2kπ(k∈Z)上是递增函数,在⎣⎡⎦⎤π2+2kπ,3π2+2kπ(k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在⎝⎛⎭⎫-π2+kπ,π2+kπ(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是⎝⎛⎭⎫kπ+π2,0(k∈Z)对称中心是⎝⎛⎭⎫kπ2,0(k∈Z)题型一. 三角函数图像的伸缩变换1.要得到函数y =3sin (2x +π3)的图象,只需要将函数y =3cos2x 的图象( ) A .向右平行移动π12个单位 B .向左平行移动π12个单位C .向右平行移动π6个单位D .向左平行移动π6个单位2.(2017•新课标Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.(2021春•闵行区校级期中)函数y =cos (2x +φ)的图象向右平移π2个单位长度后与函数y =sin (2x +2π3)的图象重合,则|φ|的最小值为 .4.(2016春•南通期末)将函数f(x)=sin(ωx +φ),(ω>0,−π2<φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π4个单位长度得到y =sin x 的图象,则f(π6)= .5.(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =π3,则φ=( ) A .5π12B .π3C .π4D .π6题型二. 已知图像求解析式1.图是函数y =A sin (ωx +φ)(x ∈R )在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则( )A .ω=π2,φ=−π4 B .ω=π2,φ=π4C .ω=π,φ=−π4D .ω=π,φ=π43.已知函数f (x )=A cos (ωx +φ)的图象如图所示,f (π2)=−23,则f (0)=( )A .−23B .−12C .23D .124.已知函数f (x )=A tan (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,下列关于函数g (x )=A cos (ωx +φ)(x ∈R )的表述正确的是( )A .函数g (x )的图象关于点(π4,0)对称B .函数g (x )在[−π8,3π8]递减 C .函数g (x )的图象关于直线x =π8对称D .函数h (x )=cos2x 的图象上所有点向左平移π4个单位得到函数g (x )的图象题型三. 三角函数的性质 考点1.单调性1.函数y =sin (﹣2x +π3)的单调递减区间是( ) A .[k π−π12,k π+5π12],k ∈Z B .[2k π−π12,2k π+5π12],k ∈ZC .[k π−π6,k π+5π6],k ∈ZD .[2k π−π6,2k π+5π6],k ∈Z2.已知函数f(x)=Asin(x +φ)(A >0,−π2<φ<0)在x =5π6时取得最大值,则f (x )在[﹣π,0]上的单调增区间是( ) A .[−π,−5π6] B .[−5π6,−π6] C .[−π3,0]D .[−π6,0]3.已知函数f (x )=sin (2x +π3)在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( ) A .{a |0<a ≤π12} B .{a |0<a ≤π2} C .{a |a =k π+π12,k ∈N *} D .{a |2k π<a ≤2k π+π12,k ∈N *} 4.已知ω>0,函数f (x )=sin (ωx +π4)在区间(π2,π)上单调递减,则实数ω的取值范围是( ) A .[12,54] B .[12,34]C .(0,12]D .(0,2]考点2.周期性、奇偶性、对称性1.已知函数f (x )=cos 2x +sin 2(x +π6),则( )A .f (x )的最小正周期为π,最小值为12B .f (x )的最小正周期为π,最小值为−12C .f (x )的最小正周期为2π,最小值为12D .f (x )的最小正周期为2π,最小值为−122.已知f (x )=sin2x +|sin2x |(x ∈R ),则下列判断正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )是值域为[0,2]周期为π的函数 C .f (x )是周期为2π的偶函数 D .f (x )是值域为[0,1]周期为π的函数3.将函数y =sin2x −√3cos2x 的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是( ) A .712π B .π4C .π12D .π64.已知函数f (x )=a sin x ﹣b cos x (ab ≠0,x ∈R )在x =π4处取得最大值,则函数y =f (π4−x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(3π2,0)对称 C .奇函数且它的图象关于点(3π2,0)对称 D .奇函数且它的图象关于点 (π,0)对称考点3.三角函数性质综合1.(2019•天津)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .22.(2015•天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R ,若函数f (x )在区间(﹣ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为 .3.(2014•大纲版)若函数f (x )=cos2x +a sin x 在区间(π6,π2)是减函数,则a 的取值范围是 .4.(2016•新课标Ⅰ)若函数f (x )=x −13sin2x +a sin x 在(﹣∞,+∞)单调递增,则a 的取值范围是( ) A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]5.(2013•安庆二模)已知函数f (x )=sin (ωx +π6),其中ω>0,若f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值、无最大值,则ω等于( )A .403B .283C .163D .436.(2014•北京)设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f(2π3)=﹣f (π6),则f (x )的最小正周期为 .题型四. 三角函数最值1.函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .152.函数f (x )=cos (ωx +π3)(ω>0)在[0,π]内的值域为[﹣1,12],则ω的取值范围为( ) A .[32,53]B .[23,43]C .[23,+∞)D .[23,32]3.已知函数f (x )=cos2x +sin x ,则下列说法中正确的是( ) A .f (x )的一条对称轴为x =π4 B .f (x )在(π6,π2)上是单调递减函数C .f (x )的对称中心为(π2,0)D .f (x )的最大值为14.若0<x ≤π3,则函数y =sin x +cos x +sin x cos x 的值域为 .5.已知函数f(x)=2sinωx ⋅cos 2(ωx 2−π4)−sin 2ωx(ω>0)在区间[−2π5,5π6]上是增函数,且在区间[0,π]上恰好取得一次最大值1,则ω的取值范围是( ) A .(0,35]B .[12,35]C .[12,34]D .[12,52)6.已知函数f (x )=cos x •sin (x +π3)−√3cos 2x +√34,x ∈R (1)求f (x )的最小正周期;(2)求f (x )在闭区间[0,π2]上的最大值和最小值及相应的x 值;(3)若不等式|f (x )﹣m |<2在x ∈[0,π2]上恒成立,求实数m 的取值范围.题型五.三角函数零点1.已知函数f (x )=sin ωx −√3cos ωx (ω>0),若方程f (x )=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为 .2.已知函数f (x )=√3sin ωx cos ωx +cos 2ωx −12,(ω>0,x ∈R ),若函数f (x )在区间(π2,π)内没有零点,则ω的取值范围( ) A .(0,512] B .(0,512]∪[56,1112]C .(0,58]D .(0,56]∪[1112,1)3.函数f(x)=2sin(2ωx +π6)(ω>0)图象上有两点A (s ,t ),B (s +2π,t )(﹣2<t <2),若对任意s ∈R ,线段AB 与函数图象都有五个不同交点,若f (x )在[x 1,x 2]和[x 3,x 4]上单调递增,在[x 2,x 3]上单调递减,且x 4−x 3=x 2−x 1=23(x 3−x 2),则x 1的所有可能值是课后作业. 三角函数的图像与性质1.函数f (x )=A sin (ωx +φ)(A >0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g (x )=A sin ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移π3个单位长度B .向左平移π12个单位长度 C .向右平移π3个单位长度D .向右平移π12个单位长度2.关于函数y =2sin (3x +π4)+1,下列叙述正确的是( ) A .其图象关于直线x =−π4对称 B .其图象关于点(π12,1)对称 C .其值域是[﹣1,3]D .其图象可由y =2sin (x +π4)+1图象上所有点的横坐标变为原来的13得到 3.已知函数f (x )=(12a −√3)sin x +(√32a +1)cos x ,将f (x )的图象向右平移π3个单位长度得到函数g (x )的图象,若对任意x ∈R ,都有g (x )≤g (π4),则a 的值为 . 4.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,则ω和φ的值分别为( )A .23,π4B .2,π3C .2,π2D .103,π25.已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,−π4为f (x )的零点:且f (x )≤|f (π4)|恒成立,f (x )在区间(−π12,π24)上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .176.已知函数f (x )=2sin (ωx −π6)sin (ωx +π3)(ω>0),若函数g (x )=f (x )+√32在[0,π2]上有且只有三个零点,则ω的取值范围为( )A .[2,113) B .(2,113) C .[73,103) D .(73,103)。
三角函数的图像及其性质1、三角函数的图像及性质sin y xsin y A x k图像值域周期对称轴2x k2x k对称中心(零点)令x k 代入求y令x k 代入,求出x 和y 单调增区间2,222x k k2,222x k k单调减区间32,222x k k32,222x k kcos y xcos y A x k图像值域周期对称轴x kx k 对称中心(零点)2x k代入,求y 2x k求出x 和y 单调增区间 2,2x k k 2,2x k k 单调减区间2,2x k k2,2x k k tan y x图像定义域值域周期单调性与对称性性质【考点分类】考点一:图像变换:1.把函数y =sin x 的图象向右平移个单位得到y =g (x )的图象,再把y =g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.2.将函数f (x )=sin x 图象上所有点的横坐标变为原来的(ω>0),纵坐标不变,得到函数g (x )的图象,若g (x )的最小正周期为6π,则ω=()A.B.6C.D.33.将函数y =2sin2x 图象上的所有点向右平移个单位,然后把图象上所有点的横坐标缩短为原来的倍,(纵坐标不变)得到y =f (x )的图象,则f (x )等于()A.2sin(x ﹣)B.2sin(x ﹣)C.2sin(4x ﹣)D.2sin(4x ﹣)4.已知曲线C 1:y =cos x ,C 2:y =sin(2x +),则下面结论正确的是()A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位长度,得到曲线C 25.把函数y =cos(3x +4)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是()A 向右平移4 B 向左平移4 C 向右平移12 D 向左平移126..函数32sin( x y 的图象是由2sin xy 的图象沿x 轴()得到的。
