精密电阻焊接的基础知识
- 格式:docx
- 大小:311.66 KB
- 文档页数:11
电阻焊,是一种以加热方式接合金属或其他热塑性材料如塑料的制造工艺及技术,是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法。
电阻焊特点PART 1优点1、熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
2、加热时间短,热量集中,故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
3、不需要焊丝、焊条等填充金属,以及氧、乙炔、氢等焊接材料,焊接成本低。
4、操作简单,易于实现机械化和自动化,改善了劳动条件。
5、生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。
但闪光对焊因有火花喷溅,需要隔离。
缺点1、目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
2、点、缝焊的搭接接头不仅增加了构件的重量,且因在两板焊接熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低。
3、设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的平衡运行。
电阻焊分类PART 2电阻焊方法主要有四种,即点焊、缝焊、凸焊、对焊(电阻对焊、闪光对焊),四种工序的示意图例如下↓↓↓点焊点焊是将焊件装配成搭接接头,并压紧在两柱状电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。
点焊主要用于薄板焊接。
点焊的工艺过程:1、预压,保证工件接触良好。
2、通电,使焊接处形成熔核及塑性环。
3、断电锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。
缝焊缝焊的过程与点焊相似,只是以旋转的圆盘状滚轮电极代替柱状电极,将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。
缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。
对焊对焊是使焊件沿整个接触面焊合的电阻焊方法。
电阻焊基本知识及操作要求一.电阻焊电阻焊概念:将被焊工件置于两电极之间加压,并在焊接处通以电流,利用电流流经工件接触面及其临近区域产生锝电阻热将其加热到熔化或塑性状态,使之达到金属结合而形成牢固接头的工艺过程。
电阻焊设备是指采用电阻加热的原理进行焊接操作的一种设备,它主要由以下部分组成:①焊接回路:以阻焊变压器为中心,包括二次回路和工件。
②机械装置:由机架、夹持、加压及传动机构组成。
③气路系统:以气缸为中心,包括气体、控制等部分④冷却系统:冷却二次回路和工件,保证焊机正常工作。
⑤控制部分:按要求接通电源,并能控制焊接循环的各段时间及调整焊接电流等。
常见的手工点焊焊钳有X型、C型及特制型等,X型、C型结构示意图如下:注:X型焊钳主要用来焊接水平或基本处于水平位置的工件; C型焊钳主要用来焊接垂直或近似垂直位置的工件;而特制焊钳主要用来焊接有特殊位置或尺寸要求的工件。
电阻点焊操作注意事项:①焊接过程中,在电极与工件接触时,尽量使电极与工件接触点所在的平面保持垂直。
(不垂直会使电极端面与工件的接触面积减小,通过接触面的电流密度就会增大,导致烧穿、熔核直径减小、飞溅增大等焊接缺陷。
)②焊接过程中,应避免焊钳与工件接触,以免两极电极短路。
③电极头表面应保证无其它粘接杂物,发现电极头磨损严重或端部出现凹坑,必须立即更换。
(因为随着点焊的进行,电极端面逐渐墩粗,通过电极端面输入焊点区域的电流密度逐渐减小,熔核直径减小。
