高考数学人教版理科一轮复习课时作业:42 空间几何体的表面积与体积 Word版含解析
- 格式:doc
- 大小:454.50 KB
- 文档页数:10
高考数学一轮复习学案:空间几何体的表面积与体积(含答案)8.2空间几何体的表面积与体积空间几何体的表面积与体积最新考纲考情考向分析了解球.棱柱.棱锥.棱台的表面积和体积的计算公式.本部分是高考考查的重点内容,主要涉及空间几何体的表面积与体积的计算命题形式以选择题与填空题为主,考查空间几何体的表面积与体积的计算,涉及空间几何体的结构特征.三视图等内容,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想.1多面体的表面积.侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和2圆柱.圆锥.圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧r1r2l3.柱.锥.台.球的表面积和体积名称几何体表面积体积柱体棱柱和圆柱S表面积S侧2S底VSh锥体棱锥和圆锥S表面积S侧S 底V13Sh台体棱台和圆台S表面积S侧S上S下V13S上S下S上S下h球S4R2V43R3知识拓展1与体积有关的几个结论1一个组合体的体积等于它的各部分体积的和或差2底面面积及高都相等的两个同类几何体的体积相等2几个与球有关的切.接常用结论1正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2R3a;若球为正方体的内切球,则2Ra;若球与正方体的各棱相切,则2R2a.2若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2Ra2b2c2.3正四面体的外接球与内切球的半径之比为31.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1多面体的表面积等于各个面的面积之和2锥体的体积等于底面积与高之积3球的体积之比等于半径比的平方4简单组合体的体积等于组成它的简单几何体体积的和或差5长方体既有外接球又有内切球6圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2S.题组二教材改编2P27T1已知圆锥的表面积等于12cm2,其侧面展开图是一个半圆,则底面圆的半径为A1cmB2cmC3cmD.32cm答案B解析S表r2rlr2r2r3r212,r24,r2.3P28A组T3如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________答案147解析设长方体的相邻三条棱长分别为a,b,c,它截出棱锥的体积V1131212a12b12c148abc,剩下的几何体的体积V2abc148abc4748abc,所以V1V2147.题组三易错自纠4xx西安一中月考一个几何体的三视图如图所示,则该几何体的表面积为A3B4C24D34答案D解析由几何体的三视图可知,该几何体为半圆柱,直观图如图所示表面积为22212121243.5xx全国体积为8的正方体的顶点都在同一球面上,则该球的表面积为A12B.323C8D4答案A解析由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4R22R212,故选A.6xx大连调研如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________答案11解析由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V圆锥132383,V半球124323163,所以V剩余V半球V圆锥83,故剩余部分与挖去部分的体积之比为11.题型一求空间几何体的表面积1xx全国如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径若该几何体的体积是283,则它的表面积是A17B18C20D28答案A解析由题意知,该几何体的直观图如图所示,它是一个球被过球心O 且互相垂直的三个平面切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和由43R31843R3283,得球的半径R2.则得S784223142217,故选A.2xx黑龙江哈师大附中一模已知某几何体的三视图如图所示,则该几何体的表面积为A.73B.172C13D.173102答案C解析由三视图可知几何体为三棱台,作出直观图如图所示则CC平面ABC,上.下底均为等腰直角三角形,ACBC,ACBC1,ACBCCC2,AB2,AB22.棱台的上底面面积为121112,下底面面积为12222,梯形ACCA的面积为121223,梯形BCCB的面积为121223,过A作ADAC 于点D,过D作DEAB,则ADCC2,DE为ABC斜边高的12,DE22,AEAD2DE232,梯形ABBA的面积为122223292,几何体的表面积S122339213,故选C.思维升华空间几何体表面积的求法1以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量2多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理3旋转体的表面积问题注意其侧面展开图的应用题型二求空间几何体的体积命题点1以三视图为背景的几何体的体积典例xx浙江某几何体的三视图如图所示单位cm,则该几何体的体积单位cm3是A.21B.23C.321D.323答案A解析由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体,该几何体体积为V1312123131222321.