专题4.3 三角函数的图象与性质1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在⎝⎛⎭⎫-π2,π2内的单调性.知识点一 三角函数的定义域和值域知识点二 三角函数的性质考点一 三角函数的定义域【典例1】(陕西省渭南市 2018-2019学期中)函数2tan 23y x π⎛⎫=+⎪⎝⎭的定义域为( ) A .|12x x π⎧⎫≠⎨⎬⎩⎭B .|12x x π⎧⎫≠-⎨⎬⎩⎭C .|,12x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭D .|,212k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【答案】D 【解析】 因为2,32x k k Z πππ+≠+∈,所以,212k x k Z ππ≠+∈故函数的定义域为 |,212k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,选D 。
【方法技巧】三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.【变式1】(广东省石门中学2018-2019学年期末)函数y =lg(sin x )+cos x -12的定义域为________。
【解析】函数有意义,则⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π (k ∈Z ),-π3+2k π≤x ≤π3+2k π (k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .【答案】⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域(最值)【典例2】 (2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 【答案】B【解析】∵f (x )=2cos 2x -sin 2x +2=1+cos 2x -1-cos 2x 2+2=32cos 2x +52,∴f (x )的最小正周期为π,最大值为4,故选B 。
专题01 三角函数的图象与性质【要点提炼】1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位 y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).考点一 三角函数的图像与性质考向一 三角函数的定义与同角关系式【典例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1.故点P (x ,y )所在的圆弧是EF ︵.(2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 (1)C (2)B探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【拓展练习1】 (1)(2020·唐山模拟)若cos θ-2sin θ=1,则tan θ=( ) A.43B.34C.0或43D.0或34(2)(2020·济南模拟)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.解析 (1)由题意可得⎩⎨⎧cos θ-2sin θ=1,cos 2θ+sin 2θ=1,解得⎩⎨⎧sin θ=0,cos θ=1或⎩⎪⎨⎪⎧sin θ=-45,cos θ=-35,所以tan θ=0,或tan θ=43.故选C.(2)∵cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3sin ⎝ ⎛⎭⎪⎫π6-α=435,∴sin ⎝⎛⎭⎪⎫α-π6=-45, ∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+2π=sin ⎝ ⎛⎭⎪⎫α-π6=-45.答案 (1)C (2)-45考向二 三角函数的图象及图象变换【典例2】 (1)(多选题)(2020·新高考山东、海南卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x(2)(2019·天津卷)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A.-2B.- 2C. 2D.2解析 (1)由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC. (2)由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0. 所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )最小正周期为2π,可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2.答案 (1)BC (2)C探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【拓展练习2】 (1)(多选题)(2020·济南历城区模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的可能取值为( ) A.-59π12B.-35π6C.25π6D.49π12(2)(2020·长沙质检)函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,函数y =f (x )的图象可由y =g (x )图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A.f (x )=2sin 2xB.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C.f (x )=-2sin 2xD.f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 (1)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1的图象.由g (x 1)g (x 2)=9,知g (x 1)=3,g (x 2)=3,所以2x +π3=π2+2k π,k ∈Z ,即x =π12+k π,k ∈Z .由x 1,x 2∈[-2π,2π],得x 1,x 2的取值集合为⎩⎨⎧⎭⎬⎫-23π12,-11π12,π12,13π12.当x 1=-23π12,x 2=13π12时,2x 1-x 2=-59π12;当x 1=13π12,x 2=-23π12时,2x 1-x 2=49π12.故选AD.(2)由函数g (x )的图象及g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,知直线x =5π12为函数g (x )的图象的一条对称轴,所以T 4=5π12-π6=π4,则T =π,所以ω=2πT =2,所以g (x )=A sin(2x +φ),由题图可知⎝ ⎛⎭⎪⎫π6,0为“五点法”作图中的第三点,则2×π6+φ=π,解得φ=2π3,由g (0)=3,得A sin 2π3=3,又A >0,所以A =2,则g (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3,所以g (x )的图象向右平移π3个单位长度后得到的图象对应的解析式为f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+2π3=2sin 2x ,故选A. 答案 (1)AD (2)A 考向三 三角函数的性质【典例3】 (1)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)(2020·天一大联考)已知f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=( ) A.83 B.143 C.8 D.4 (3)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 解析 (1)f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4.所以0<a ≤π4,所以a 的最大值是π4.(2)由于f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,∴f (x )在x =12⎝ ⎛⎭⎪⎫π6+π3=π4处取得最小值.因此π4ω-π6=2k π+π,即ω=8k +143,k ∈Z .①又函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π3无最大值,且ω>0,∴T =2πω≥π3-π6=π6,∴0<ω≤12.②由①②知ω=143.(3)f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 答案 (1)A (2)B (3)π2探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【拓展练习3】 (1)(多选题)(2020·济南质检)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,得到图象关于y 轴对称,则下列结论中正确的是( ) A.φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心 C.f (φ)=-2D.x =-π6是f (x )图象的一条对称轴(2)(多选题)关于函数f (x )=|cos x |+cos|2x |,则下列结论正确的是( ) A.f (x )是偶函数 B.π是f (x )的最小正周期C.f (x )在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增D.当x ∈⎣⎢⎡⎦⎥⎤34π,54π时,f (x )的最大值为2解析 (1)将函数f (x )的图象向右平移π6个单位长度后,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=2sin ⎝ ⎛⎭⎪⎫2x +φ-π3的图象,∵其关于y 轴对称,∴φ-π3=k π+π2,k ∈Z ,∴φ=k π+5π6,k ∈Z .又0<φ<π,∴当k =0时,φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,f ⎝ ⎛⎭⎪⎫π12=0,则⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心,故B 正确;因为f (φ)=f ⎝ ⎛⎭⎪⎫5π6=2,故C错误;f ⎝ ⎛⎭⎪⎫-π6=2,则x =-π6是f (x )图象的一条对称轴,故D 正确.故选ABD.(2)f (x )=|cos x |+cos|2x |=|cos x |+cos 2x =|cos x |+2cos 2x -1=2|cos x |2+|cos x |-1,由f (-x )=2|cos(-x )|2+|cos(-x )|-1=f (x ),且函数f (x )的定义域为R ,得f (x )为偶函数,故A 正确.由于y =|cos x |的最小正周期为π,可得f (x )的最小正周期为π,故B 正确. 令t =|cos x |,得函数f (x )可转化为g (t )=2t 2+t -1,t ∈[0,1], 易知t =|cos x |在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,由t ∈[0,1],g (t )=2⎝ ⎛⎭⎪⎫t +142-98,可得g (t )在[0,1]上单调递增,所以f (x )在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,故C 错误.根据f (x )在⎣⎢⎡⎦⎥⎤34π,π上递增,在⎣⎢⎡⎦⎥⎤π,54π上递减,∴f (x )在x =π时取到最大值f (π)=2,则D 正确. 答案 (1)ABD (2)ABD考向四 三角函数性质与图象的综合应用【典例4】 (2020·临沂一预)在①f (x )的图象关于直线x =5π6ω对称,②f (x )=cos ωx -3sin ωx ,③f (x )≤f (0)恒成立这三个条件中任选一个,补充在下面横线处.若问题中的ω存在,求出ω的值;若ω不存在,请说明理由.设函数f (x )=2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2,_____________________________.是否存在正整数ω,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的?(注:如果选择多个条件分别解答,按第一个解答计分)解 若选①,则存在满足条件的正整数ω.