当熔核直径小于标准规定的最小值,则产生弱焊或虚焊。
一般每打400∽450个焊点需用平锉修磨电极帽一次,每个电极帽在修磨9∽10次后需更换。
)④定期检查气路、水路系统,不允许有堵塞和泄露现象。
⑤定期检查通水电缆,若发现部分导线折断,应及时更换。
⑥停止使用时应将冷却水排放干净。
电阻焊的优缺点电阻焊的优缺点(表1)点焊质量的一般要求2.1.1 破坏后的焊点焊接面积不应小于电极接触面积的80%。
2.1.2 焊点压痕的凹陷深度应不大于板厚的20%。
电阻焊接基础培训一、原理电阻焊接是利用金属材料在电流作用下的局部加热,使其熔化并连接起来的一种焊接方法。
通过外接电源,将电流通入焊接部位,使接头产生局部高温,金属在高温下熔化,形成固态连接。
电阻焊接的原理简单易懂,是一种效率高、连接牢固的焊接方法。
二、设备1. 电源设备:包括主要电源、控制系统和连接电缆等组成部分,根据焊接工艺和要求的不同,电源设备有不同的类型和规格可以选择。
2. 焊接头:主要由导电材料制成,配有压力机构和冷却系统,可以有效传输电流,同时能够施加合适的压力和冷却焊接区域。
3. 夹具:用于固定和夹持工件,确保焊接位置准确和稳固。
4. 清洁装置:用于清洁焊接位置和工件的表面,确保焊接质量。
5. 控制系统:用于监控和控制焊接工艺参数,如电流、时间、压力等。
三、培训内容1. 理论知识:学习电阻焊接的基本原理,包括焊接电流、时间、压力等参数对焊接结果的影响,了解材料的选用和焊接工艺的要求。
2. 安全操作:学习电阻焊接的安全规范和操作流程,包括穿戴防护装备、操作注意事项、设备维护等内容。
3. 设备操作:熟悉焊接设备的使用方法,掌握操作技巧和注意事项,包括电源开启、设定参数、夹持工件等操作过程。
4. 工艺参数调整:学习根据不同工件材料和要求,调整焊接工艺参数,如电流、时间、压力等,确保焊接结果合格。
5. 实际操作:进行实际的电阻焊接操作,熟练掌握焊接技能,包括对焊接位置的准确定位、夹持工件的稳固、焊接头的放置等操作。
6. 质量检验:学习焊接质量的检验方法和标准,包括焊接接头的外观、尺寸、焊缝的均匀度等方面。
四、培训目标通过电阻焊接基础培训,学习者应能够掌握电阻焊接的原理和设备,具备独立进行电阻焊接作业的能力。
能够根据不同工件的要求,进行工艺参数的调整和焊接质量的检验,保证焊接结果达到要求。
同时,具备相关安全操作知识,确保在操作过程中不发生安全事故。
五、总结电阻焊接基础培训是提高焊接工人技能的重要途径,培训内容包括理论知识、安全操作、设备操作、工艺参数调整、实际操作和质量检验等方面,通过系统的培训,学习者能够掌握电阻焊接的要点和技能,提高焊接工艺水平,保障焊接质量。
焊接工艺的电阻焊接技术要点电阻焊接技术是一种常用的金属焊接方法,它通过电流的通过和热量的传递,将金属材料进行加热并熔化,达到焊接的目的。
在电阻焊接过程中,熟悉并掌握一些技术要点是至关重要的。
本文将重点介绍电阻焊接技术的要点,帮助读者更好地理解和应用该技术。
一、焊接电流的选择在电阻焊接中,焊接电流的选择对于焊接质量和效率起着决定性的作用。
一般来说,焊接电流的大小应根据焊接材料的种类、厚度以及焊接接头的尺寸来决定。
通常情况下,焊接电流越大,焊接时间越短,但同时也会增加焊接接头的热变形风险。
因此,在选择焊接电流时,需要综合考虑焊接速度和焊接质量,确保达到最佳的焊接效果。
二、焊接压力的控制焊接压力的控制也是电阻焊接中的重要环节。
适当的焊接压力可以确保焊接接头的质量和稳定性。
一般来说,焊接压力的大小应根据焊接接头的形状、面积以及材料的硬度来决定。
焊接压力过小会导致焊接接头不牢固,焊点质量不达标,而焊接压力过大则容易引发焊接接头的变形和破坏。
因此,在实际操作中,需要根据具体情况调整焊接压力,确保焊接过程稳定可靠。
三、焊接时间的掌握焊接时间是指焊接过程中电流通过焊接接头所需要的时间。
