用顶点式求二次函数解析式
- 格式:doc
- 大小:41.00 KB
- 文档页数:1
二次函数解析式的求法二次函数是一种形如y=ax+bx+c的函数,其中a、b、c是常数,且a≠0。
要求二次函数的解析式,需要掌握以下几个步骤:1. 求出a、b、c的值,这可以通过函数的已知点、导数或根的信息来确定。
2. 根据一般式y=ax+bx+c或顶点式y=a(x-h)+k,选择其中一种形式。
3. 将a、b、c的值代入选择的形式中,得到最终的解析式。
具体求法如下:1. 已知点求解析式如果已知二次函数通过两个点(x1,y1)和(x2,y2),可以利用这两个点的坐标和函数的一般式来求解析式。
我们可以将两个点的坐标带入一般式中,得到以下两个方程:y1=ax1+bx1+cy2=ax2+bx2+c将两个方程联立,消去c,得到:a=(y2-y1)/(x2-x1)b=(y1x2-y2x1)/(x2-x1)将a、b的值带入一般式y=ax+bx+c中,得到最终的解析式。
2. 已知导数求解析式二次函数的导数为y'=2ax+b,如果已知导数,可以通过求导数反推出a和b的值,然后代入一般式或顶点式中求解析式。
例如,当已知函数f(x)=2x+4x+1的导数为f'(x)=4x+4时,可以根据导数的定义得到a=2,b=4,然后代入一般式y=2x+4x+c中,用已知点的坐标求解c,得到最终的解析式。
3. 已知根求解析式如果已知二次函数的两个根x1和x2,可以根据根的定义得到(x-x1)(x-x2)=0,将它展开得到x-(x1+x2)x+x1x2=0,然后用已知点的坐标求解a、b、c,最后代入一般式或顶点式中求解析式。
例如,当已知函数f(x)=x+2x-3的两个根为-3和1时,可以利用(x+3)(x-1)=0得到x+2x-3=0,根据二次函数的一般式得到a=1,b=2,c=-3,然后代入一般式y=x+2x-3中即可得到最终的解析式。
总之,求二次函数解析式需要根据不同的已知信息选择合适的求解方法,掌握这些方法可以更加轻松地解决二次函数的相关问题。
求二次函数解析式的常用方法四川省仪陇县实验学校 李洪泉求二次函数解析式是初中数学的重点和难点,同时也是初中、高中数学知识的一个衔接点。
它所涉及的知识面广,解题技巧高,因此要求学生必须熟练掌握以下几种求二次函数解析式的常用方法。
1、根据二次函数的一般式求解析式当直接或间接知道二次函数图象上任意三点坐标时,通常可设函数解析式为一般式y=ax 2+bx+c 求解。
例1、(2008年广东梅州市)如图,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)分析:根据等腰梯形和直角三角形的性质不难求出60,(1,0),DAB A D C ∠=︒-,A 、D 、C 为抛物线上的任意三点,因此可令抛物线的解析式为一般式:2y ax bx c =++,则042a b c c a bc -+=⎧⎪=⎨⎪++=⎩,解得:3ab c ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩故:过A 、D 、C 三点的抛物线的解析式为:2y x x =;对称轴为直线x=1.(第三问解略) 点评:根据二次函数的一般式求解析式,必须知道抛物线上三点的坐标,目的是列一个三元一次方程组求解出解析式的待定系数的值。
2、根据二次函数的顶点式求解析式已知二次函数顶点坐标(h ,k)或对称轴x=h 时,通常可设函数解析式为y=a(x-h)2+k 求解。
例2、(四川省南充高中2011邀请赛题)如图,已知点(2,0),(4,0)B C --,过点,B C 的M 与直线1x =-相切于点A (A 在第二象限),点A 关于x 轴的对称点是1A ,直线1AA 与x 轴相交点P 。
浅谈二次函数解析式的三种形式【摘要】本文通过具体的实例讨论在初中数学解题中如何确定二次函数解析式。
【关键词】二次函数;解析式;初中数学教学函数是数学中最重要的概念之一,是中学数学的核心内容,函数思想是最重要、最基本的数学思想,它具有其他数学思想所不及的作用,它是从大量的实际问题中抽象出来的。
在初中阶段,讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对学生观察问题,研究问题和解决问题都是十分有益的。
这里,主要探讨的是针对于初中阶段有关二次函数解析式的求法。
一、利用一般形式y=ax?+bx+c (a≠0)利用这种方法的,一般题目给出的条件是已知二次函数图象上的三点,或者是已知二次函数的三对函数对应值,或者已知抛物线与x轴交点的横坐标及与y轴交点的纵坐标。
例1:已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式。
分析:二次函数的一般形式是y=ax?+bx+c,问题是a,b,c由已知三个条件,可列出三个方程,进而求出a,b,c。
解:设所求的二次函数为y=ax?+bx+c,由已知,函数图象经过(-1,10),(1,4),(2,7)三点,得a-b+c=10a+b+c=44a+2b+c=7解这个方程组得a=2,b=-3,c=5。
因此,所求二次函数是y=2x?-3x+5。
例2:一个二次函数,当自变量x=0时,函数值y=-1,当x=-2与?时,y=0,求这个二次函数的解析式。
分析:这道题已知的是三对函数对应值,实际上也相当于已知二次函数过(0,-1),(-2,0),(?,0)三点,求函数的解析式,从而又转化到了和例1类似的题目,用求例1的方法即可求得。
解:设所求的二次函数为y=ax?+bx+c,由已知,得c=-14a-2b+c=0?a+?b+c=0解这个方程组得a=1,b=3/2,c=-1。
因此,所求的二次函数解析式是y=x?+x-1。
例3:已知一个二次函数的图象与x轴的的两个交点的横坐标是?,,与y轴交点的纵坐标是-5,求二次函数的解析式。
一、 用顶点式求二次函数解析式。
例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2)(把顶点(1,3)代入得:3)1(2+-=x a y把点(3,0)代入得:03)13(2=+-a 解得:43-=a ∴抛物线解析式为:3)1(432+--=x y练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)2.已知抛物线y =ax 2经过点A (1,1).(1)求这个函数的解析式;3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.4.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.6.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.7.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.8.已知二次函数m x x y +-=62的最小值为1,求m 的值.9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=53 ,求这条抛物线的解析式; 10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。
二、 用三个点求二次函数解析式 例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax y ++=2 把点(-1,10),(1,4),(2,7)代入得: ⎪⎩⎪⎨⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪⎨⎧=-==532c b a ∴抛物线解析式为:5322+-=x x y 练习11:二次函数的图象经过(0,0),(-1,-1),(1,9) 12.已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。
例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2
)( 把顶点(1,3)代入得:3)1(2+-=x a y 把点(3,0)代入得:03)13(2
=+-a
解得:43
-
=a ∴抛物线解析式为:3)1(4
32
+--=x y
练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)
2.已知抛物线y =ax 2
经过点A (1,1).(1)求这个函数的解析式;
3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.
4.抛物线y =ax 2
+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.
5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.
6.抛物线y =ax 2
+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.
7.把抛物线y =(x -1)2
沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.
8.已知二次函数m x x y +-=62
的最小值为1,求m 的值.
9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=5
3 ,
求这条抛物线的解析式;
10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。
一、 用三个点求二次函数解析式 例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax
y ++=2
把点(-1,10),(1,4),(2,7)代入得:
⎪⎩⎪⎨
⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪
⎨⎧=-==5
32c b a ∴抛物线解析式为:5322
+-=x x y
练习11:二次函数的图象经过(0,0),(-1,-1),(1,9)
12.已知二次函数y=ax 2
+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。