求解过程如下: 令ωx +φ=k π,k ∈Z ,代入x =5π6ω, 解得φ=k π-5π6,k ∈Z .因为0≤φ≤π2,所以φ=π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π6∈⎣⎢⎡⎦⎥⎤π6,ωπ2+π6.若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π6≤π,解得0<ω≤53.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选②,则存在满足条件的正整数ω.求解过程如下: f (x )=cos ωx -3sin ωx =2cos ⎝ ⎛⎭⎪⎫ωx +π3=2cos(ωx +φ),且0≤φ≤π2,所以φ=π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ2+π3. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π3≤π,解得0<ω≤43.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选③,则存在满足条件的正整数ω.求解过程如下: 因为f (x )≤f (0)恒成立,即f (x )max =f (0)=2cos φ=2, 所以cos φ=1.因为0≤φ≤π2,所以φ=0,所以f (x )=2cos ωx .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx ∈⎣⎢⎡⎦⎥⎤0,ωπ2. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2≤π,解得0<ω≤2.所以存在正整数ω=1或ω=2,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【拓展练习4】 (2020·威海三校一联)已知函数f (x )=2cos 2ω1x +sin ω2x . (1)求f (0)的值;(2)从①ω1=1,ω2=2,②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值,并直接写出函数f (x )的一个周期.(注:如果选择多个条件分别解答,按第一个解答计分) 解 (1)f (0)=2cos 20+sin 0=2. (2)选择条件①.f (x )的一个周期为π.当ω1=1,ω2=2时,f (x )=2cos 2x +sin 2x =(cos 2x +1)+sin 2x =2⎝ ⎛⎭⎪⎫22sin 2x +22cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,7π12.所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,则1-2≤f (x )≤1+ 2. 当2x +π4=-π2,即x =-3π8时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值1- 2.选择条件②.f (x )的一个周期为2π.当ω1=1,ω2=1时,f (x )=2cos 2x +sin x =2(1-sin 2x )+sin x =-2⎝ ⎛⎭⎪⎫sin x -142+178.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以sin x ∈⎣⎢⎡⎦⎥⎤-1,12.所以当sin x =-1,即x =-π2时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值-1.【专题拓展练习】一、选择题(1~10题为单项选择题,11~15题为多项选择题) 1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【详解】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.2.把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A .sin y x = B .cos y x =C .sin()4y x π=+D .sin y x =-【答案】B 【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 3.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【详解】 解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B4.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,则函数()g x 的单调递增区间是( ) A .(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .()44k ,k k Z ππ⎡⎤-+π+π∈⎢⎥⎣⎦D .()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【答案】D 【详解】将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,所以()2sin 22sin 2663g x x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, 由()222232k x k k Z πππππ-+≤+≤+∈可得()51212k x k k Z ππππ-+≤≤+∈, 即函数()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.5.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像最近两对称轴之间的距离为2π,若该函数图像关于点()0m ,成中心对称,当0,2m π⎡⎤∈⎢⎥⎣⎦时m 的值为( ) A .6πB .4π C .3π D .512π 【答案】D 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期2π2ω2T ππ==⨯=,2ω∴=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,6x k k Z ππ+=∈,则212k x ππ=-, ∴函数f (x )的对称轴心为,0212k ππ⎛⎫-⎪⎝⎭,k Z ∈, 所以212k m ππ=-, 当0,2122k m πππ⎡⎤=-∈⎢⎥⎣⎦时,解得:17,66k ⎡⎤∈⎢⎥⎣⎦, 又5π,1,12k Z k m ∈∴=∴=, 6.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( )A .()f x 的最大值为1B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点【答案】B 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错. 7.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,则ω的取值共有( )A .6个B .5个C .4个D .3个【答案】B 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个.8.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【答案】D 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确;9.设函数()sin 2cos 2f x a x b x =+,其中,,0a b R ab ∈≠,若()6f x f π⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,则以下结论:①函数()f x 的图象关于11,012π⎛⎫⎪⎝⎭对称;②函数()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;③函数()f x 既不是奇函数也不是偶函数;④函数()f x 的图象关于()26k x k Z ππ=+∈对称.其中正确的说法是( ) A .①②③ B .②④C .③④D .①③④【答案】D 【详解】解:由辅助角公式得:())f x x ϕ=+, 由()6f x f π⎛⎫≤⎪⎝⎭恒成立,得22()62k k Z ππϕπ⨯+=+∈, 所以2()6k k Z πϕπ=+∈,取6π=ϕ,从而()26f x x π⎛⎫=+ ⎪⎝⎭,由11012f π⎛⎫= ⎪⎝⎭得①正确, 由222()262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈,所以函数的增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,②不正确, 根据正弦函数的奇偶性易得③显然正确, 由2()62x k k Z πππ+=+∈,得对称轴为()26k x k Z ππ=+∈,④正确, 10.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (AB BC =)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④【答案】A 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以()()254522n GI ππ==⨯=,所以(())3525451222m n l πππ⨯+⨯=⨯==+,故①正确;(2222735354m π-⨯==,))273551522l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))35551522l n ππ-⨯++==,((2235352m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯211m l n≠+,故④不正确;所以①②正确,11.已知函数()3sin sin3f x x x=+,则()A.()f x是奇函数B.()f x是周期函数且最小正周期为2πC.()f x的值域是[4,4]-D.当(0,)xπ∈时()0f x>【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x-=-+-=--=-,故()f x是奇函数,故A正确;B.因为siny x=的最小正周期是2π,sin3y x=的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x的最小正周期,故B正确;C.分析()f x的最大值,因为3sin3x≤,sin31x≤,所以()4f x≤,等号成立的条件是sin1x=和sin31x=同时成立,而当sin1x=即2()2x k kππ=+∈Z时,336()2x k kππ=+∈Z,sin31x=-故C错误;D.展开整理可得()2()3sin sin cos2cos sin2sin4cos2f x x x x x x x x=++=+,易知当(0,)xπ∈时,()0f x>,故D正确.12.设函数cos2()2sin cosxf xx x=+,则()A.()()f x f xπ=+B.()f x的最大值为12C.()f x在,04π⎛⎫-⎪⎝⎭单调递增D.()f x在0,4π⎛⎫⎪⎝⎭单调递减【答案】AD【详解】()f x的定义域为R,且cos2()2sin cosxf xx x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当15y =时,有1cos ,sin 44ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 13.若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A .g (x )的最小正周期为πB .g (x )在区间[0,2π]上单调递减C .x =12π是函数g (x )的对称轴 D .g (x )在[﹣6π,6π]上的最小值为﹣12【答案】AD 【详解】 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对 14.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x x π⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t =【答案】ACD 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛⎫=--=-++=--+ ⎪ ⎪⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()2222 22sin cos222costx t x x xf xx x⎛⎫+++⎪⎝⎭=+()()2222cos sin sin2cos2cost x x t x x t x xtx x x x++⋅+⋅+==+++,所以,()()()()22sin sin2cos2cost x x t x xf x t tx xx x--+-=+=-+⋅-+-,()()2f x f x t∴+-=,所以,函数()f x的图象关于点()0,t对称,所以,22a b t+==,可得1t=,D对. 15.