解直角三角形 优秀教案
- 格式:doc
- 大小:69.76 KB
- 文档页数:3
解直角三角形教案作为一名教学工作者,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么优秀的教案是什么样的呢?以下是小编整理的解直角三角形教案,欢迎阅读与收藏。
解直角三角形教案1一、教学目标(一)知识教学点巩固用三角函数有关知识解决问题,学会解决坡度问题。
(二)能力目标逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。
(三)德育目标培养学生用数学的意识,渗透理论联系实际的观点。
二、教学重点、难点和疑点1.重点:解决有关坡度的实际问题。
2.难点:理解坡度的有关术语。
3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。
三、教学过程1.创设情境,导入新课。
例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。
同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。
这时,教师应根据学生想学的心情,及时点拨。
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。
但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的`意义。
解直角三角形教案2教材与学情:解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
解直角三角形教案
教案标题:直角三角形
教学目标:
1. 理解直角三角形及其特点;
2. 掌握直角三角形的性质和定理;
3. 能够运用直角三角形的性质解决相关问题。
教学过程:
一、导入(5分钟)
引导学生回顾直角三角形的定义:一个角是90°的三角形称为直角三角形。
二、概念讲解(15分钟)
1. 讲解直角三角形的特点:
- 直角三角形的内角和为180°;
- 直角三角形的两个锐角之和为90°;
- 直角三角形的两个直角边分别称为直角边,另一边称为斜边。
2. 讲解直角三角形的性质:
- 斜边是直角边的最大边;
- 直角三角形中,边长关系满足勾股定理:c² = a² + b²,其中c为斜边,a和b为直角边。
三、实例演练(20分钟)
1. 指导学生使用勾股定理判断是否为直角三角形,例如给出三条边的长度,让学生判断是否构成直角三角形。
2. 给出直角三角形的两个边长,让学生计算第三边的长度。
3. 给出直角三角形的一条直角边和斜边的长度,让学生计算另一条直角边的长度。
四、问题拓展(15分钟)
1. 提问:在建筑工地上,一个楼梯的两条腿的长度分别为3米和4米,那么楼梯的斜边的长度是多少?
2. 提问:一辆汽车正沿一条直的水平公路行驶,以60km/h的速度经过一个弯道,弯道半径为200m,那么车辆在弯道上的侧向加速度是多少?
五、课堂小结(5分钟)
复习勾股定理和直角三角形的性质。
六、作业布置(5分钟)
作业:完成课堂练习题。
解直角三角形应用教案一、教案背景介绍直角三角形是初中数学中非常重要的一个概念,掌握直角三角形的性质和应用,不仅可以帮助学生更好地理解几何知识,还可以为学习高中数学和物理打下坚实的基础。
本教案旨在通过引导学生进行实际问题的解决,探索直角三角形的应用。
二、教学目标1. 了解直角三角形的定义和性质;2. 掌握直角三角形中的三边关系、三角函数和勾股定理的应用;3. 能够解决实际问题中涉及直角三角形的计算和推理。
三、教学内容1. 直角三角形的概念和性质直角三角形是指其中一个角为90度的三角形。
直角三角形的另外两个角必定是锐角,其两边相互垂直。
根据勾股定理可得直角三角形中的三边关系:直角边的平方等于斜边的平方减去另外一个直角边的平方。
在本节课中,引导学生通过观察直角三角形的特点,总结直角三角形的性质和特点。
2. 三边关系和三角函数的应用直角三角形中最基本且最重要的应用就是三边关系和三角函数的应用。
根据三角函数的定义,可以得到正弦、余弦和正切的计算公式。
通过实际问题的引导,学生可以运用三边关系和三角函数的关系进行计算。
3. 勾股定理的应用勾股定理是直角三角形中最为常用的定理之一。
在实际问题中,可以利用勾股定理计算直角三角形的边长或者判断一个三角形是否为直角三角形。
通过举一些实际问题的例子,帮助学生掌握勾股定理的应用。
四、教学过程1. 导入部分:通过展示一些生活中直角三角形的应用图例,引发学生对直角三角形的认知和兴趣。
