八年级数学三角形、梯形的中位线1
- 格式:pdf
- 大小:818.26 KB
- 文档页数:8
22.6三角形、梯形的中位线(1)教学目标:1.经历三角形中线的复习和直角三角形纸片拼图过程,理解三角形的中位线概念.2.经历探索三角形中位线定理的过程,掌握三角形中位线的性质定理.3.经历三角形中位线性质定理的应用过程,感悟图形的分解与组合、化归的数学思想. 教学重点与难点:教学重点:三角形的中位线定理及运用.教学难点:三角形的中位线定理的证明.教学过程:一、复习旧知,引出课题1.三角形中的有关线段三角形中的有关线段有哪些? 三角形中的高、角平分线、中线分别有几条?如果联结三角形中的任意两边的中点,这条线段也是三角形中的一条重要线段,如何命名?它有什么性质?教学设计意图:从学生熟悉的三角形中的有关线段入手,温习旧知,设置问题,如果联结三角形中任意两边的中点,这条线段如何命名呢,自然生成三角形中位线的概念和言简意赅地引出课题.2.三角形中位线的概念联结三角形两边中点的线段,叫做三角形的中位线.三角形的中位线有几条?它和三角形的中线有什么差异?教学设计意图:对三角形的中位线的概念进行定义,继续进行提问,对比三角形的中线,深化三角形的中位线和中线的文字语言和图形语言的差异.二、新知探究1.拼图操作,猜想三角形中位线的性质定理将手中的四个形状大小完全相同的三角形拼接为一个三角形或者四边形,如何拼,说出你的拼接方法.教学设计意图:在数学拼图活动中,学生拼出的三角形、四边形有五种,其中拼出的三角形帮助我们进一步巩固三角形中位线的概念,进而猜想出三角形中位线的性质.并且拼出的其中一个四边形为我们论证三角形的中位线性质定理作出铺垫.2.画图操作,验证三角形中位线的性质定理已知△ABC ,边BC=6厘米,∠B=70°.取线段AB 、AC 的中点D 、E ,联结线段DE . 思考:线段DE 和线段BC 有什么位置和数量关系,为什么?教学设计意图:在数学画图等操作活动中,学生通过测量角度和线段的长度,进一步验证三角形中位线的性质.3.几何论证,得到三角形中位线的性质定理三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 用符号语言表示定理.∵ AD =BD ,AE =CE ,∴DE 为三角形ABC 的中位线,(三角形中位线的概念)∴ DE ∥BC ,且BC DE 21 (三角形的中位线平行于第三边,并且等于第三边的一半). 教学设计意图:经历观察、猜想、验证、论证等课题性质研究一般过程,引导学生能够掌握G F E D CB OF D A C 三角形中位线性质定理的证明思路和证明方法,进而掌握三角形中位线的性质.三、新知应用练习1:如图,已知AD=BD,AE=EC,(1)当DE=2时, BC= .(2)当BC=m 时,DE= .教学设计意图:初步应用三角形中位线的性质解决简单与三角形中位线有关的计算.两个小题也呈现出递进的关系,从数字到字母,体现函数思想.例题1 已知,如图,点O 是△ABC 内任意一点,D 、E 、F 、G 分别是线段OA 、OB 、BC 、CA 的中点, 求证:四边形DEFG 为平行四边形. 教学设计意图:应用三角形中位线的性质解决简单与三角形中位线有关的证明.感悟图形的组合与分解,如何将分散的条件集中起来,让学过的定理得到呈现.变式:当点O 为△ABC 外任意一点时,上述结论是否成立,请说明理由.教学设计意图:将点O 从形内移动到形外,引导学生进一步感悟运动变化过程中的“变与不变”,并且进一步引导学生思考思考,如果点O 运动到与边AB 平行的某条直线CX 上时,结论是不成立的,这一特例.练习2:如图,在△ABC 中,D 、E 、F 分别是三边AB 、BC 、AC 中点,求证:中位线DF 和中线AE 互相平分.教学设计意图:将三角形的中线与中位线放在一个图形中,证明它们互相平分,综合应用三角形的中线、中位线、平行四边形的判定与性质定理解决问题.在问题解决的过程中,继续感悟图形的组合与分解,体会化归的数学思想.(备用:求证:顺次联结四边形四条边的中点,所得的四边形是平行四边形.)四、课堂小结这节课你学到了哪些知识,还有什么收获,请分享.五、布置作业1.阅读教材96,97,并完成练习册22.6(1).2.拓展作业:在△ABC 中,点D 、E 分别为边AB 、AC 上的点,(1)如果DE ∥BC ,D 、E 不是AB,AC 的中点,DE 与BC 有什么数量关系?(2)如果M 、N 分别为BD 、CE 的中点,那么线段MN 和线段DE 、BC 有什么数量和位置关系? 教学设计意图:通过课堂小结,梳理与巩固三角形中位线的概念及性质,通过练习册进一步巩固三角形中位线的性质,进而借助拓展作业,为后续三角形一边的平行线的学习和梯形的中位线的学习留出新的生长点.教学设计说明《三角形的中位线》一课时,是《三角形、梯形的中位线》的一部分内容。
3.6 三角形、梯形的中位线(一)1 教材分析1.1 教材:苏教版《义务教育课程标准实验教科书数学》八年级(上册)第三章第六节(一)。
1.2 本节教材的地位和作用三角形的中位线是初中几何的一个非常重要的知识点,它具有计算和证明等多种灵活的运用。