如图是函数()sin()(0,0,||)f x A x Aωϕωϕπ=+>><的部分图象,则下列说法正确的是()A.2ω=B.π,06⎛⎫- ⎪⎝⎭是函数,()f x的一个对称中心C.2π3ϕ=D.函数()f x在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【详解】由题知,2A=,函数()f x的最小正周期11π5π2π1212T⎛⎫=⨯-=⎪⎝⎭,所以2π2Tω==,故A正确;因为11π11π11π2sin22sin212126fϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11ππ2π62kϕ+=+,k Z∈,解得4π2π3kϕ=-,k Z∈,又||ϕπ<,所以2π3ϕ=,故C正确;函数()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,因为ππ2ππ2sin 22sin 06633f ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫-⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误; 令π2π3π2π22π232m x m +≤+≤+,m Z ∈,得π5ππ1212m x mx -≤≤+,m Z ∈,当1m =-时,13π7π1212x -≤≤-,因为4π13π7ππ,,51212⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确.。
1 8专题10三角函数的图像和性质(解析版)易错点1: 注意符号对三角函数性质的影响要注意求函数y=Asin(ωx+φ)的单调区间时ω的符号,尽量化成ω>0时的情况. 易错点2:在函数变换后,在具体某个定义域区间内,不能准确、快速地求出函数的最大值或最小值或值域,或根据函数的最值求函数某个参数的最值或具体值。
三角函数的最值不一定在自变量区间的端点处取得,直接将两个端点处的函数值作为最值是错误的。
求函数y=Asin(ωx+φ)在x ∈[m ,n]上的最值,可先求t=ωx+φ的范围,再结合图象得出y=Asin t 的值域,即得原函数的最值.易错点3:不熟悉复合形式的三角函数的单调区间的求法.函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看作一个整体.若ω<0,要先根据诱导公式进行转化.易错点4:不能正确理解三角函数图象变换规律(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|.(2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.易错点5:对正弦型函数()sin y A x ωφ=+及余弦型函数()cos y A x ωφ=+的性质:如图象、对称轴、对称中心易遗忘或没有深刻理解其意义;不能准确地知道点对称或轴对称在三角函数图像中的性质,不能准确地求出三角函数的最小正周期。
(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再分别应用公式T =2||ωπ,T =2||ωπ,T =||ωπ求解.(2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. 易错点6:在解三角问题时,没有注意到正切函数、余切函数的定义域,以正弦函数、余弦函数的有界性。
第五章三角函数5.4三角函数的图象与性质例1画出下列函数的简图:(1)1sin y x =+,[0,2π]x ∈;(2)cos y x =-,[0,2π]x ∈.解:(1)按五个关键点列表:x0π2π3π22πsin x010-101sin x+1211描点并将它们用光滑的曲线连接起来(图5.4-6):(2)按五个关键点列表:x0π2π3π22πcos x10-101cos x--11-1描点并将它们用光滑的曲线连接起来(图5.4-7):例2求下列函数的周期:(1)3sin y x =,x ∈R ;(2)cos 2y x =,x ∈R ;(3)1π2sin 26y x ⎛⎫=-⎪⎝⎭,x ∈R .分析:通常可以利用三角函数的周期性,通过代数变形,得出等式()()f x T f x +=而求出相应的周期.对于(2),应从余弦函数的周期性出发,通过代数变形得出cos 2()cos 2x T x +=,x ∈R ;对于(3),应从正弦函数的周期性出发,通过代数变形得出1π1πsin ()sin 2626x T x ⎡⎤⎛⎫+-=- ⎪⎢⎣⎦⎝⎭,x ∈R .解:(1)x ∀∈R ,有3sin(2π)3sin x x +=.由周期函数的定义可知,原函数的周期为2π.(2)令2z x =,由x ∈R 得z ∈R ,且cos y z =的周期为2π,即cos(2π)cos z z +=,于是cos(22π)cos 2x x +=,所以cos 2(π)cos 2x x +=,x ∈R .由周期函数的定义可知,原函数的周期为π.(3)令1π26z x =-,由x ∈R 得z ∈R ,且2sin y z =的周期为2π,即2sin(2π)2sin z z +=,于是1π1π2sin 2π2sin 2626x x ⎛⎫⎛⎫-+=-⎪ ⎪⎝⎭⎝⎭,所以1π1π2sin (4π)2sin 2626x x ⎡⎤⎛⎫+-=- ⎪⎢⎥⎣⎦⎝⎭.由周期函数的定义可知,原函数的周期为4π.例3下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x 的集合,并求出最大值、最小值.(1)cos 1y x =+,x ∈R ;(2)3sin 2y x =-,x ∈R ;解:容易知道,这两个函数都有最大值、最小值.(1)使函数cos 1y x =+,x ∈R 取得最大值的x 的集合,就是使函数cos y x =,x ∈R 取得最大值的x 的集合{}2|π,x x k k =∈Z ;使函数cos 1y x =+,x ∈R 取得最小值的x 的集合,就是使函数cos y x =,x ∈R 取得最小值的x 的集合(){}1|2π,x x k k =+∈Z .函数cos 1y x =+,x ∈R 的最大值是112+=;最小值是110-+=.(2)令2z x =,使函数3sin y z =-,z ∈R 取得最大值的z 的集合,就是使sin y z =,z ∈R 取得最小值的之的集合π2π,2z z k k ⎧⎫=-+∈⎨⎬⎩⎭Z .由π22π2x z k ==-+,得ππ4x k =-+.所以,使函数3sin 2y x =-,x ∈R 取得最大值的x 的集合是ππ,4x x k k ⎧⎫=-+∈⎨⎬⎩⎭Z .同理,使函数3sin 2y x =-,x ∈R 取得最小值的x 的集合是ππ,4x x k k ⎧⎫=+∈⎨⎬⎩⎭Z .函数3sin 2y x =-,x ∈R 的最大值是3,最小值是-3.例4不通过求值,比较下列各组数的大小:(1)πsin 18⎛⎫-⎪⎝⎭与πsin 10⎛⎫- ⎪⎝⎭;(2)23πcos 5⎛⎫-⎪⎝⎭与17πcos 4⎛⎫- ⎪⎝⎭.分析:可利用三角函数的单调性比较两个同名三角函数值的大小.为此,先用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.解:(1)因为πππ021018-<-<-<,正弦函数sin y x =在区间π,02⎡⎤-⎢⎥⎣⎦上单调递增,所以ππsin sin 1810⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭.(2)23π23π3πcos cos cos 555⎛⎫-== ⎪⎝⎭,17π17ππcos cos cos 444⎛⎫-== ⎪⎝⎭.因为π3π0π45<<<,且函数cos y x =在区间[0,π]上单调递减,所以π3πcos cos 45>,即17π23πcos cos 45⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.例5求函数1πsin 23y x ⎛⎫=+ ⎪⎝⎭,[2π,2π]x ∈-的单调递增区间.分析:令1π23z x =+,[2π,2π]x ∈-,当自变量x 的值增大时,z 的值也随之增大,因此若函数sin y z =在某个区间上单调递增,则函数1πsin 23y x ⎛⎫=+ ⎪⎝⎭在相应的区间上也一定单调递增.解:令1π23z x =+,[2π,2π]x ∈-,则24π,π33z ⎡⎤∈-⎢⎥⎣⎦.因为sin y z =,24π,π33z ⎡⎤∈-⎢⎥⎣⎦的单调递增区间是ππ,22⎡⎤-⎢⎥⎣⎦,且由π1ππ2232x -≤+≤,得5ππ33x -≤≤.所以,函数1πsin 23y x ⎛⎫=+⎪⎝⎭,[2π,2π]x ∈-的单调递增区间是5ππ,33⎡⎤-⎢⎥⎣⎦.例6求函数ππtan 23y x ⎛⎫=+⎪⎝⎭的定义域、周期及单调区间.分析:利用正切函数的性质,通过代数变形可以得出相应的结论.解:自变量x 的取值应满足ππππ232x k +≠+,k ∈Z ,即123x k ≠+,k ∈Z .所以,函数的定义域12,3x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z .设ππ23z x =+,又tan(π)tan z z +=,所以ππππtan πtan 2323x x ⎡⎤⎛⎫⎛⎫++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即()ππππtan 2tan 2323x x ⎡⎤⎛⎫++=+ ⎪⎢⎣⎦⎝⎭.因为12,3x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z 都有()ππππtan 2tan 2323x x ⎡⎤⎛⎫++=+ ⎪⎢⎥⎣⎦⎝⎭,所以,函数的周期为2由ππππππ2232k x k -+<+<+,k ∈Z 解得512233k x k -+<<+,k ∈Z .因此,函数在区间512,233k k ⎛⎫-++ ⎪⎝⎭,k ∈Z 上都单调递增.5.4.1正弦函数、余弦函数的图象练习1.在同一直角坐标系中,画出函数sin y x =,[0,2]x πÎ,cos y x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象.通过观察两条曲线,说出它们的异同.【答案】见解析【解析】【分析】根据五点作图法画出图像,再直观分析即可.【详解】解:可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象,图象如图.两条曲线的形状相同,位置不同.【点睛】本题主要考查了正余弦函数图像之间的关系,属于基础题.2.用五点法分别画下列函数在[,]-ππ上的图象:(1)sin y x =-;(2)2cos y x =-.【答案】(1)见解析(2)见解析【解析】【分析】根据五点作图法的方法描点,再用光滑曲线连接起来即可.【详解】解:xπ-2π-02ππsin y x =-010-102cos y x=-32123【点睛】本题主要考查了五点作图法的运用,属于基础题.3.想一想函数|sin |y x =与sin y x =的图象及其关系,并借助信息技术画出函数的图象进行检验.【答案】见解析【解析】【分析】分析可知当sin 0y x =≥时|sin |y x =与sin y x =的图象相同,当sin 0y x =<时,|sin |y x =与sin y x =的图象关于x 轴对称,再分析即可.【详解】解:把sin y x =的图象在轴下方的部分翻折到x 轴上方,连同原来在x 轴上方的部分就是|sin |y x =的图象,如图所示.【点睛】本题主要考查了绝对值图像与原图像之间的关系,属于基础题.4.函数y=1+cos x ,,23x ππ⎛⎫∈ ⎪⎝⎭的图象与直线y =t (t 为常数)的交点可能有()A.0个B.1个C.2个D.3个E.4个【答案】ABC 【解析】【分析】画出1cos y x =+在,23x ππ⎛⎫∈ ⎪⎝⎭的图象,即可根据图象得出.【详解】画出1cos y x =+在,23x ππ⎛⎫∈ ⎪⎝⎭的图象如下:则可得当0t <或2t ≥时,1cos y x =+与y t =的交点个数为0;当0=t 或322t ≤<时,1cos y x =+与y t =的交点个数为1;当302t <<时,1cos y x =+与y t =的交点个数为2.故选:ABC.5.4.2正弦函数、余弦函数的性质练习5.等式2sin sin 636πππ⎛⎫+= ⎪⎝⎭是否成立?