焊接时间的长短直接关系到焊接接头的质量和强度。
一般来说,焊接时间应根据焊接材料的种类、厚度以及焊接接头的形状来决定。
焊接时间过短会导致焊接接头不牢固,焊点质量不达标,而焊接时间过长则容易使焊接接头过度加热,影响焊接质量。
因此,在进行焊接时,需要根据实际情况掌握焊接时间,确保焊接质量和效率的平衡。
四、焊接温度的控制焊接温度是指焊接接头在焊接过程中所达到的最高温度。
焊接温度的控制对于焊接接头的质量和性能非常关键。
一般来说,焊接温度应根据焊接材料的种类、熔点以及焊接接头的形状来决定。
焊接温度过高或过低都会对焊接接头的质量产生不良影响。
焊接温度过高容易引起焊接接头的烧穿和开裂,而焊接温度过低则会导致焊接接头的焊点质量低下。
因此,在焊接过程中,需要准确测量和控制焊接温度,确保焊接接头达到预期的质量要求。
电阻焊接的基本知识(一)来源: 发布时间:2008-08-30 点击次数:12421、概述电阻焊是指将焊件组合后,通过电极对其施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法。
又称接触焊。
2、电阻焊机点焊机:利用强大的电流流过被焊金属,将结合点加热至塑熔状态并施加压力形成焊点。
凸焊机:焊接原理、焊接结构型式与点焊机相同,但电极是平面板状。
被焊金属的焊接处预先冲成突出点,在压紧通电状态下一次可以形成几个焊点。
缝焊机:焊机结构型式类似点焊机。
电极是一对滚轮,被焊金属经过滚轮电极的通电与挤压,即形成一连串焊点。
对焊机:利用强大的电流流过两根被焊工件的接触点,将金属接触端面加热成塑性状态并施加顶锻压力,即形成焊接接头。
3、电阻焊的物理本质电阻焊过程的物理本质,是利用焊接区金属本身的电阻热和大量塑性变形能量,使两个分离表面的金属原子之间接近到晶格距离(0.3~0.5nm),形成金属键,在结合面上产生足够量的共同晶粒而得到焊点、焊缝或对接接头。
获得电阻焊优质接头的基本条件:适当的热+机械(力)作用4、电阻焊机的主要技术指标⑴电源电压、频率⑵初级电流⑶焊接电流⑷短路电流⑸连续焊接电流⑹最大、最小电极力、顶锻力、夹紧力⑺最大、最小伸臂和臂间开度(点、凸、缝)⑻最大、最小焊轮线速度⑼最大允许功率,最大焊接功率⑽额定负载持续率⑾生产率、重量⑿焊接能力⒀各种控制功能5、错位及偏角的三个方面a.电极没有调正b.顶锻力太大c.工件伸出长度过大6.表面烧伤有以下五个方面a.支持力过小b.电极夹口表面不佳c.电极夹口与工件配合不佳d.工件表面不佳e.电极冷却不足7.未焊透的三个原因a.电流不足b.焊接时间不足c.顶锻力不足8.焊口脆工件材质含碳量高,需要做退火处理电阻焊接的基础知识(二)来源: 发布时间:2009-03-26 点击次数:331电阻点焊的基础知识使用金属材料制作零件的场合,有许多时候都需要将材料切断成规定的尺寸,再将其连接起来。
第4节电阻焊技术4.1电阻焊概述4.1.1、电阻焊基本原理1.定义:电阻焊,是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生电阻热进行焊接的方法,属压焊。
2.电阻焊热源的产生电阻焊是将焊件组合后通过电极施压,利用电流通过接头接触面及邻近区域产生的电阻热进行焊接。
要形成一个牢固的焊接接头,两焊件必须具有足够的共同晶粒。
熔焊是利用外加热源使连接处熔化,凝固晶粒而形成焊缝的,而电阻焊则是利用本身的电阻热和塑性变形的能量,形成结合面的共同晶粒而形成焊缝的,从连接的物理本质来看,二者都是靠焊接金属原子之间的结合力结合在一起的。
但他们的热源不同,在接头的形成过程中有无必要的塑性变形也不同,即实现接头坚固结合的途径不同。
这便是电阻焊与一般的熔焊的不同之处。
4.1.2、电阻焊分类电阻焊的种类很多,可根据所使用的焊接的不同特征进行分类。
图14.1.3、电阻焊的特点1.电阻焊的优点1)焊接生产率高。
