链传动 带传动 齿轮传动 涡轮传动 分析
- 格式:doc
- 大小:19.50 KB
- 文档页数:2
3种传动方式中主动轮与从动轮的转动方向关系在机械传动领域中,常见的三种传动方式分别为带传动、链传动和齿轮传动。
在这三种传动方式中,主动轮与从动轮的转动方向关系是非常重要的,它直接影响着传动系统的运行稳定性和效率。
本文将从深度和广度的角度,对这三种传动方式中主动轮与从动轮的转动方向关系进行全面评估,并撰写一篇有价值的文章,以便读者能够更加全面、深刻地理解这一主题。
1. 带传动中主动轮与从动轮的转动方向关系带传动是一种常见的机械传动方式,通过皮带将主动轮和从动轮连接起来,实现动力传递。
在带传动中,主动轮与从动轮的转动方向关系是非常关键的。
一般情况下,当主动轮的转动方向为顺时针时,从动轮的转动方向也为顺时针,反之亦然。
这是因为皮带在主动轮上受到的摩擦力和张力的作用,会导致从动轮跟随主动轮的转动方向而旋转。
在设计和应用带传动时,务必要考虑主动轮与从动轮的转动方向关系,以确保传动系统的正常运行。
2. 链传动中主动轮与从动轮的转动方向关系链传动是一种通过链条将主动轮和从动轮连接起来,实现动力传递的传动方式。
在链传动中,主动轮与从动轮的转动方向关系与带传动类似,同样也是受到链条的摩擦力和张力的作用而决定的。
一般情况下,当主动轮的转动方向为顺时针时,从动轮的转动方向也为顺时针,反之亦然。
不过,相对于带传动而言,链传动的传动效率更高,传动能力更强,因此在一些高负荷、高转速的场合中更为常见。
3. 齿轮传动中主动轮与从动轮的转动方向关系齿轮传动是一种通过齿轮将主动轮和从动轮连接起来,实现动力传递的传动方式。
在齿轮传动中,主动轮与从动轮的转动方向关系与带传动和链传动有所不同。
由于齿轮的齿面几何形状决定了它的运动规律,因此在齿轮传动中,主动轮的转动方向为顺时针时,从动轮的转动方向则为逆时针,反之亦然。
这是由于齿轮传动采用齿轮的啮合传动原理,齿轮的传动方向与其齿数、齿轮啮合线的位置等因素有关,因此决定了主动轮与从动轮的转动方向关系。
熟悉常见的传动机构及应用传动机构是指将动力从一个元件传递到另一个元件的装置。
常见的传动机构有齿轮传动、带传动、链传动和曲柄传动等。
下面将逐一介绍这些传动机构及其应用。
首先是齿轮传动。
齿轮是一种以齿轮为传动元件的传动机构。
它的主要作用是根据齿轮之间的啮合关系,实现传递动力和转矩的功能。
齿轮传动具有传动稳定、传动效率高的优点,广泛应用于机械、汽车、船舶等领域。
例如,在汽车上,齿轮传动主要用于变速器,将发动机的转速和转矩传递到车轮上,实现汽车的前进和后退。
其次是带传动。
带传动是指利用带子来传递动力的一种传动机构。
它的主要特点是无需润滑,噪音小,运动平稳。
因此,它在一些噪音敏感的场合被广泛采用。
带传动的应用领域包括机械设备、农业机械、家用电器等。
例如,家用洗衣机中的搅拌器和排水泵通常是通过带传动来传递动力的。
第三是链传动。
链传动是利用链条来传递动力的一种传动机构。
它的特点是结构简单,传动效率高,并且能够承受较大的载荷。
因此,链传动广泛应用于工程机械、自行车、摩托车等领域。
例如,在自行车上,链传动用于将骑手的脚踏动力传递到车轮上,实现自行车的前进。