如果这个等式成立,能否说23π是正弦函数sin y x =,x ∈R 的一个周期?为什么?【答案】见解析【解析】【分析】2sin sin 636πππ⎛⎫+= ⎪⎝⎭成立,再利用函数的周期的定义说明不能说23π是正弦函数sin y x =,x ∈R 的一个周期.【详解】等式2sin sin 636πππ⎛⎫+= ⎪⎝⎭成立,但不能说23π是正弦函数sin y x =,x ∈R 的一个周期.因为不满足函数周期的定义,即对定义内任意x ,2sin 3x π⎛⎫+ ⎪⎝⎭不一定等于sin x ,如2sin sin 333πππ⎛⎫+≠ ⎪⎝⎭,所以23π不是正弦函数sin y x =,x ∈R 的一个周期.【点睛】本题主要考查周期函数的定义,意在考查学生对这些知识的理解掌握水平.6.求下列函数的周期,并借助信息技术画出下列函数的图象进行检验:(1)3sin4y x =,x ∈R ;(2)cos 4y x =,x ∈R ;(3)1cos 223y x π⎛⎫=- ⎪⎝⎭,x ∈R ;(4)1sin 34y x π⎛⎫=+ ⎪⎝⎭,x ∈R .【答案】(1)周期为83π.见解析(2)周期为2π.见解析(3)周期为π.见解析(4)周期为6π.见解析【解析】【分析】利用周期函数的定义证明函数的周期,再作出函数的图象得解.【详解】解:(1)因为33388()sin sin 2sin 44433y f x x x x f x πππ⎛⎫⎛⎫⎛⎫===+=+=+ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以由周期函数的定义可知,原函数的周期为83π.函数的图象如图所示:(2)因为()cos 4cos(42)cos 422y f x x x x f x πππ⎛⎫⎛⎫===+=+=+ ⎪ ⎪⎝⎭⎝⎭,所以由周期函数的定义可知,原函数的周期为2π.函数的图象如图所示:(3)因为111()cos 222cos 2()()232323y f x x x x f x ππππππ⎡⎤⎛⎫⎛⎫⎡⎤==-=-+=+-=+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,所以由周期函数的定义可知,原函数的周期为π.函数的图象如图所示:(4)因为111()sin sin 2sin (6)(6)343434y f x x x x f x ππππππ⎡⎤⎛⎫⎛⎫⎡⎤==+=++=++=+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,所以由周期函数的定义可知,原函数的周期为6π.函数的图象如图所示:【点睛】本题主要考查三角函数的周期的求法,意在考查学生对这些知识的理解掌握水平.7.下列函数中,哪些是奇函数?哪些是偶函数?(1)2sin y x =;(2)1cos y x =-;(3)sin y x x =+;(4)sin cos y x x =-.【答案】(1)(3)(4)是奇函数;(2)是偶函数.【解析】【分析】利用函数奇偶性的定义判断函数的奇偶性.【详解】(1)()2sin f x x =,函数的定义域为R ,()2sin()2sin ()f x x x f x ∴-=-=-=-,所以函数是奇函数;(2)()1cos f x x =-,函数的定义域为R ,()1cos()1cos ()f x x x f x ∴-=--=-=,所以函数是偶函数;(3)()sin f x x x =+,函数的定义域为R ,()sin (sin )()f x x x x x f x ∴-=--=-+=-,所以函数是奇函数;(4)()sin cos f x x x =-,函数的定义域为R ,()sin()cos()sin cos ()f x x x x x f x ∴-=---==-所以函数是奇函数.【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对这些知识的理解掌握水平.8.设函数()()f x x ∈R 是以2为最小正周期的周期函数,且当[0,2]x ∈时,2()(1)f x x =-.求(3)f ,72f ⎛⎫⎪⎝⎭的值.【答案】(3)0f =,7124f ⎛⎫=⎪⎝⎭【解析】【分析】直接利用函数的周期求解.【详解】解:由题意可知,2(3)(21)(1)(11)0f f f =+==-=;2733312122224f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【点睛】本题主要考查函数的周期性,意在考查学生对这些知识的理解掌握水平.练习9.观察正弦曲线和余弦曲线,写出满足下列条件的x 所在的区间:(1)sin 0x >;(2)sin 0x <;(3)cos 0x >;(4)cos 0x <.【答案】(1)(2,2)()k k k πππ+∈Z ;(2)(2,2)()k k k πππ-∈Z ;(3)2,2()22k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z ;(4)32,2()22k k k ππππ⎛⎫++∈ ⎪⎝⎭Z 【解析】【分析】观察正弦曲线和余弦曲线得解.【详解】(1)sin 0x >,观察正弦曲线得(2,2)()x k k k πππ∈+∈Z ;(2)sin 0x <,观察正弦曲线得(2,2)()x k k k πππ∈-∈Z ;(3)cos 0x >,观察余弦曲线得2,2()22x k k k ππππ⎛⎫∈-+∈ ⎪⎝⎭Z ;(4)cos 0x <,观察余弦曲线得32,2()22x k k k πππ⎛⎫∈++∈ ⎪⎝⎭Z .【点睛】本题主要考查正弦曲线和余弦曲线的应用,意在考查学生对这些知识的理解掌握水平.10.求使下列函数取得最大值、最小值的自变量的集合,并求出最大值、最小值.(1)2sin y x =,x ∈R ;(2)2cos3xy =-,x ∈R .【答案】(1)当|2,2x x x k k ππ⎧⎫∈=+∈⎨⎬⎩⎭Z 时,函数取得最大值2;当|2,2x x x k k ππ⎧⎫∈=-+∈⎨⎬⎩⎭Z 时,函数取得最小值-2.(2)当{|63,}x x x k k ππ∈=+∈Z 时,函数取得最大值3;当{|6,}x x x k k π∈=∈Z 时,函数取得最小值1.【解析】【分析】(1)利用2sin y x =取得最大值和最小值的集合与正弦函数sin y x =取最大值最小值的集合是一致的求解;(2)利用2cos 3xy =-取得最大值和最小值的集合与余弦函数cos y x =取最小值最大值的集合是一致的求解.【详解】(1)当sin 1x =即|2,2x x x k k ππ⎧⎫∈=+∈⎨⎬⎩⎭Z 时,函数取得最大值2;当sin 1x =-|2,2x x x k k ππ⎧⎫∈=-+∈⎨⎬⎩⎭Z 时,函数取得最小值-2;(2)当cos 13x=-即2+,3x k k Z ππ=∈即{|63,}x x x k k ππ∈=+∈Z 时,函数取得最大值3;当cos13x=即2,3x k k Z π=∈即当{|6,}x x x k k π∈=∈Z 时,函数取得最小值1.【点睛】本题主要考查三角函数的最值的求法,意在考查学生对这些知识的理解掌握水平.11.下列关于函数4sin y x =,[0,2]x πÎ的单调性的叙述,正确的是.A.在[0,]π上单调递增,在[,2]ππ上单调递减B.在0,2π⎡⎤⎢⎥⎣⎦上单调递增,在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减C.在0,2π⎡⎤⎢⎥⎣⎦及3,22ππ⎡⎤⎢⎥⎣⎦上单调递增,在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减D.在3,22ππ⎡⎤⎢⎥⎣⎦上单调递增,在0,2π⎡⎤⎢⎥⎣⎦及3,22ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】【分析】利用正弦函数的单调性分析判断得解.【详解】因为4sin y x =,[0,2]x πÎ,所以函数的单调性和正弦函数sin y x =的单调性相同,所以函数在0,2π⎡⎤⎢⎥⎣⎦及3,22ππ⎡⎤⎢⎥⎣⎦上单调递增,在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减.故选:C【点睛】本题主要考查三角函数的单调性,意在考查学生对这些知识的理解掌握水平.12.不通过求值,比较下列各组中两个三角函数值的大小:(1)2cos 7π与3cos 5π⎛⎫-⎪⎝⎭;(2)sin 250︒与sin 260︒.【答案】(1)23cos cos 75ππ⎛⎫>-⎪⎝⎭(2)sin 250sin 260︒︒>【解析】【分析】(1)利用cos y x =在(0,)π内为减函数判断它们的大小;(2)利用sin y x =在()90,270︒︒内为减函数判断它们的大小.【详解】解:(1)33cos cos 55ππ⎛⎫-= ⎪⎝⎭,∵23075πππ<<<,且cos y x =在(0,)π内为减函数,∴23cos cos 75ππ>,即23cos cos 75ππ⎛⎫>-⎪⎝⎭.(2)∵90250260270︒︒︒︒<<<,且sin y x =在()90,270︒︒内为减函数,∴sin 250sin 260︒︒>.【点睛】本题主要考查正弦余弦函数的单调性的应用,意在考查学生对这些知识的理解掌握水平.13.求函数3sin(2),[0,2]4y x x ππ=+∈的单调递减区间.【答案】5[,88ππ和913[,]88ππ.【解析】【分析】根据正弦型函数的性质有3222242k x k πππππ+≤+≤+时函数单调递减,即可求出3sin(2)4y x π=+的递减区间,进而讨论k 值确定[0,2]x πÎ上的递减区间即可.【详解】∵3222242k x k πππππ+≤+≤+()k ∈Z 上3sin(2)4y x π=+单调递减,∴588k x k ππππ+≤≤+上3sin(2)4y x π=+单调递减,当0k =:5[,][0,2]88x πππ∈⊂;当1k =:913[,][0,2]88x πππ∈⊂;∴5[,]88ππ、913[,]88ππ为3sin(2),[0,2]4y x x ππ=+∈的单调递减区间.5.4.3正切函数的性质与图象练习14.借助函数tan y x =的图象解不等式tan 1x ≥-,0,22x πππ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭.【答案】30,,24πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【解析】【分析】画出0,,2tan ,2x x y πππ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭=和1y =-的图象,观察图象即可.【详解】在同一坐标系中画出0,,2tan ,2x x y πππ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭=和1y =-的图象,如下:当tan 1x =-时,34x π=,由图象可知不等式tan 1x ≥-的解集为30,,24πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.【点睛】本题考查了正切函数不等式,考查了用数形结合法,属于基础题.15.观察正切曲线,写出满足下列条件的x 值的范围:(1)tan 0x >;(2)tan 0x =;(3)tan 0x ≤.【答案】(1)2k x k πππ<<+()k ∈Z ;(2)x k π=()k ∈Z ;(3)2k x k πππ-<≤()k ∈Z ;【解析】【分析】画出tan y x =的函数图象,通过图象判断(1)、(2)、(3)对应自变量的取值范围即可.【详解】(1)tan 0x >:2k x k πππ<<+()k ∈Z ;(2)tan 0x =:x k π=()k ∈Z ;(3)tan 0x ≤:2k x k πππ-<≤()k ∈Z ;16.求函数tan 3y x =的定义域.【答案】,36k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【解析】【分析】令()32x k k Z ππ≠+∈,解出x 的范围即可求得定义域.【详解】令()32x k k Z ππ≠+∈,得()36k x k Z ππ≠+∈,所以函数tan 3y x =的定义域为,36k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.【点睛】本题考查正切函数的定义域,属于基础题.17.求下列函数的周期:(1)tan 2y x =,()42k x k ππ≠+∈Z ;(2)5tan 2xy =,(21)()x k k π≠+∈Z .【答案】(1)周期为2π(2)周期为2π【解析】【分析】(1)由诱导公式,得tan 2tan(2)x x π=+,即()2f x f x π⎛⎫=+ ⎪⎝⎭,问题得解;(2)由诱导公式,得2tan tan tan 222x x x ππ+⎛⎫=+= ⎪⎝⎭,即()(2)f x f x π=+,问题得解;【详解】(1)令()y f x =,因为()tan 2tan(2)tan 222f x x x x f x πππ⎛⎫⎛⎫==+=+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数tan 2y x =,()42k x k ππ≠+∈Z 的周期为2π.