点焊时通用点焊机每分钟可焊60点,若用快速点焊机则每分钟可达500点以上;对焊直径为40mm的棒材每分钟可焊一个接头;缝焊厚度为l~3mm的薄板时,其焊接速度通常为0.5~lm/min,滚对焊最高焊接速度可达60m/min。
因此电阻焊非常适合大批量生产。
2)焊接质量好。
从焊接接头来说,由于冶金过程简单,且不易受空气的有害作用,所以焊接接头的化学成分均匀,并且与母材基本一致。
从整体结构来看,由于热量集中,受热范围小,热影响区也很小,所以焊接变形不大,并且易于控制。
此外,点、缝焊时由于焊点处于焊件内部,焊缝表面平整光滑,因而焊件表面质量也较好。
3)焊接成本较低。
电阻焊时不用焊接材料,一般也不用保护气体,所以在正常情况下除必需的电力消耗外,几乎没有什么消耗,因而使用成本低廉。
4)劳动条件较好。
电阻焊时既不会产生有害气体,也没有强光辐射,所以劳动条件比较好。
此外,电阻焊焊接过程简单,易于实现机械化、自动化,因而工人的劳动强度较低。
精密电阻焊接的基础知识一、精密电阻点焊使用金属材料制作零件的场合,有许多时候都需要将材料切断成规定的尺寸,再将其连接起来。
连接材料的方法有利用铆钉进行机械连接和利用焊接进行冶金连接以及利用超声波进行物理连接。
电阻点焊是利用冶金的方法将金属材料高效率地经济地连接起来的一种方法。
因此在产业界被广泛地使用。
我们将精密小型工件的电阻焊接称之为精密电阻点焊。
米亚基公司源源不断地开发出各种超小型、可高密度安装化的新型精密电阻点焊机,取代了以往的锡焊、铆接等金属连接工艺。
精密电阻点焊机是最适合用于小型的、性能要求高的电子部品,以及精密机械工业中的小型部品的组装。
电阻焊接的原理利用焦耳热进行焊接Q=0.24I2Rt=0.24IEt(cal)…①公式①如下图所示,工件在上下电极间被加压,通电,进行电阻焊接。
焊接部的电阻为R(Ω),焊接电流为I(A),通电时间为t(sec)时,根据公式①焊接部发热。
因此焊接部的温度上升,产生熔融。
图1二、电阻点焊的5大要素1、电流2、时间3、加压力4、电流密度(电极先端直径)5、电极材料上述要素与发热量Q及发热位置有关系,也就是说点焊时影响焊接效果的因素有:电流I、通电时间t、接触电阻R、电流密度(电极先端)和电极材料。
接触电阻R随着加压力的增大而降低。
以上要素被称为电阻点焊的五大要素。
接触电阻工件表面生成的氧化薄层引起的电阻(表皮电阻)和由于电流的流通截面引起的电阻(集中电阻)。
图2上图中,R2,R4……材料自身的电阻;R3……上下工件之间的电阻;R1,R5,……电极与工件之间的电阻。
接触电阻是指R1、R3、R5。
三、电极的作用1.导通大电流。
2.施加压力。
3.提高焊接点的冷却效果。
4.稳定电流密度。
电极具有以上的作用,这里解释一下与品质管理有关的电流密度。
电流密度是指单位横截面中的电流值。
如果将电流密度一直保持稳定,就能防止焊接不良。
由于要导通大电流(电极作用1),电极顶端会发热;又由于要加压会使电极顶端变宽,电流密度变小,因此,随着焊接次数的增多,焊核会变小(焊接不良)因此在焊接品质管理中电极的管理(进行一定次数的焊接后更换或修磨电极)就变得非常的重要。
图3四、电阻点焊原理归纳1.电阻点焊方法是一种利用工件自身的电阻、施加在工件上的加压力和导通的大电流,在工件接触部产生焦耳热,进行熔融的金属连接方法。
2.决定焊接品质的五大要素:[1].电流值[2].通电时间[3].加压力[4].电流密度[5].电极材料五、焊接规范的选出5-1、电极材料的选定《选定原则》:①固有电阻大的工件->选用固有电阻小的材料作电极②固有电阻小的工件->选用固有电阻大的材料作电极例:工件材料选用电极材料镍超质铝铜、铬铜合金焊接部位产生的热量随着通电时间而增大,但是,电极及焊接部位的散热量也随着通电时间而增大,因此焊接部位的温度在一定时间以后趋于饱和。