最后是曲柄传动。
曲柄传动是利用曲柄连杆机构来传递动力的一种传动机构。
它的主要应用是在内燃机中,将活塞的往复运动转换为曲轴的旋转运动。
这样能够实现内燃机的工作循环,将燃料的热能转化为机械能。
因此,曲柄传动被广泛应用于汽车、摩托车、发电机等领域。
除了以上介绍的常见传动机构,还有许多其他传动机构,例如丝杠传动、齿条传动、摩擦传动等。
不同的传动机构有着不同的特点和应用领域。
这些传动机构的应用形式不仅限于机械领域,也涉及到电子设备、航空航天、冶金等各个领域。
通过选择合适的传动机构,能够实现不同需求下的动力传递和转换。
1、齿轮传动(一)分类:平面齿轮传动、空间齿轮传动。
优点:适用的圆周速度和功率范围广;传动比准确、稳定、效率高。
;工作可靠性高、寿命长。
;可实现平行轴、任意角相交轴和任意角交错轴之间的传动缺点:要求较高的制造和安装精度、成本较高。
;不适宜远距离两轴之间的传动。
渐开线齿轮基本尺寸的名称有齿顶圆;齿根圆;分度圆;摸数;压力角等。
2、涡轮涡杆传动适用于空间垂直而不相交的两轴间的运动和动力。
优点:传动比大。
;结构尺寸紧凑。
缺点:轴向力大、易发热、效率低。
;只能单向传动。
涡轮涡杆传动的主要参数有:模数;压力角;蜗轮分度圆;蜗杆分度圆;导程;蜗轮齿数;蜗杆头数;传动比等。
3、带传动包括主动轮、从动轮;环形带1)用于两轴平行回转方向相同的场合,称为开口运动,中心距和包角的概念。
2)带的型式按横截面形状可分为平带、V带和特殊带三大类。
3)应用时重点是:传动比的计算;带的应力分析计算;单根V带的许用功率。
优点:适用于两轴中心距较大的传动;、带具有良好的挠性,可缓和冲击,吸收振动;过载时打滑防止损坏其他零部件;结构简单、成本低廉。
缺点:传动的外廓尺寸较大;、需张紧装置;由于打滑,不能保证固定不变的传动比;带的寿命较短;传动效率较低。
4、链传动包括主动链、从动链;环形链条。
链传动与齿轮传动相比,其主要特点:制造和安装精度要求较低;中心距较大时,其传动结构简单;瞬时链速和瞬时传动比不是常数,传动平稳性较差。
5、轮系1)轮系分为定轴轮系和周转轮系两种类型。
2)轮系中的输入轴与输出轴的角速度(或转速)之比称为轮系的传动比。
等于各对啮合齿轮中所有从动齿轮齿数的乘积与所有主动齿轮齿数乘积之比。
3)在周转轮系中,轴线位置变动的齿轮,即既作自转,又作公转的齿轮,称为行星轮,轴线位置固定的齿轮则称为中心轮或太阳轮。
4)周转轮系的传动比不能直接用求解定轴轮系传动比的方法来计算,必须利用相对运动的原理,用相对速度法(或称为反转法)将周转轮系转化成假想的定轴轮系进行计算。
种类:带传动,链传动,轴传动,齿轮传动,蜗杆涡轮传动,摩擦轮传动,螺旋传动,液压传动,气压传动。
带传动一般有以下特点:1.带有良好的饶性,能吸收震动,缓和冲击,传动平稳噪音小。
2.当带传动过载时,带在带轮上打滑,防止其他机件损坏,起到过载保护作用。
3.结构简单,制造,安装和维护方便;4.带与带轮之间存在一定的弹性滑动,故不能保证恒定的传动比,传动精度和传动效率较低。
5.由于带工作时需要张紧,带对带轮轴有很大的压轴力。
6.带传动装置外廓尺寸大,结构不够紧凑。
7.带的寿命较短,需经常更换。