(2)令()y f x =,因为2()5tan5tan 5tan (2)222x x x f x f x πππ+⎛⎫==+==+ ⎪⎝⎭,所以函数5tan2xy =,(21)()x k k π≠+∈Z 的周期为2π.【点睛】本题考查了诱导公式,函数周期性定义,属于中档题.18.不通过求值,比较下列各组中两个正切值的大小:(1)()tan 52-︒与()tan 47-︒;(2)13tan4π与17tan 5π【答案】(1)()()tan 52tan 47-︒<-︒;(2)1317tan tan 45ππ<【解析】【分析】(1)根据tan y x =在()90,0-︒︒的单调性进行比较,得到答案;(2)根据正切函数的周期对所求的值进行化简,再根据tan y x =在0,2π⎛⎫⎪⎝⎭的单调性进行比较,得到答案.【详解】解:(1)9052470-︒<-︒<-︒<︒,且tan y x =在,02π⎛⎫- ⎪⎝⎭内为增函数,()()tan 52tan 47∴-︒<-︒.(2)13tantan 3tan 444ππππ⎛⎫=+= ⎪⎝⎭,1722tantan 3tan 555ππππ⎛⎫=+= ⎪⎝⎭,20452πππ<<< ,且tan y x =在0,2π⎛⎫⎪⎝⎭内为增函数,2tantan 45ππ∴<,故1317tan tan 45ππ<.【点睛】本题考查根据正切函数的单调性比较函数值的大小,属于简单题.习题5.4复习巩固19.画出下列函数的简图:(1)1sin ,[0,2]y x x π=-∈;(2)3cos 1,[0,2]y x x π=+∈.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据五点作图法作图法作图;(2)根据五点作图法作图法作图.【详解】解:(1)x2ππ32π2π1sin y x=-10121描点连线得如图①,(2)x2ππ32π2π3cos 1y x =+412-14描点连线得如图②.【点睛】本题考查考查五点作图法作图,考查基本分析作图能力,属基础题.20.求下列函数的周期:(1)2sin ,3y x x R =∈;(2)1cos ,2y x x R =Î.【答案】(1)3k π()k ∈Z ;(2)2k π()k ∈Z .【解析】【分析】利用正余弦的性质,结合2||T πω=可求(1)(2)中三角函数的最小正周期,进而可写出函数的周期.【详解】(1)由题设知:23ω=,故最小正周期为2232||3T πππω===,即2sin ,3y x x R =∈的周期为3k π()k ∈Z ;(2)由题设知:1ω=,故最小正周期为222||1T πππω===,即1cos ,2y x x R =Î的周期为2k π()k ∈Z ;21.下列函数中,哪些是奇函数?哪些是偶函数?哪些既不是奇函数,也不是偶函数.(1)|sin |y x =;(2)1cos 2y x =-;(3)3sin 2y x =-;(4)12tan y x =+.【答案】(1)偶函数;(2)偶函数;(3)奇函数;(4)非奇非偶函数.【解析】【分析】(1)根据奇偶性定义进行判断;(2)根据奇偶性定义进行判断;(3)根据奇偶性定义进行判断;(4)根据奇偶性定义进行判断;【详解】(1)|sin |y x =定义域为R,且|sin()||sin |x x -=,所以|sin |y x =是偶函数;(2)1cos 2y x =-定义域为R,且1cos 2()1cos 2x x --=-,所以1cos 2y x =-是偶函数;(3)3sin 2y x =-定义域为R,且3sin 2()3sin 2(3sin 2)x x x --==--,所以3sin 2y x =-是奇函数;(4)12tan y x =+定义域为π{|π,}2x x k k ≠+∈Z ,但12tan()12tan ,12tan()12tan ,x x x x +-≠++-≠--,所以12tan y x =+既不是奇函数,也不是偶函数.【点睛】本题考查函数奇偶性,考查基本分析判断能力,属基础题.22.求使下列函数取得最大值、最小值的自变量x 的集合,并求出最大值、最小值.(1)11cos ,23y x x R π=-∈;(2)3sin 2,4y x x R π⎛⎫=+∈ ⎪⎝⎭.(3)31cos ,226y x x R π⎛⎫=--∈ ⎪⎝⎭;(4)11sin ,223y x x R π⎛⎫=+∈ ⎪⎝⎭.【答案】(1)使y 取得最大值的x 的集合是max 3{|63,},2x x k k Z y =+∈=;使y 取得最小值的x 的集合是min 1{|6,},2x x k k Z y =∈=.(2)使y 取得最大值的x 的集合是max |,,38x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;使y 取得最小值的x 的集合是min 3|,,38x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.(3)使y 取得最大值的x 的集合是max 73|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;使y 取得最小值的x 的集合是min 3|4,,32x x k k Z y ππ⎧⎫=+∈=-⎨⎬⎩⎭.(4)使y 取得最大值的x 的集合是max 1|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;使y 取得最小值的x 的集合是min 51|4,,32x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.【解析】【分析】(1)根据余弦函数性质求最值以及对应自变量范围;(2)根据正弦函数性质求最值以及对应自变量范围;(3)根据余弦函数性质求最值以及对应自变量范围;(4)根据正弦函数性质求最值以及对应自变量范围.【详解】(1)由2,3x k k Z πππ=+∈得使y 取得最大值的x 的集合是max 3{|63,},2x x k k Z y =+∈=;由2,3x k k Z ππ=∈使y 取得最小值的x 的集合是min 1{|6,},2x x k k Z y =∈=.(2)由22,42x k k Z πππ+=+∈得使y 取得最大值的x 的集合是max |,,38x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;由22,42x k k Z πππ+=-∈得使y 取得最小值的x 的集合是min 3|,,38x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.(3)由12,26x k k Z πππ-=+∈得使y 取得最大值的x 的集合是max 73|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;由12,26x k k Z ππ-=∈得使y 取得最小值的x 的集合是min3|4,,32x x k k Z y ππ⎧⎫=+∈=-⎨⎬⎩⎭.(4)由12,232x k k Z πππ+=+∈得使y 取得最大值的x 的集合是max1|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;由12,232x k k Z πππ+=-∈得使y 取得最小值的x 的集合是min 51|4,,32x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.【点睛】本题考查正余弦函数最值,考查基本分析求解能力,属基础题.23.利用函数的单调性比较下列各组中两个三角函数值的大小:(1)sin10315︒'与sin16430︒';(2)3cos 10π⎛⎫- ⎪⎝⎭与4cos 9π⎛⎫- ⎪⎝⎭.(3)sin 508︒与sin144︒;(4)47cos 10π⎛⎫ ⎪⎝⎭与44cos 9π⎛⎫ ⎪⎝⎭.【答案】(1)'sin10315sin16430︒'︒>(2)34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭(3)sin 508sin144︒︒<(4)4744cos cos 109ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)根据正弦函数单调性判断大小;(2)先根据诱导公式化简,再根据余弦函数单调性判断大小;(3)先根据诱导公式化简,再根据正弦函数单调性判断大小;(4)先根据诱导公式化简,再根据余弦函数单调性判断大小.【详解】解:(1)901031516430180︒︒︒︒'︒<<< ,且sin y x =在,2ππ⎛⎫⎪⎝⎭内为减函数,'sin10315sin16430︒'︒∴>.(2)3344cos cos ,cos cos 101099ππππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭.340109πππ<<< ,且cos y x =在(0,)π内为减函数.34coscos 109ππ∴>,即34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.(3)()sin 508sin 360148sin148︒︒︒︒=+=.90144148180︒︒︒︒<<< ,且sin y x =在,2ππ⎛⎫⎪⎝⎭内为减函数,sin144sin148︒︒∴>,即sin 508sin144︒︒<.(4)4777coscos 4cos 101010ππππ⎛⎫=+= ⎪⎝⎭,4488cos cos 4cos 999ππππ⎛⎫=+= ⎪⎝⎭.782109ππππ<<<,且cos y x =在,2ππ⎛⎫⎪⎝⎭内为减函数,78coscos 109ππ∴>,即4744cos cos 109ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查诱导公式以及正余弦函数单调性,考查基本分析判断能力,属基础题.24.求下列函数的单调区间:(1)1sin ,[0,2]y x x π=+∈;(2)cos ,[0,2]y x x π=-∈.【答案】(1)单调递增区间为30,,,222πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;单调递减区间为3,22ππ⎡⎤⎢⎥⎣⎦.(2)单调递增区间为[0,]π,单调递减区间为[,2]ππ.【解析】【分析】(1)根据正弦函数单调性求单调区间;(2)根据余弦函数单调性求单调区间【详解】(1)当22,()22k x k k Z ππππ-≤≤+∈时;1sin y x =+单调递增;因为[0,2]x πÎ,所以单调递增区间为30,,,222πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;当322,()22k x k k Z ππππ+≤≤+∈时;1sin y x =+单调递减;因为[0,2]x πÎ,所以单调递减区间为3,22ππ⎡⎤⎢⎥⎣⎦;(2)当22,()k x k k Z πππ≤≤+∈时;cos y x =-单调递增;因为[0,2]x πÎ,所以单调递增区间为[0,]π;当222,()k x k k Z ππππ+≤≤+∈时;cos y x =-单调递减;因为[0,2]x πÎ,所以单调递减区间为[,2]ππ.【点睛】本题考查正余弦函数单调区间,考查基本分析求解能力,属基础题.25.求函数tan 26y x π⎛⎫=-++ ⎪⎝⎭的定义域.【答案】|,3x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【解析】【分析】根据正切函数性质列式求解,即得结果.【详解】解:由()62x k k Z πππ+≠+∈,得()3x k k Z ππ≠+∈,∴原函数的定义域为|,3x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.【点睛】本题考查正切函数定义域,考查基本分析求解能力,属基础题.26.求函数5tan 2,()3122k y x x k Z πππ⎛⎫=-≠+∈ ⎪⎝⎭的周期.【答案】2π【解析】【分析】根据周期定义或正切函数周期公式求解.【详解】解法一:()tan 2tan 2tan 233232f x x x x f x ππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ∴所求函数的周期为2π.解法二:所求函数的周期2ππT ω==.【点睛】本题考查正切函数周期,考查基本分析求解能力,属基础题.27.利用正切函数的单调性比较下列各组中两个函数值的大小:(1)tan 5π⎛⎫- ⎪⎝⎭与3tan 7π⎛⎫-⎪⎝⎭;(2)tan1519︒与tan1493︒;(3)9tan 611π与3tan 511π⎛⎫- ⎪⎝⎭;(4)7tan8π与tan 6π.