用顶点式求二次函数解析式
- 格式:doc
- 大小:41.50 KB
- 文档页数:1
一、 用顶点式求二次函数解析式。
例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2)(把顶点(1,3)代入得:3)1(2+-=x a y把点(3,0)代入得:03)13(2=+-a 解得:43-=a ∴抛物线解析式为:3)1(432+--=x y练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)2.已知抛物线y =ax 2经过点A (1,1).(1)求这个函数的解析式;3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.4.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.6.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.7.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.8.已知二次函数m x x y +-=62的最小值为1,求m 的值.9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=53 ,求这条抛物线的解析式; 10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。
二、 用三个点求二次函数解析式 例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax y ++=2 把点(-1,10),(1,4),(2,7)代入得: ⎪⎩⎪⎨⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪⎨⎧=-==532c b a ∴抛物线解析式为:5322+-=x x y 练习11:二次函数的图象经过(0,0),(-1,-1),(1,9) 12.已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。
求二次函数的解析式的几种方法山东省沂水县高桥镇初级中学 王瑞辉二次函数解析式的求法是二次函数知识的重点,也是中考必考内容。
现在举例,说明求二次函数解析式的常用方法,希望对同学们学习有所帮助。
一、二次函数常见的三种表达式:(1)一般式:y ax bx c a =++≠20();(2)交点式:y a x x x x =--()()12,其中点(,)()x x 1200,,为该二次函数与x 轴的交点;(3)顶点式:()2()0y a x h k a =-+≠,其中点(),h k 为该二次函数的顶点。
二、利用待定系数法求二次函数关系式(1)、已知二次函数图象上任意三个点的坐标,可设一般式求二次函数的关系式。
例1、已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).求这个抛物线的解析式. 解:根据题意得421,8,3,a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ 解之得1,4,3,a b c =-⎧⎪=⎨⎪=-⎩所以抛物线为243;y x x =-+-说明:用待定系数法求系数a b c 、、需要有三个独立条件,若给出的条件是任意三个点,可设解析式为2(0)y ax bx c a =++≠,然后将三个点的坐标分别代入,组成一次方程组用加减消元法来求解.(2)、已知抛物线与x 轴的两个交点坐标和图象上另一个点坐标,可设交点式求二次函数的关系式。
若知道二次函数与x 轴有两个交点()()1200x x ,,,,则相当于方程20ax bx c ++=有两个不相等的实数根12x x ,,从而212()()ax bx c a x x x x ++=--,故二次函数可以表示为12()()(0)y a x x x x a =--≠.例2、已知一个二次函数的图象经过点A (-1,0),B (3,0),C (0,-3)三点.求此二次函数的解析式.解:根据题设,设此二次函数的解析式为(1)(3)y a x x =+-.又∵该二次函数又过点(0,-3), ∴(01)(03)3a +-=-. 解得1a =.因此,所求的二次函数解析式为(1)(3)y x x =+-,即223y x x =--.说明:在把函数与x 轴的两个交点坐标代入12()()(0)y a x x x x a =--≠求值时,要注意正确处理两个括号内的符号.(3)、已知抛物线顶点和另外一个点坐标时,设顶点式y =a (x -h )2+k (a ≠0)例3、对称轴与y 轴平行的抛物线顶点是(-2,-1),抛物线又过(1,0),求此抛物线的函数解析式。
专题 运用顶点坐标与对称轴求二次函数解析式
【方法归纳】运用对称轴,结合顶点式求解析式
一、已知对称轴或顶点坐标
1.如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,点A 的坐标为(2,0),点C 的坐标为(0,3),它的对称轴是直线x =2
1 ,求抛物线的解析式.
2.已知抛物线y =a (x +2)2-1交x 轴于A 、B 两点(A 点在B 点的左边)且AB =2 ,求抛物线的解析式.
3.在平面直角坐标系中,顶点为(3,4)的抛物线交y 轴于A 点,交x 轴于B 、C 两点(点B 在点C 的左侧),已知A 点坐标为(0,-5),求此抛物线的解析式.
4.经过原点的抛物线的解析式可以是y =ax 2+bx (a ≠0).
(1)对于这样的抛物线,当顶点坐标为(1,1)时,a =________;
(2)当顶点坐标为(m ,n ),m ≠0时,a 与m 之间的关系式是________.