而温度饱和以后即使延长通电时间,焊核也不会再增大,而且表面压痕和热变形也会增大,对材料产生不良的冶金效果。
另外,从作业工时、电力消耗的观点考虑,长时间焊接也不利。
图8图8中最适合的规范为加压力 5kg ,电流 500A 的区域。
欲增加焊接强度,不仅要增大电流同时还要增大加压力。
此时,将电流、加压力由低慢慢上升,选择最佳规范。
焊接的原理一、激光基本原理1、LASER是什么意思Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅)的英语缩写。
2、激光产生的原理激光——“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。
处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。
为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向。
含有钕(ND)的YAG结晶体发生的激光是一种人眼看不见的波长为1.064um的近红外光。
这种光束在微弱的受激发情况下,也能实现连续发振。
YAG晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。
3、滋光的主要特长a、单色性―激光不是已许多不同的光混一合而成的,它是最纯的单色光(彼长、频率)b、方向性―橄光传播时基本不向外扩散。
c、相千性--徽光的位相(波峰和波谷)很有规律,相干性好。
d、高输出功率一用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。
二、YAG激光焊接激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。
通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。
常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。
前者主要用于单点固定连续和薄件材料的焊接。
后者主要用于大厚件的焊接和切割。
1、激光焊接加工方法的特征A、非接触加工,不需对工件加压和进行表面处理。
B、焊点小、能量密度高、适合于高速加工。
C、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。
D、不需要填充金属、不需要真空环境(可在空气中直接进行)、不会像电子束那样在空气中产生X 射线的危险。
E、与接触焊工艺相比.无电极、工具等的磨损消耗。
F、无加工噪音,对环境无污染。
G、微小工件也可加工。
此外,还可通过透明材料的壁进行焊接。
H、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。
I、很容易改变激光输出焦距及焊点位置。
J、很容易搭载到自动机、机器人装置上。
K、对带绝缘层的导体可直接进行焊接,对性能相差较大的异种金属也可焊接。
2、脉冲激光焊接的机理脉冲激光焊接可分为传热溶化焊接和深穿入熔化焊接传热溶化焊接是指当激光束照射到材料的表面上时,材料吸收光能而加热熔化。
材料表面层的热以传导方式继续向材料深处传递,直至将两个待焊件的接触面互溶并焊接在一起。
深穿入熔化焊接是指当更大功率密度的激光束照射到材料上时,材料被加工熔化以至气化,产生较大的蒸汽压,在蒸汽的压力的作用下,溶化金属被挤在周围使照射处(熔池)呈现出一个凹坑,随着激光束的继续照射,凹坑越来越深,并穿入到另一个工件中。
激光停止照射后,被排挤在凹坑周围的溶化金属重新流回到凹坑里,凝固后将工件焊接在一起。
这两种激光焊接机理,与功率密度、照射时间、材料性质、焊接方式等因素有关。
当功率密度较低、照射时间较长而焊件较薄时,通常以传热溶化机理为主进行。
反之,则是以深穿入熔化机理为主进行。