2. 知识讲解:介绍直角三角形的定义、性质和三边关系。
讲解正弦、余弦和正切的概念和计算公式,以及勾股定理的应用。
3. 案例讲解:通过选取一些实际问题,引导学生运用直角三角形的知识解决问题。
例如,计算高楼与测量角度、棱镜的使用和房子的投影等。
4. 案例训练:分组训练,每组学生根据给定的实际问题进行解题训练。
教师巡视指导,解答学生疑惑,鼓励学生讨论和思考。
5. 拓展应用:提供更加复杂的实际问题,让学生进行更深入的探究和解决。
(教案2)28.2解直角三角形第一篇:(教案2)28.2解直角三角形课题28.2解直角三角形一、教学目标1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.2、逐步培养学生分析问题、解决问题的能力.3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识二、教学重点、难点重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.难点:实际问题转化成数学模型三、教学过程(一)复习引入1.直角三角形中除直角外五个元素之间具有什么关系?请学生口答.2、在中Rt△ABC中已知a=12 ,c=13 求角B应该用哪个关系?请计算出来。
(二)实践探索要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角,(如图).现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角能够安全使用这个梯子引导学生先把实际问题转化成数学模型然后分析提出的问题是数学模型中的什么量在这个数学模型中可用学到的什么知识来求未知量?几分钟后,让一个完成较好的同学示范。
(三)教学互动例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0.1 km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.如图,⊙O表示地球,点F 是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.弧PQ的长就是地面上P, Q两点间的距离.为计算弧PQ的长需先求出(即)等于多少(精确到1o)这时人是否一般要满足 1解:在上图中,FQ是⊙O的切线,是直角三角形,弧PQ的长为由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离 P点约2 009.6 km.(四)巩固再现练习1,习题 1四、布置作业习题 2,3第二篇:28.2.1解直角三角形教案28.2.1解直角三角形西湖中学黄勇一、内容和内容解析1、内容:解直角三角形的意义,直角三角形的解法。
23.2解直角三角形
一、学习目标
1.知道直角三角形的边角关系,能利用它求直角三角形的边或角。
2.理解并掌握解直角三角形的概念。
3.能够根据所给条件解直角三角形。
小组展示各组指派
代表,师友
共同回答,
依次展示
各自的结
论,其他同
学适时补
充纠正。
检验学生自学和
互相学习的效
果,培养学生表
达和理解能力,
提高学生学习积
极性和主动性,
当堂检测1、出检测题(见右栏);
2、学生练习完,公布答案;
3、对没有达到要求的学生,教师要求组内解决,
及时进行订正。
4、教师适当进行点评组内合作
当堂检测学生自主
完成查缺补漏,课堂最后一次扫除学生的问题,及时补救
课堂小结 1.本节课我有什么收获?
2,通过本节课的学习我有什么感想?
3,你对自己今天的表现满意吗?
再次突破重难
点,进一步理解
知识运用知识。
《解直角三角形》教学设计说明
一、教材分析
《解直角三角形》是北师大版九年级下册第一章第四节的内容. 在此之前,学生已经具备了勾股定理、锐角三角函数的基本知识,会求任意一个锐角的三角函数值. 本节课是三角函数应用之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性. 因此,本节课在教材教学计划中起着一发牵制全局的重要作用.
二、学情分析
1、九年级学生已经掌握了勾股定理,刚刚学习过锐角三角函数,能够用定义法求三角函数sinα、cosα、tanα值.
2、在计算器的使用上,学生学习了用计算器求任意锐角的三角函数值,并对计算器的二次功能有所了解.有上述知识技能作基础为学生进一步学习“解直角三角形”创造了必要条件.
3、但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养.