二、隐藏对称轴或顶点坐标
5.已知二次函数的图像与x 轴交于A (-2,0),B (3,0)两点,且函数有最大值为2,求二次函数的解析式
6.二次函数y =ax 2+4ax +c 的最大值为4,且图像过点(-3,0),求二次函数的解析式.。
求二次函数解析式的三种基本方法在九年级复习后期,学生面临的一大难点便是二次函数相关知识,对待与二次函数有关的题解可谓是谈虎色变,但是二次函数是初中数学中的重要内容,也蕴涵着一种重要的数学思想方法。
它由数、式、方程(二次方程)到二次函数,贯穿了整个初中代数。
纵观近几年的中考试卷可以发现,二次函数始终是中考命题中的重点与热点,一方面是考查二次函数中学生对基础知识的掌握程度,另一方面以其新颖独特的综合试题引导学生探究和创新。
在此我就以二次函数中求解析式这一小块内容提供几种常见的基本解法,方便同学们在学习中进行参考:一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。
我们称y=ax2+bx+c(a≠0)为一般式(三点式)。
例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。
分析:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。
所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。
二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。
我们称y=a(x+m)2+k (a≠0)为顶点式(配方式)。
例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。
分析:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k 的值。
用顶点式只要确定a的值就可以求二次函数解析式。
若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。
总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。
当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。
求二次函数解析式的三种基本方法四川 倪先德二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。
熟练地求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c (a ≠0)。
2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。
3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。
探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。
解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0)依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4。
例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。
分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。
解:依题意,设这个二次函数的解析式为y=a(x -4)2-1 (a ≠0)又抛物线与y 轴交于点)3,0(。
∴a(0-4)2-1=3 ∴a=41 ∴这个二次函数的解析式为y=41(x -4)2-1,即y=41x 2-2x+3。
初三数学二次函数c bx ax y ++=2的图象与性质——求解析式(2) 班级: 姓名:一、课前3分钟复习用配方法解方程: 010422=--x x知识点一:选用顶点式()k h x a y +-=2求二次函数解析式 已知条件选用二次函数的解析式 已知抛物线的顶点及另一点()k h x a y +-=2例1: 1.已知抛物线的顶点为(﹣1,2)且过(0,﹣1),求其解析式.知识点二:选用交点式()()21x x x x a y --=求二次函数解析式已知条件选用二次函数的解析式 已知抛物线与x 轴的两个交点及另一点()()21x x x x a y --=例2:2.已知抛物线过点(﹣3,0)、(5,0),(1,6),求其解析式.三.课堂分层练习A 层:1.已知抛物线的顶点坐标是(3,﹣1),且经过点(4,1),求二次函数的表达式.2.抛物线的对称轴为直线x =3,y 的最大值为﹣5,且与y =x 2的图象开口大小相同.则这条抛物线解析式为( )A .y =﹣(x +3)2+5B .y =﹣(x ﹣3)2﹣5C .y =(x +3)2+5D .y =(x ﹣3)2﹣5 3.如图,抛物线经过A .B 、C 三点,求它的解析式和顶点P 的坐标.B 层:4.已知一个二次函数,当x =1时,函数有最大值﹣6,且图象过点(2,﹣8).(1)求此二次函数的解析式;(2)若抛物线l 的开口大小和方向与(1)中抛物线相同,且与x 轴的交点为(﹣1,0),(5,0).求l 的解析式及顶点坐标.C 层:5.如图,抛物线y =ax 2+bx +c 经过点A (﹣1,0),点B (3,0),且OB =OC .(1)求抛物线的表达式;(2)如图,点D 是抛物线的顶点,求△BCD 的面积. 分层作业:A 层:1.已知抛物线经过点A (﹣1,0),B (5,0),C (0,5),求该抛物线的函数关系式.2.抛物线的顶点坐标为(2,﹣1),且过(3,0),求出这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图象如图所示.(1)对称轴方程为 ;(2)当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大;(3)求函数解析式.(4)当52<<-x 时,y 的取值范围是B 层:4.已知二次函数的图象经过点A (3,0).B (﹣1,0).且顶点M 的纵坐标是﹣4.(1)求函数解析式;(2)在下方表格中画出它的图象;(3)点P 在图象上,若△P AB 的面积是8,求P 点坐标.C 层5.已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与x 轴交于另一点B ,与y 轴交于点C (0,3),对称轴是直线x =1,顶点是点M .(1)求二次函数的解析式;(2)求△MBC 的面积;(3)过原点的直线l 平分△MBC 面积,求l 的解析式.课堂小测1.已知抛物线y=ax2+bx+c与x轴的交点坐标为(﹣1,0),(3,0),y的最大值为12,求该解析式.。
一、 用顶点式求二次函数解析式。
例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2
)( 把顶点(1,3)代入得:3)1(2+-=x a y 把点(3,0)代入得:03)13(2
=+-a
解得:43
-
=a ∴抛物线解析式为:3)1(4
32
+--=x y
练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)
2.已知抛物线y =ax 2
经过点A (1,1).(1)求这个函数的解析式;
3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.
4.抛物线y =ax 2
+bx +c 的顶点坐标为(2,4),且过原点,求抛
物线的解析式.
5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.
6.抛物线y =ax 2
+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.
7.把抛物线y =(x -1)2
沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.
8.已知二次函数m x x y +-=62
的最小值为1,求m 的值.
9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=5
3 ,
求这条抛物线的解析式;
10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。
二、 用三个点求二次函数解析式
例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax
y ++=2
把点(-1,10),(1,4),(2,7)代入得:
⎪⎩⎪⎨
⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪
⎨⎧=-==5
32c b a ∴抛物线解析式为:5322
+-=x x y
练习11:二次函数的图象经过(0,0),(-1,-1),(1,9)
12.已知二次函数y=ax 2
+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。