【答案】(1)3tan tan 57ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭(2)tan1519tan1493︒︒>(3)93tan 6tan 51111ππ⎛⎫>- ⎪⎝⎭(4)7tantan 86ππ<【解析】【分析】(1)先根据诱导公式化简,再根据正切函数单调性判断大小;(2)先根据诱导公式化简,再根据正切函数单调性判断大小;(3)先根据诱导公式化简,再根据正切函数单调性判断大小;(4)先根据诱导公式化简,再根据正切函数单调性判断大小【详解】解:(1)33tan tan ,tan tan 5577ππππ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭.30572πππ<<< ,且tan y x =在0,2π⎛⎫⎪⎝⎭上为增函数,33tantan ,tan tan 5757ππππ⎛⎫⎛⎫∴<∴->- ⎪ ⎪⎝⎭⎝⎭.(2)()tan1519tan 436079tan 79︒︒︒︒=⨯+=,()tan1493tan 436053tan 53︒︒︒︒=⨯+=.0537990︒︒︒︒<<< ,且tan y x =在0,2π⎛⎫⎪⎝⎭上为增函数,tan 53tan 79︒︒∴<,即tan1519tan1493︒︒>.(3)9938tan 6tan ,tan 5tan 11111111ππππ⎛⎫=-= ⎪⎝⎭.893211112ππππ<<<,且tan y x =在3,22ππ⎛⎫⎪⎝⎭上为增函数,89tantan 1111π∴<,即93tan 6tan 51111ππ⎛⎫>- ⎪⎝⎭.(4)7tantan tan 888ππππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.2862ππππ-<-<< ,且tan y x =在,22ππ⎛⎫- ⎪⎝⎭上为增函数,tan tan 86ππ⎛⎫∴-< ⎪⎝⎭,即7tan tan 86ππ<.【点睛】本题考查周期函数单调性以及诱导公式,考查基本分析求解能力,属基础题.综合运用28.求下列函数的值域:(1)5sin ,,44y x x ππ⎡⎤=∈⎢⎥⎣⎦;(2)cos ,0,32y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦.【答案】(1),12y ⎡⎤∈-⎢⎥⎣⎦;(2)1,22y ⎡⎤∈-⎢⎥⎣⎦.【解析】【分析】(1)根据正弦函数单调性求值域;(2)根据余弦函数单调性求值域.【详解】(1)当,42x ππ⎡⎤∈⎢⎥⎣⎦时sin y x =单调递增,22y ∈;当5(,24x ππ∈时sin y x =单调递减,2[,1)2y ∈-;因此5sin ,,44y x x ππ⎡⎤=∈⎢⎥⎣⎦的值域为,1][,1)[,1]222-=- ;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,5,336x πππ⎡⎤+∈⎢⎥⎣⎦,cos 3y x π⎛⎫=+ ⎪⎝⎭单调递减,31[,]22y ∈-;因此cos ,0,32y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦;【点睛】本题考查根据正余弦函数单调性求值域,考查基本分析求解能力,属基础题.29.根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合.(1)3sin ()2x x R ∈;(22cos 0()x x R +∈ .【答案】(1)2|22,33x k x k k Z ππππ⎧⎫++∈⎨⎬⎩⎭;(2)33|22,44x k x k k Z ππππ⎧⎫-++∈⎨⎬⎩⎭ .【解析】【分析】(1)先作一个周期的图象,再根据图象写结果;(2)先作一个周期的图象,再根据图象写结果.【详解】(1)所以3sin ()2x x R ∈成立的x 的取值集合为2|22,33x k x k k Z ππππ⎧⎫++∈⎨⎬⎩⎭(2)22cos 0cos 2x x ∴-22cos 0()x x R +∈ 成立的x 的取值集合为33|22,44x k x k k Z ππππ⎧⎫-++∈⎨⎬⎩⎭【点睛】本题考查根据正余弦函数图象解简单三角不等式,考查基本分析求解能力,属基础题.30.下列四个函数中,以π为最小正周期,且在区间,2ππ⎛⎫⎪⎝⎭上单调递减的是()A.|sin |y x =B.cos y x= C.tan y x= D.cos2x y =【答案】A 【解析】【分析】先判断各函数最小正周期,再确定各函数在区间,2ππ⎛⎫⎪⎝⎭上单调性,即可选择判断.【详解】|sin |y x =最小正周期为π,在区间,2ππ⎛⎫⎪⎝⎭上|sin |sin y x x ==单调递减;cos y x =最小正周期为2π,在区间,2ππ⎛⎫⎪⎝⎭上单调递减;tan y x =最小正周期为π,在区间,2ππ⎛⎫⎪⎝⎭上单调递增;cos 2xy =最小正周期为4π,在区间,2ππ⎛⎫ ⎪⎝⎭上单调递减;故选:A【点睛】本题考查函数周期以及单调性,考查基本分析判断能力,属基础题.31.若x 是斜三角形的一个内角,写出使下列不等式成立的x 的集合:(1)1tan 0x + ;(2)tan 0x .【答案】(1)3|24x x ππ⎧⎫<≤⎨⎬⎩⎭;(2)|32x x ππ⎧⎫≤<⎨⎬⎩⎭.【解析】【分析】(1)根据正切函数单调性求解三角不等式;(2)根据正切函数单调性求解三角不等式.【详解】(1)1tan 0tan 1,()24x x k x k k Z ππππ+∴-∴-+<≤-+∈ 3(0,)(,)2224x x πππππ∈∴<≤ ,即所求集合为3|24x x ππ⎧⎫<≤⎨⎬⎩⎭;(2))tan 0tan ,()32x x k x k k Z ππππ∴≥+≤<+∈ (0,)(,)2232x x πππππ∈∴≤< ,即所求集合为|32x x ππ⎧⎫≤<⎨⎬⎩⎭【点睛】本题考查根据正切函数单调性解三角不等式,考查基本分析求解能力,属基础题.32.求函数3tan 24y x π⎛⎫=-- ⎪⎝⎭的单调区间.【答案】单调递减区间为5,,2828k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;无单调递增区间.【解析】【分析】根据正切函数单调性列不等式,解得结果.【详解】当32,()242k x k k Z πππππ-+<-<+∈时,3tan 24y x π⎛⎫=-- ⎪⎝⎭单调递减,即5,,2828k k x k Z ππππ⎛⎫∈++∈ ⎪⎝⎭所以3tan 24y x π⎛⎫=-- ⎪⎝⎭的单调递减区间为5,,2828k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;无单调递增区间.【点睛】本题考查正切函数单调性,考查基本分析求解能力,属基础题.33.已知函数()y f x =是定义在R 上周期为2的奇函数,若(0.5)1f =,求(1),(3.5)f f 的值.【答案】(1)0f =,(3.5)=1f -【解析】【分析】根据函数周期以及奇偶性找自变量之间关系,即可解得结果.【详解】解:由题意可得(1)(12)(1)(1)(1)f f f f f ,=-=-=-,2(1)0,(1)0f f ∴=∴=.(3.5)(40.5)(0.5)(0.5)1f f f f =-=-=-=-.【点睛】本题考查根据函数周期以及奇偶性求函数值,考查基本分析求解能力,属基础题.34.已知函数1()sin 2,23f x x x R π⎛⎫=-∈ ⎪⎝⎭,(1)求()f x 的最小正周期;(2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)T π=(2)最大值为14,最小值为12-【解析】【分析】(1)根据正弦函数周期公式求解;(2)根据正弦函数单调性求最值.【详解】解:(1)最小正周期为22T ππ==.(2)5,244636x x πππππ-∴--≤ ,11111sin 2,sin 2322234x x ππ⎛⎫⎛⎫∴--∴-- ⎪ ⎪⎝⎭⎝⎭ .即()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值为14,最小值为12-.【点睛】本题考查正弦函数周期以及最值,考查基本分析求解能力,属基础题.拓广探索35.在直角坐标系中,已知O 是以原点O 为圆心,半径长为2的圆,角x (rad )的终边与O 的交点为B ,求点B 的纵坐标y 关于x 的函数解析式,并画出其图象【答案】2sin y x =,图象见解析【解析】【分析】根据三角函数定义可得点B 的纵坐标y 关于x 的函数解析式,利用五点作图法可画图.【详解】解:三角函数定义可得sin 2sin y r x x ==,x 02ππ32π2π2sin y x =020-20描点连线,再向两边延伸得图象如图所示:【点睛】本题考查三角函数定义以及五点作图法,考查基本分析求解能力,属基础题.36.已知周期函数()y f x =的图象如图所示,(1)求函数的周期;(2)画出函数(1)y f x =+的图象;(3)写出函数()y f x =的解析式.【答案】(1)2T =.(2)见解析(3)|2|,[21,21],y x k x k k k Z=-∈-+∈【解析】【分析】(1)根据周期定义结合图象求得结果;(2)把()y f x =向左平移一个单位得(1)y f x =+的图象;(3)根据一次函数解析式得()y f x =在一个周期上的解析式,再根据周期得结果.【详解】解:(1)1(1)2T =--=.(2)把()y f x =向左平移一个单位得(1)y f x =+的图象,即如图所示(3),[0,1],[1,1],[1,0)x x y x x x x ∈⎧==∈-⎨-∈-⎩所以|2|,[21,21],y x k x k k k Z =-∈-+∈.【点睛】本题考查函数周期、图象变换以及解析式,考查基本分析求解能力,属基础题.37.容易知道,正弦函数sin y x =是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心,除原点外,正弦曲线还有其他对称中心吗?如果有,那么对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,那么对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗?对余弦函数和正切函数,讨论上述同样的问题【答案】见解析【解析】【分析】根据正弦函数、余弦函数以及正切函数性质即可得到结果.【详解】解:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,它们的坐标为(,0)()k k Z π∈,正弦曲线是轴对称图形,对称轴的方程为()2x k k Z ππ=+∈.能.由余弦函数和正切函数的周期性可知,余弦曲线的对称中心坐标为,0()2k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴的方程是()x k k Z π=∈,正切曲线的对称中心坐标为,0()2k k Z π⎛⎫∈ ⎪⎝⎭,正切曲线不是轴对称图形.【点睛】本题考查正弦函数、余弦函数以及正切函数性质,考查基本分析求解能力,属基础题.。