它是继四边形性质学习之后的又一个非常重要的几何知识。
学生在学“三角形中位线”前,已经学习了旋转图形、中心对称,并且已经利用中心对称图形性质研究了平行四边形的性质,并在此基础上开展了对矩形、菱形、正方形的研究。
“三角形中位线”作为几何计算和推理论证的重要一环,是初中几何的的一个基础环节,它直接关系到学生对几何计算、几何论证等内容的进一步学习。
初中阶段要培养学生的运算能力、逻辑思维能力、空间想象能力以及让学生根据一些现实模型,把它转化为数学问题的能力。
其中逻辑思维能力的培养主要是在八年级阶段完成的。
学生在探索并掌握三角形中位线的概念及性质这一过程中,发展了他们的观察力和抽象思维能力。
学生在探索过程中,需要通过中心对称变换,将三角形变成之前刚学习过的平行四边形,将三角形中位线性质转换为平行四边形性质的研究。
着要求学生从转换的角度来认识对象,转换也是初中几何中最重要的思想方法之一。
1.3教学内容与教材处理“3.6三角形、梯形的中位线”一节共分两节课,本节课是第一节课,并且讲课时间控制在20分钟左右,因此,讲解的例题与习题都只有一个。
学生探索得到三角形中位线的性质,并会利用三角形中位线的性质解决有关问题。
通过学生的互相合作和师生共同探究,促进学习共同体的形成。
本课体现了转换的思想。
教学中不仅仅关注知识的探究,也要关注学生对思想方法的理解。
教学中国更要注意学生学习方式的多样化。
学生间的合作探讨问题可以增加他们之间的交流,也利于课堂氛围的提升,最终达到共同进步。
在课的最后让学生们交流本堂课的体验及收获,这不仅是个总结的过程,也是个学生反思自身学习、老师反思自身教学的过程,这更是个对本节课思想方法进行领悟的过程。
三角形、梯形的中位线知识精要一、三角形的中位线1)、三角形的中位线定义:在△ABC 中①、BC AB F E 、为、 的中点 ②、∵M 、N 分别是BC 、AC 的中点∴线段EF 是 △ABC 的 ∴ 线段MN 是△ABC 的2)、三角形有 条中位线,它们构成的三角形叫 。
3)、三角形的中位线定理:4)、在△ABC 中,AB =3,BC =5,CA =7,顺次连结三边中点得△DEF 的周长为___ ______. 5)、在△ABC 中,D 、E 、F 分别 为AB 、BC 、CA 的中点,△DEF 的周长为10,则△ABC 的周长是6)、三角形的三条中位线的长分别是3,4,5,则这个三角形的周长是_结论:中点三角形的周长等于原三角形的 .7)、一个三角形的面积是40,则它的中点三角形的面积是__结论:中点三角形的面积是原三角形面积的_ 二、中点四边形1、定义:顺次连接四边形各边中点的四边形叫2、中点四边形的形状与原四边形的对角线数量和位置有关 1)、原四边形的对角线相等时,中点四边形是 ; 2)、原四边形的对角线垂直时,中点四边形是 ;3)、原四边形的对角线既相等又垂直时,中点四边形是 ; 4)、原四边形的对角线既不相等又不垂直时,中点四边形是 。
5)、任意四边形的中点四边形是 ;菱形的中点四边形是 ;矩形、等腰梯形的中点四边形是 ;正方形的中点四边形是 。
三、梯形中位线1、定义:联结梯形两腰中点的线段叫做梯形的中位线。
2、梯形中位线定理: 热身练习1.若三角形三条中位线长分别是3cm 、4cm 、5cm ,则这个三角形的面积是 cm 2。
2.梯形的上底长为6,下底长为10,则由中位线所分得的两个梯形的面积之比为 . 3. 梯形的两条对角线的中点的连线长为7,上底长为8,则下底长为 . 4. 若等腰梯形的腰长是5cm ,中位线是6cm ,则它的周长是 cm .5. 已知等腰梯形的上、下底长分别为 2cm 和6cm ,且它的两条对角线互相垂直,则这个梯形的面积为 cm 2.6. 已知三角形三边长分别为a 、b 、c ,它的三条中位线组成一个新的三角形,这个新三角形的三条中位线又组成一个小三角形,这个小三角形的三条中位线又组成一个新小三角形,则最小的三角形的周长是( )A. (a+b+c)B. (a+b+c)C. (a+b+c)D. (a+b+c)7.若等腰梯形较长的底等于对角线,较短的底等于高,则较短的底和较长的底的长的长度之比是 ( ) A.1:2 B. 2:3 C.4:1 D. 3:5 8.直角梯形中,上底和斜腰长均为a ,且斜腰和下底的夹角是60°,则梯形中位线长为( )A. B. a C. D. 都不对9.在梯形ABCD 中,AB//CD ,DC :AB=1:2,E 、F 分别是两腰BC 、AD 的中点,则 ( ) A. 1:4 B. 1:3 C. 1:2 D. 3:410. 如图,在直角梯形ABCD 中,点O 为CD 的中点,AD ∥BC,试判断OA 与OB 的关系?(10题图) (11题图)11. 如图,梯形ABCD 中,AD ∥BC ,点E 是AB 中点,连结EC 、ED 、CE ⊥DE ,CD 、AD 与BC 三条线段之间有什么样的数量关系?请说明理由.精解名题例1.已知:如图所示,Rt △ABC 中,∠=ACB D E 90°,、分别为AB 、BC 的中点,点F 在AC 的延长线上,∠=∠FEC B 。