三、教学任务分析
本节内容是在学习了“锐角三角函数”“勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形.通过直角三角形中边角之间关系的学习,整合三角函数的知识,归纳解直角三角形的一般方法.在呈现方式上,显示出实践性与研究性,突出了学数学、用数学的意识与过程,注重联系学生的生活实际,同时还有利于数形结合.通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解决问题的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系.掌握将实际问题转化为数学模型的思想方法.所以教学目标如下:
知识技能:初步理解解直角三角形的含义,掌握运用直角三角形的两锐角互余、勾股
定理及锐角三角函数求直角三角形的未知元素.
数学思考:在研究问题中思考如何把实际问题转化为数学问题,进而把数学问题具体
化.
解决问题:解直角三角形的对象是什么?在解决与直角三角形有关的实际问题中如何
把问题数学模型化.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和分析问题解决问题的能力
情感态度:在解决问题的过程中引发学生形成数形结合的数学思想,体会数学与实践
生活的紧密联系.从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.通过获取成功的体验和克服困难的经历,增进学习数学的信心,养成良好的学习习惯.
教学重难点:重点:理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐
角互余、勾股定理及锐角三角函数求直角三角形的未知元素.难点:从已知条件出发,正确选
用适当的边角关系或三角函数解题.
四、教学过程 1. 知识回顾
1、在一个直角三角形中,共有几条边?几个角?(引出“元素”这个词语)
2、在Rt ΔABC 中,∠C=90°.a 、b 、c 、∠A 、∠B 这些元素间有哪些等量关系呢?
讨论复习:
Rt ΔABC 的角角关系、三边关系、边角关系分别是什么?
总结: 直角三角形的边角关系
(1) 两锐角互余:∠A+∠B=90°
(2) 三边满足勾股定理:a 2+b 2=c 2
(3) 边与角的关系:
.tan cot ,cot tan ,sin cos ,cos sin a
b B A b
a B A c
b B A c
a B A ======== 定义:在直角三角形中由已知元素求出未知元素的过程就是解直角三角形.
2. 探究新知
在Rt △ABC 中,
(1)根据∠A= 60°,斜边AB=30,你能求出这个三角形的其他元素吗?
(2)根据AC=2,BC= 6 ,你能求出这个三角形的其他元素吗?
(3)根∠A=60°,∠B=30°, 你能求出这个三角形的其他元素吗?
从以上关系引导学生发现,在直角三角形中,只要知道其中两个元素(至少有一个是边)就可以求出其余的几个元素,从而引出解直角三角形的定义:
在直角三角形中由已知元素求出未知元素的过程就是解直角三角形. 3. 例题讲解
例1 在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为 a ,
b,c,且a =15,b =5,求这个三角形的其他元素.
解;
例2:如图:在Rt ΔABC 中,∠C=90°,∠B=25°,b=30.解这个直角三角形(结果保留小数点后一位).
注意强调:在解决直角三角形的过程中,常会遇到近似计算,尽量选择原始数据,避免累积误差.
B
6A C
4. 知识应用
1、在Rt△ABC 中,∠C =90°,根据下列条件求出直角三角形的其他几个元素(角度精确到 1°)
(1)已知 a=4,b=8;
(2)已知 b=10,∠B=60°;
(3)已知 c=20,∠A=60°.
(1)中已知两条边如何解直角三角形,(2)(3)已知一条边及一个角解直角三角形,本题的设计重在引导学生体会并归纳常规解直角三角形的常规方法:
解直角三角形的方法遵循“有斜用弦,无斜用切;宁乘勿除,化斜为直”
五、课堂小结
一、通过本节课的学习,大家有什么收获?
六、作业布置:
1、习题1.5 1、2.
2、预习下一节内容,要求了解什么是仰角和俯角
3、补充作业:
如图,根据图中已知数据,求△ABC其余各边的长,各角的度数和△ABC的面积.
七、板书设计:
八、教学反思
本节课,为解直角三角形应用题之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性.因此,本节课在教材教学计划中起着一发牵制全局的重要作用.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.。