由于带传动存在上述特点,故通常用与中心距较大的两轴之间的传动传递功率一般不超过50KW。
链传动兼有带传动和齿轮传动的特点。
主要优点:与摩擦型带传动相比,链传动无弹性滑动和打滑现象,因而能保持准确的传动比(平均传动比),传动效率较高(润滑良好的链传动的效率约为97 98%);又因链条不需要象带那样张得很紧,所以作用在轴上的压轴力较小;在同样条件下,链传动的结构较紧凑;同时链传动能在温度较高、有水或油等恶劣环境下工作。
与齿轮传动相比,链传动易于安装,成本低廉;在远距离传动时,结构更显轻便。
主要缺点:运转时不能保持恒定传动比,传动的平稳性差;工作时冲击和噪音较大;磨损后易发生跳齿;只能用于平行轴间的传动。
链传动主要用在要求工作可靠,且两轴相距较远,以及其他不宜采用齿轮传动的场合。
齿轮传动的特点1)效率高在常用的机械传动中,以齿轮传动效率为最高,闭式传动效率为96%~99%,这对大功率传动有很大的经济意义。
2)结构紧凑比带、链传动所需的空间尺寸小。
3)工作可靠、寿命长设计制造正确合理、使用维护良好的齿轮传动,工作十分可靠,寿命可长达一二十年,这也是其它机械传动所不能比拟的。
这对车辆及在矿井内工作的机器尤为重要。
4)传动比稳定传动比稳定往往是对传动性能的基本要求。
齿轮传动获得广泛应用,正是由于其具有这一特点。
但是齿轮传动的制造及安装精度要求高,价格较贵,且不宜用于传动距离过大的场合。
皮带传动、链传动和齿轮传动是工程领域常见的机械传动方式,它们在工业生产和机械设备中起着至关重要的作用。
本文将分别介绍这三种传动方式的功能和特点,帮助读者更好地理解和运用它们。
一、皮带传动的功能1. 皮带传动是一种通过摩擦传递动力的机械传动方式。
它主要由皮带、皮带轮、张紧装置和传动装置等部件构成。
2. 皮带传动的主要功能包括传递动力、传递转矩和改变传动方向等。
它广泛应用于各种机械设备中,如汽车、风力发电机、工程机械等。
3. 皮带传动具有隔离性好、运转平稳、噪音小、维护周期长等特点,适用于对传动平稳性要求较高的场合。
二、链传动的功能1. 链传动是一种通过链条传递运动和动力的传动方式。
它主要由链条、链轮、轴承等部件构成。
2. 链传动的主要功能包括传递动力、传递转矩和定位传动等。
它在机械制造、输送设备、农业机械等领域得到广泛应用。
3. 链传动具有传递效率高、使用寿命长、负载能力大等特点,适用于对传动效率要求较高的场合。
三、齿轮传动的功能1. 齿轮传动是一种通过齿轮互相啮合传递动力的传动方式。
它主要由齿轮、轴承、轴等部件构成。
2. 齿轮传动的主要功能包括传递运动和动力、传递转矩和改变传动方向等。
它在汽车、船舶、飞机等各种机械设备中得到广泛应用。
3. 齿轮传动具有传动效率高、传动精度高、传动比可设计范围广等特点,适用于对传动精度和效率要求较高的场合。
皮带传动、链传动和齿轮传动各自具有不同的功能和特点,适用于不同的传动需求。
在实际应用中,我们需要根据具体的工程要求和条件选择合适的传动方式,才能发挥其最大的作用。
希望本文的介绍能够帮助读者更好地理解和运用这三种传动方式。
皮带传动、链传动和齿轮传动作为常见的机械传动方式,各自具有独特的功能和特点。