焊接的环境一、工艺特点及其影响因素1、激光的投入能量密度。
调整激光照射能量密度的方法主要有:A、调整激光输出能量(调整激发电压)B、调整光斑大小(调节出射焦距)C、改变光斑中的能量分布(改变光纤类型:峰形输出型——GI型光纤、梯形输出型―SI型光纤)D、改变出射脉冲的宽度和波形2、材料反射率大多数金属在激光开始照射时,会将大部分激光能量反射掉,所以,焊接过程开始的瞬间,要相应提高光束的功率。
采用脉冲激光缝悍二艺时,可以通过接入引弧板来保证整个焊接段的品质一致性。
当金属表面开始熔化或汽化后,其反射率迅速降低。
二、影响材料对激光束吸收的主要因素1、温度室温时金属材料两激光的吸收率一般在20℃以下;当金属温度达到烙点产生熔融和气化后吸收率上升到40~50%;当接近沸点时吸收率可高达90%。
材料的直流电阻率材料对激光的吸收率与材料的直流电阻率的平方根成正比、与激光彼长的平方根成反比关系。
2、激光束的入射角入射角越大,吸收率越小。
当激光垂直于金属表面照射时,金属对激光的吸收率最大。
但通常为了保护激光出射镜头,需要维持一定的入射角。
村料的表面状态为了低反射率,可在金属表面涂上薄薄一层全属粉,但两者必须是能够形成合金的。
如饭、金、银可覆盖薄锐层,此时在同样熔深的情况下,焊接所需的能量大约为原来铜、金、银所需的四分一。
3、聚焦性和离焦量品质优良的YAG激光焊接装置,其聚焦性(光斑大小)是通过装置本身的光路同轴精度、输出光纤和出射头的成像比等来保证。
以激光出射焦点正好落在工作上面时的位置为零。
离焦量是指焦点离开这个零点的距离量。
焦点位置超过零点位置时叫负离焦(焦点深入到工件内部),其距离值为负离焦量。
反之,焦点不到零点的距离数值为正离焦量。
要获得较大的熔深,可将焦点位置选择在工件内部某一位置上,即采用负离焦量进行焊接。
4、焊接的穿入深度脉冲激光焊接时,主要是以传热熔化方式进行的。
激光束本身对金属的直接穿入深度是有限的,其主要取决于材料的导温系数(导温系数大的则穿入深度大),而不是激光器的功率大小。
内部构造及电气示意图三、维护及保养1、消耗品的更换纯水、离子交换树脂、水过滤器、励起灯、保护镜片2、点检A、激光发振调整B、激光入射调整C、光纤入射调整D、能量平衡调整焊接的质量控制一、焊接品质检查焊接品质的检验,一般有目视检验和破坏性检验两种方法。
目视检验是对图1所示的各个项目进行检验。
若利用显微(镜)照片进行金相检验,则需切断提取出焊接熔核部分并研磨腐蚀(见图2所示)。
但是,若只经过外观检验就下结论则还不充分,请务必进行一下破坏性实验。
破坏性检验通常是进行撕开实验,如图3、4所示,撕开焊接母材进行确认(一侧出现圆形孔洞,另一侧出现钮扣状残留物)另外,也有利用拉伸仪进行拉伸强度检验的方法。
二、品质保证手段电阻点焊方法虽然是最适合于大量生产的焊接手段,但是若品质管理不当就会引起巨大的损失。
目前,由于无法实现在线非破坏性焊接品质检验,因此有必要加强对品质保证的管理。
1、压力检测焊接发热量受电极与工件间的接触电阻的影响极大。
焊接过程中,压力必须保持不变,因此有必要经常用压力测试仪对焊接2、电极研磨焊接次数的增多,会使电极表面磨损加重。
电极表面粗糙会引起飞溅和造成工件表面出现糙痕,影响工件外观,因此有必要多准备些研磨好的电极,根据焊接次数适当地更换电极。
使用新电极之前先用作废的工件进行调试为好。
3、电极过热电极过热不仅会缩短电极的寿命而且会导致工件焊接品质不均一。
4、工件精度因忽略了工件厚度、镀层厚度、金属成分等的变化而导致焊接不良品出现的现象时有发生。
工件本身的品质是否安定也是影响焊接品质的重要因素。
5、电流监测电流监测对焊接是必不可少的。
影响电流变化的因素主要有:电源电压的波动、焊接机超载使用而引起的过热使电流输出减少、工件接触不良导致电流减少、焊接机性能不良等。
为了防止上述原因引起的不良焊接结果,很有必要经常对焊接电流进行监测。