第26讲三角函数的图象与性质【典例例题】题型一:五点法作图【例1】用五点法作下列函数的图象:(1)sin ,[,]y x x ππ=∈-;(2)1cos ,[0,2]2y x x π=+∈.【例2】已知函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭.用“五点法”在给定的坐标系中,画出函数()f x 在[]0,π上的大致图像【例3】当[]2,2x ππ∈-时,作出下列函数的图象,把这些图象与sin y x =的图象进行比较,你能发现图象变换的什么规律?(1)sin y x =-;(2)sin y x =;(3)sin y x =.【例4】已知函数11sin sin 22y x x =+.(1)画出函数在[]2,3ππ-上的图象.(2)这个函数是周期函数吗?若是,求出最小正周期;若不是,请说明理由.(3)指出函数的单调区间.【例5】某同学用“五点法”画函数()()cos 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+02ππ32π2πx3π56π()cos A x ωϕ+22请根据上表数据,求函数()f x 的解析式;【题型专练】1.小赵同学用“五点法”画函数()sin()f x A x ωϕ=+,(0>ω,2πϕ<)在某一个周期内的图象,列表并填入了部分数据,如表:x ωϕ+02ππ32π2πx 29π59πsin()A x ωϕ+020-20请将上表数据补充完整,并直接写出函数()f x 的解析式.2.作出函数2sin sin y x x =+,[],x ππ∈-的大致图像.3.分别作出函数|sin |y x =和sin ||,[2,2]=∈-y x x ππ的图像.4.与图中曲线对应的函数可能是()A .sin y x =B .sin y x =C .sin y x =-D .sin y x=-题型二:解三角不等式【例1】不等式sin (0,2)2x x π≥∈的解集为()A .,62ππ⎡⎤⎢⎥⎣⎦B .3,44ππ⎡⎤⎢⎥⎣⎦C .423,ππ⎡⎤⎢⎥⎣⎦D .,64ππ⎡⎤⎢⎥⎣⎦【例2】已知()f x 的定义域是2⎡-⎢⎣⎦,则(sin 2)f x 的定义域为()A .2,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈B .,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z∈C .22,236k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈D .2,263k k ππππ⎡⎤++⎢⎥⎣⎦,k Z∈【例3】若tan 0x ≤,则()A .π2π2π2k x k -<≤,k ∈Z B .π2π(21)π2k x k +<<+,k ∈Z C .πππ2k x k -<≤,k ∈Z D .πππ2k x k -<<,k ∈Z 【例4】已知()f x 是定义在[]5,5-上的偶函数,当50x -≤≤时,()f x 的图象如图所示,则不等式()0sin f x x<的解A .()()(]π,20,2π,5--⋃⋃B .()()π,2π,5--⋃C .()()()5,20,ππ,5--⋃⋃D .()()5,2π,5--⋃【例5】函数)lg 2cos y x =的定义域是________.【题型专练】1.在()0,2x π∈上,满足cos sin x x >的x 的取值范围()A .5,44ππ⎛⎫⎪⎝⎭B .0,4π⎛⎫ ⎪⎝⎭C .50,,244πππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭D .5,24ππ⎛⎫⎪⎝⎭2.函数y =的定义域是()A .2,2(Z)33k k k ππππ⎡⎤-+∈⎢⎥⎣⎦B .2,2(Z)66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦C .22,2(Z)33k k k ππππ⎡⎤++∈⎢⎥⎣⎦D .222,2(Z)33k k k ππππ⎡⎤-+∈⎢⎥⎣⎦3.利用图象,不等式tan 21x <≤的解集为____________.4.函数1()ln cos 2f x x ⎛⎫=- ⎪⎝⎭的定义域为_______________.题型三:求三角函数的周期【例1】下列函数中,最小正周期为π的是()A .1sin 26y x π⎛⎫=+ ⎪⎝⎭B .cos 23y x π⎛⎫=+ ⎪⎝⎭C .tan 24y x π⎛⎫=+ ⎪⎝⎭D .sin2xy π=【例2】下列函数中最小正周期为π的函数的个数是()①|sin |y x =;②cos ||y x =;③tan 2y x =;④2sin y x =A .1B .2C .3D .4【例3】下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【例5】函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则2f π⎛⎫= ⎪⎝⎭()A .B .12-C .12D .2【题型专练】1.在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数A .②④B .①③④C .①②③D .②③④2.已知函数()4tan ,05y x ωπω⎛⎫=+≠ ⎪⎝⎭的最小正周期为2π,则ω=_____.3.若函数sin 33ky x π⎛⎫=+ ⎪⎝⎭的周期不大于1,则正整数k 的最小值为___________.4.函数5sin 23y x π⎛⎫=+ ⎪⎝⎭的最小正周期为()A .2πB .πC .2πD .23π5.函数()3cos 32f x ππ⎛⎫=-- ⎪⎝⎭的最小正周期是()A .4πB .6πC .4D .6题型四:三角函数对称性【例1】下列直线中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭的对称轴是()A .3x π=B .23x π=C .6x π=D .2x π=【例2】函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【例3】若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【例4】将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【例5】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则()A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【例6】已知函数()cos(2)||2f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线1110x π=对称,则ϕ=___________.1.已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Z ππ=∈2.已知函数()ππsin 2(22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.3.设函数π()cos 6f x x ω⎛⎫=- ⎪⎝⎭的最小正周期为π5,则它的一条对称轴方程为()A .12x π=B .12x π=-C .15x π=D .15x π=-4.函数1sin 23y x π⎛⎫=- ⎪⎝⎭图象的一条对称轴是()A .6x π=B .2x π=-C .2x π=D .6x π=-5.若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()A.()26k x k Z ππ=-∈ B.()26k x k Z ππ=+∈ C.()212k x k Z ππ=-∈ D.()212k x k Z ππ=+∈6.如果函数()cos 2y x ϕ=+的图象关于点,06π⎛⎫⎪⎝⎭对称,那么ϕ的最小值为()A .12πB .6πC .3πD .23π7.函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为()A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫- ⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭8.已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为()A .2B .3C .4D .6题型五:三角函数的奇偶性【例1】下列函数中,最小正周期为π的奇函数是()A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin 24y x π⎛⎫=+ ⎪⎝⎭D .()cos 2y x π=+【例2】对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心【例3】已知函数()4f x x πϕ⎛⎫=++ ⎪⎝⎭是奇函数,当,22ππϕ⎡⎤∈-⎢⎥⎣⎦时ϕ的值为()A .38π-B .4π-C .4πD .38π【例4】把函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位长度,再把横坐标压缩到原来的12倍,纵坐标不变,得到函数()g x 的图象,则()g x ()A .最小正周期为2πB .奇函数C .偶函数D .()23g x g x π⎛⎫-= ⎪⎝⎭【例5】下列函数中为奇函数的是()A .sin cos y x x=+B .cos sin y x x=+C .sin cos y x x=⋅D .cos sin y x x=⋅【例6】已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】已知函数()cos 2xf x =,则下列等式正确的是()A .()()f x f x -=B .())f x f x -=-C .()()2πf x f x -=-D .()()f x f x π-=π+【例8】写出一个最小正周期为3的偶函数()f x =___________.【例9】写出一个同时具有性质①()102f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).【题型专练】1.如果函数()sin(2)(02)f x x ϕϕπ=+<<是奇函数,则ϕ的值为______.2.函数sin y x =()A .是奇函数,也是周期函数;B .是奇函数,不是周期函数;C .是偶函数,也是周期函数;D .是偶函数,不是周期函数.3.(多选)下列函数中最小正周期为π,且为偶函数的是()A .cos y x=B .sin 2y x=C .πsin 22y x ⎛⎫=+ ⎪⎝⎭D .1cos 2y x=4.已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.已知函数sin()y x ϕ=+是偶函数,若2πϕπ<<,则ϕ=_________6.写出一个最小正周期为1的偶函数()f x =______.7.下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .48.将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.9.函数()()2cos 2f x x θ=+的图象关于原点对称,则θ的最大负值为______.题型六:三角函数的单调性【例1】(多选)已知函数()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,则()A .π8f x ⎛⎫+ ⎪⎝⎭为偶函数B .()f x 在π3π,24⎛⎫⎪⎝⎭单调递减C .()f x 的最小正周期为πD .()f x 在()0,π有且仅有2个零点【例2】函数2sin 2,[,0]6y x x ππ⎛⎫=+∈- ⎪⎝⎭单调减区间为_________【例3】(多选)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x=B .sin 2y x=C .tan y x=D .lg sin y x=【例4】函数()tan6f x x π=的单调递增区间为________【例5】函数sin(4πy x =+的单调增区间为________.【题型专练】1.(多选)设函数()sin f x x =,则()f x ()A .在区间27,36ππ⎡⎤⎢⎣⎦上是单调递减的B .是周期为2π的周期函数C .在区间,02π⎡⎤-⎢⎥⎣⎦上是单调递增的D .对称中心为(),0k π,k ∈Z2.函数()cos 23f x x π⎛⎫=- ⎪⎝⎭的单调递增区间为_________3.函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭4.已知函数()12sin 23f x x π⎛⎫=-- ⎪⎝⎭.则函数的单调递减区间是___________.5.下列函数中,周期为π且在区间2ππ⎛⎫⎪⎝⎭,上单调递增的是()A .cos 2y x=B .sin 2y x=C .1cos 2y x=D .1sin2y x =6.设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④题型七:三角函数的值域【例1】函数2cos cos 2y x x =--+的最大值为________.【例2】函数2()cos 2f x x x =-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎣⎦⎝⎭的最大值是__________.【例3】函数()cos 2sin y x x x R =+∈的最大值为___________.【例4】函数2sin 26y x π⎛⎫=+ ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域是___________.【例5】将函数()sin 2f x x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足12()()2f x g x -=的12,x x ,有12min3x x π-=,则ϕ=()A .512πB .3πC .4πD .6π【例6】已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间4,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【题型专练】1.函数2sin sin 2y x x =++的最小值为______.2.函数2cos sin y x x =--的值域为________.。
三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。