在工程领域中,选择合适的传动方式对于确保机械设备的正常运行和性能发挥起着至关重要的作用。
在本文的后续部分中,我们将进一步讨论这三种传动方式的特点、优缺点以及应用场景,帮助读者更全面地了解和运用它们。
传动的几种方式常用机械传动方式有:带传动、齿轮传动、链传动、蜗杆传动、螺旋传动。
1、带传动:是利用张紧在带轮上的柔性带进行运动或动力传递的一种机械传动。
根据传动原理的不同,有靠带与带轮间的摩擦力传动的摩擦型带传动,也有靠带与带轮上的齿相互啮合传动的同步带传动。
2、齿轮传动指由齿轮副传递运动和动力的装置,它是现代各种设备中应用最广泛的一种机械传动方式。
它的传动比较准确,效率高,结构紧凑,工作可靠,寿命长。
3、链传动通过链条将具有特殊齿形的主动链轮的运动和动力传递到具有特殊齿形的从动链轮的一种传动方式。
4、蜗杆传动以蜗杆为主动作减速传动,当反行程不自锁时,也可以蜗轮为主动作增速传动。
传动功率一般应在50kW以下(最大可达到1000kW左右),齿面间相对滑动速度应在15m/s以下(最高可达35m/s)。
5、螺旋传动:是靠螺旋与螺纹牙面旋合实现回转运动与直线运动转换的机械传动。
螺旋传动按其在机械中的作用可分为:传力螺旋传动、传导螺旋传动、调整螺旋传动。
扩展资料机械传动机构,可以将动力所提供的运动的方式、方向或速度加以改变,被人们有目的地加以利用。
中国古代传动机构类型很多,应用很广,除了上面介绍的以外,像地动仪、鼓风机等等,都是机械传动机构的产物。
中国古代传动机构,主要有齿轮传动、绳带传动和链传动。
带传动工作时,为使带获得所需的张紧力,两带轮的中心距应能调整;带在传动中长期受拉力作用,必然会产生塑性变形而出现松弛现象,使其传动能力下降,因此一般带传动应有张紧装置。
带传动的张紧方法主要有调整中心距和使用张紧轮两种,其中它们各自又有定期张紧和自动张紧等不同形式。
齿轮传动、链传动和带传动优缺点
齿轮传动、链传动和带传动都是常用的机械传动方式,它们之间各有优缺点。
首先,相较于链传动和带传动,齿轮传动具有以下优势:
1. 传动效率高:齿轮传动的精度高,能够达到很高的传动效率,这是由于齿轮传动的摩擦系数低且能够直接传力的特点。
2. 高可靠性:由于齿轮传动的精度和耐久性,因此齿轮传动可以保持长时间的高可靠性。
3. 自约束性:齿轮传动具有自约束性,不需要其他约束装置的辅助。
这种自约束性可以使齿轮传动使用过程中的振动和噪声减少。
4. 精度高:齿轮传动的制造精度高,传动精度也相对高,这使得他们在高要求精度的应用中有非常明显的优势。
5. 适用于高负载:齿轮传动是各种机械传动中少有能够承受高负载和高扭矩的。
当然,链传动和带传动也有各自的优点。
比如链传动更能适应长距离传动和弯曲等等。
而带传动则非常适合对噪声需求较高的应用场景。
总的来说,齿轮传动具有高效、高可靠性、高精度、高负载等优点,这些优势使得齿轮传动得到广泛的应用。
传动⽅式有⼏种类型传动⽅式有⼏种?1.齿轮传动分类:平⾯齿轮传动、空间齿轮传动。
优点:适⽤的圆周速度和功率范围⼴;传动⽐准确、稳定、效率⾼。
;⼯作可靠性⾼、寿命长。
;可实现平⾏轴、任意⾓相交轴和任意⾓交错轴之间的传动缺点:要求较⾼的制造和安装精度、成本较⾼。
;不适宜远距离两轴之间的传动。
渐开线标准齿轮基本尺⼨的名称有齿顶圆;齿根圆;分度圆;摸数;压⼒⾓等。
2.涡轮涡杆传动适⽤于空间垂直⽽不相交的两轴间的运动和动⼒。
优点:传动⽐⼤。
;结构尺⼨紧凑。
缺点:轴向⼒⼤、易发热、效率低。
;只能单向传动。
涡轮涡杆传动的主要参数有:模数;压⼒⾓;蜗轮分度圆;蜗杆分度圆;导程;蜗轮齿数;蜗杆头数;传动⽐等。
3.带传动包括主动轮、从动轮;环形带1)⽤于两轴平⾏回转⽅向相同的场合,称为开⼝运动,中⼼距和包⾓的概念。
2)带的型式按横截⾯形状可分为平带、V带和特殊带三⼤类。
3)应⽤时重点是:传动⽐的计算;带的应⼒分析计算;单根V带的许⽤功率。
优点:适⽤于两轴中⼼距较⼤的传动;、带具有良好的挠性,可缓和冲击,吸收振动;过载时打滑防⽌损坏其他零部件;结构简单、成本低廉。
缺点:传动的外廓尺⼨较⼤;、需张紧装置;由于打滑,不能保证固定不变的传动⽐;带的寿命较短;传动效率较低。
4.链传动包括主动链、从动链;环形链条。
链传动与齿轮传动相⽐,其主要特点:制造和安装精度要求较低;中⼼距较⼤时,其传动结构简单;瞬时链速和瞬时传动⽐不是常数,传动平稳性较差。
5.轮系1)轮系分为定轴轮系和周转轮系两种类型。
2)轮系中的输⼊轴与输出轴的⾓速度(或转速)之⽐称为轮系的传动⽐。
等于各对啮合齿轮中所有从动齿轮齿数的乘积与所有主动齿轮齿数乘积之⽐。
3)在周转轮系中,轴线位置变动的齿轮,即既作⾃转,⼜作公转的齿轮,称为⾏星轮,轴线位置固定的齿轮则称为中⼼轮或太阳轮。
4)周转轮系的传动⽐不能直接⽤求解定轴轮系传动⽐的⽅法来计算,必须利⽤相对运动的原理,⽤相对速度法(或称为反转法)将周转轮系转化成假想的定轴轮系进⾏计算。
传动机构介绍传动机构是机械装置中一种常见的组件,用于将动力传输到不同的部件或系统中。
它起着连接和传递动力的作用,使得机械设备能够顺利运行。
在本文中,我们将介绍传动机构的基本概念、分类、工作原理以及应用领域。
一、基本概念传动机构是由两个或多个部件组成的系统,它们通过接触或链接来传输动力。
传动机构可以用来改变动力的速度、方向和扭矩。
其主要组成部分包括齿轮、链条、皮带等。
二、分类根据传动方式的不同,传动机构可以分为以下几种类型:1.齿轮传动:齿轮是传动机构中最常见的元件之一。
它由两个或多个齿轮组成,通过齿轮之间的啮合来传递动力。
齿轮传动可分为直齿轮传动、斜齿轮传动、圆柱齿轮传动等。
2.链传动:链传动是一种使用链条将动力传递到不同部件的机构。
链条由一系列链接件组成,通过链条的滚动来完成动力传递。
链传动广泛应用于自行车、摩托车等交通工具中。
3.皮带传动:皮带传动使用皮带将动力从一个部件传递到另一个部件。
皮带由橡胶、聚酯纤维等材料制成,具有较高的抗拉强度和耐磨性。
皮带传动通常用于汽车发动机、工厂设备等领域。
4.轴传动:轴传动是一种使用轴将动力传递到不同部件的机构。
轴传动主要包括直接轴传动和间接轴传动两种形式。
直接轴传动通过刚性轴将动力传递,而间接轴传动通过联轴器等部件进行动力传递。
三、工作原理传动机构的工作原理主要基于力的平衡和运动学原理。
当动力输入到传动机构时,它会引起传动部件之间的相对运动,并将动力传递到所连接的部件上。
各种传动机构的工作原理略有不同,但都遵循力和运动平衡的基本原理。
齿轮传动是通过齿轮之间的啮合来传递动力的。
当一个齿轮旋转时,它的齿会与另一个齿轮的齿相啮合,使得另一个齿轮也开始旋转。
齿轮传动可以改变旋转的方向和速度,并且能够传递大扭矩。
链传动是通过链条的滚动来传递动力的。
当链条在驱动轮和从动轮之间滚动时,从动轮会开始旋转。
链传动常用于需要变速比较大的场合,例如自行车。
皮带传动是通过皮带的张紧和滚动来传递动力的。
各种齿轮机械传动原理
1.齿轮传动:齿轮传动是一种常见的齿轮机械传动原理。
它是利用齿
轮之间的啮合传递动力和转矩的一种方式。
齿轮传动可分为平行轴齿轮传
动和交叉轴齿轮传动两种。
平行轴齿轮传动的齿轮轴线平行,交叉轴齿轮
传动的齿轮轴线相交,形成一定的角度。
2.链传动:链传动是利用链条将动力传递到另一个元件的传动原理。
链传动主要分为链齿轮传动和链条传动两种。
链齿轮传动是将齿轮与链条
相结合,形成一种连续的、有规律的传动方式。
链条传动是利用链条本身
的轴向强度相互连接,以自身的强度来传递动力。
3.皮带传动:皮带传动是利用皮带的弹性来传递动力的一种传动方式。
皮带传动可分为平面皮带传动和倾斜皮带传动两种。
平面皮带传动是指皮
带与轮毂在同一平面内,倾斜皮带传动是指皮带与轮毂不在同一平面内。
4.耦合器传动:耦合器传动是利用耦合器的刚性来传递动力的一种传
动方式。
耦合器传动可分为机械耦合器和液力耦合器两种。
机械耦合器是
利用机械零件将传动的动力转移给工作机构的耦合器,液力耦合器是通过
液体的流动来实现动力传递的耦合器。
5.蜗杆传动:蜗杆传动是利用蜗杆和蜗轮的啮合关系来传递动力和转矩。
它的主要特点是传动比大、传动效率低,通常应用于速度较低,转矩
要求较高的场合,如各种减速、传动机构等。
链传动的特点:
①和齿轮传动比较,制造安装精度要求低;中心距大;结构简单;瞬时传动比不是常数,传动平稳性差;与带传动相比没有弹性滑动和打滑,能保证准确的传动比。
②能在低速、重载和高温条件下及灰土飞扬的不良环境中工作;
③和带传动比较,它能保证准确的平均传动比,传递功率较大,且作用在轴和轴承上的力较小;
④传递效率较高,一般可达0.95~0.97;
⑤链条的铰链磨损后,使得节距变大造成跳齿现象;
⑥安装和维修要求较高.链轮材料一般是结构钢等.
带传动特点:
①结构简单,适用于两轴中心距较大的传动场合,成本较低;
②传动平稳无噪声,能缓冲、吸振;
③过载时带将会在带轮上打滑,可防止薄弱零部件损坏,起到安全保护作用;
④不能保证精确的传动比;传动外尺寸较大,带寿命短,效率低。
齿轮传动的特点:
①能保证瞬时传动比恒定,平稳性较高,传递运动准确可靠;
②传递的功率和速度范围较大; 一对齿轮啮合传动,齿廓在任意一点接触,传动比等
③结构紧凑、工作可靠,可实现较大的传动比; 于两轮连心线被接触点的公法线所分两线段的反比,
④传动效率高,使用寿命长; 这一规律称为齿廓啮合基本定律.
⑤齿轮的制造、安装要求较高,成本高,.齿轮材料一般是铸铁等;
⑥不适于远距离传动。
涡轮蜗杆传动
①具有反向自锁的功能,相比其它传动具有较大的速比,输出轴不在同一轴线上,甚至不在同一个平面上,结构紧凑;
②轴向力大、易发热、效率低,精度较低;
③一般只能单项传动。
轻型变速比比较大的情况使用蜗轮传动比较好。
大功率连续传动对蜗轮磨损比较大,需要经常更换蜗轮齿圈。
所以采用比较少。
用于传动比大,要求结构紧凑的传动,传递功率一般小于50kW。
********轴上零件的周向固定有哪些方法?采用键固定时应注意什么采用键固定时应注意什么? 答:轴上零件的周向固定有键、花键和销联结以及过盈联结和成型联结等。
采用键固定时应注意加工工艺与装配两个方面的问题。
加工工艺必须保证键槽有一定的对称度。
对于键的工作表面,在装配时必须按精度标准要求选定一定的配合;对于键的非工作表面,必须留有一定的间隙
********轴上零件的轴向固定有哪些方法?各有何特点?
答:常见的轴向固定方法有轴肩、轴环定位,螺母定位,套筒定位及轴端圈定位等。
轴肩、轴环定位的特点是简单可靠,能承受较大的轴向力,应用广泛。
螺母和止动电圈定位的特点是固定可靠,可承受大的轴向力,常用于固定轴端零件。
套筒定位的特点是结构简单,用于轴向零件轴向间距L 不大时,可减少轴的阶梯数。
套筒与轴的配合较松,故不宜用于高速。
轴端挡圈定位用于轴端零件的固定,可承受较大的轴向力.
********制造轴的常用材料有几种?若轴的刚度不够,是否可采用高强度合金钢提高轴的刚度?为什么?答:制造轴的常用材料有碳素钢和合金钢。
若轴的刚度不够,不可采用高强度合金钢提高轴的刚度。
因为合金钢与碳素刚的弹性模量相差不多.
********提高轴的强度和刚度的措施常用有哪些?答:为了提高轴的强度,可选用优质碳素钢或合金钢,并进行适当的热处理以及表面处理。
同时还应从改进零件的结构、采用合理的轴和结构设计等措施来提高轴的强度和刚度。
具体地说可从下面几方面来考虑:(1)采用阶梯轴的结构,使轴的形状接近等于强度条件,以充分利用材料的承载能力。
(2)尽量避免各轴段剖面突然变化,以降低局部的应力集
中,提高轴的疲劳强度。
(3)改变轴上零件的布置,有时可以减小轴上的载荷。
(4)改进轴上零件的结构也可以减小轴上的载荷.
********试述平键连接和楔键连接的工作特点和应用场合。
答:平键的两个侧面是工作面,工作是靠键与键槽侧面的挤压来传递转矩。
平键连接结构简单、装拆方便,对中性好,应用最广,但它不能承受轴向力,故对轴上零件不能起到轴向固定作用。
楔键的上下两面为工作面,工作是靠键的楔紧作用来传递转矩的,同时还能承受单方向的轴向载荷。
楔键连接仅适用于传动精度不高、低速、载荷平稳且对中要求较低的场所。
********常用联轴器和离合器有哪些类型?各有哪些特点?应用于哪些场合?
答:常用联轴器可分为刚性联轴器和挠性联器两大类.
刚性联轴器不能补尝两轴的相对位移,用于两轴严格对中并在工作中不发生相对位移的场合;
挠性联轴器具有一定的补尝两轴相对位移的能力,用于工作中两轴可能会发生相对位移的场合。
常用离合器分为牙嵌式和摩擦式两大类。
牙嵌式离合器结构简单,制造容易,但在接合式分离时齿间会有冲击,用于转矩不大、接合或分离时两轴静止或转速差很小的场合;
式离合器接合过程平稳,冲击、振动较小,有过载保护作用,但外廓尺寸大,接合分离时有滑动摩擦,发热量及磨损较大,用于转矩较大,两轴有较大转速差的场合。
********运用“反手法则”来确定蜗轮蜗杆之间的转向关系,方法归纳如下:
1)已知蜗杆转向,求蜗轮转向。
左旋蜗杆蜗轮用右手,右旋蜗杆蜗轮用左手,四指与蜗杆转向一致,大拇指指向就是蜗轮啮合点处的速度方向;
2)已知蜗轮转向,求蜗杆转向。
左旋蜗杆蜗轮用右手,右旋蜗杆蜗轮用左手,大拇指与蜗轮啮合点处的速度方向一致,四指指向就是蜗杆运动方向。