命题点2求简单几何体的体积典例xx广州调研已知E,F 分别是棱长为a的正方体ABCDA1B1C1D1的棱AA1,CC1的中点,则四棱锥C1B1EDF的体积为________答案16a3解析方法一如图所示,连接A1C1,B1D1交于点O1,连接B1D,EF,过点O1作O1HB1D于点H.因为EFA1C1,且A1C1平面B1EDF,EF平面B1EDF,所以A1C1平面B1EDF.所以C1到平面B1EDF的距离就是A1C1到平面B1EDF的距离易知平面B1D1D平面B1EDF,又平面B1D1D平面B1EDFB1D,所以O1H平面B1EDF,所以O1H等于四棱锥C1B1EDF的高因为B1O1HB1DD1,所以O1HB1O1DD1B1D66a.所以11CBEDFV131BEDFS四边形O1H1312EFB1DO1H13122a3a66a16a3.方法二连接EF,B1D.设B1到平面C1EF的距离为h1,D到平面C1EF的距离为h2,则h1h2B1D12a.由题意得,11111CBEDFBCEFDCEFVVV四棱锥三棱锥三棱锥131CEFSh1h216a3.思维升华空间几何体体积问题的常见类型及解题策略1若所给定的几何体是可直接用公式求解的柱体.锥体或台体,则可直接利用公式进行求解2若所给定的几何体的体积不能直接利用公式得出,则常用转换法.分割法.补形法等方法进行求解3若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解跟踪训练1xx新乡二模已知一个几何体的三视图如图所示,则该几何体的体积为A.323B.163C.83D.43答案C解析该几何体由一个三棱锥和一个三棱柱组合而成,直观图如图所示,VV柱V锥1211121312111283,故选C.2如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且ADE,BCF均为正三角形,EFAB,EF2,则该多面体的体积为A.23B.33C.43D.32答案A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EGHF12,AGGDBHHC32,取AD 的中点O,连接GO,易得GO22,SAGDSBHC1222124,多面体的体积VV三棱锥EADGV三棱锥FBCHV三棱柱AGDBHC2V三棱锥EADGV三棱柱AGDBHC132412224123.故选A.题型三与球有关的切.接问题典例xx全国在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球若ABBC,AB6,BC8,AA13,则V 的最大值是A4D.323答案B解析由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为92.引申探究1若将本例中的条件变为“直三棱柱ABCA1B1C1的6个顶点都在球O的球面上”,若AB3,AC4,ABAC,AA112,求球O的表面积解将直三棱柱补形为长方体ABECA1B1E1C1,则球O是长方体ABECA1B1E1C1的外接球体对角线BC1的长为球O的直径因此2R324212213.故S球4R2169.2若将本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积解如图,设球心为O,半径为r,则在RtAOF中,4r222r2,解得r94,则球O的体积V球43r34394324316.思维升华空间几何体与球接.切问题的求解方法1求解球与棱柱.棱锥的接.切问题时,一般过球心及接.切点作截面,把空间问题转化为平面图形与圆的接.切问题,再利用平面几何知识寻找几何中元素间的关系求解2若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PAa,PBb,PCc,一般把有关元素“补形”成为一个球内接长方体,利用4R2a2b2c2求解跟踪训练xx深圳调研如图所示,在平面四边形ABCD中,ABADCD1,BD2,BDCD,将其沿对角线BD折成四面体ABCD,使平面ABD平面BCD,若四面体ABCD的顶点在同一个球面上,则该球的体积为C.23D2答案A解析如图,取BD的中点为E,BC的中点为O,连接AE,OD,EO,AO.因为ABAD,所以AEBD.由于平面ABD平面BCD,所以AE平面BCD.因为ABADCD1,BD2,所以AE22,EO12.所以OA32.在RtBDC中,OBOCOD12BC32,所以四面体ABCD 的外接球的球心为O,半径为32.所以该球的体积V4332332.三视图基本的.和球联系的考点分析三视图是高考重点考查的一个知识点,主要考查由几何体的三视图还原几何体的形状,进而求解表面积.体积等知识,所涉及的几何体既包括柱.锥.台.球等简单几何体,也包括一些组合体,处理此类题目的关键是通过三视图准确还原几何体典例1已知某几何体的三视图如图所示,则该几何体的体积等于A.1603B160C64322D60解析由题意知该几何体是由一个直三棱柱和一个四棱锥组成的组合体,如图所示,其中直三棱柱的高为844,故V直三棱柱8432,四棱锥的底面为边长为4的正方形,高为4,故V四棱锥13164643,故该几何体的体积VV直三棱柱V四棱锥326431603,故选A.答案A典例2某组合体的三视图如图所示,则该组合体的体积为________解析如图所示,该组合体由一个四棱锥和四分之一个球组成,球的半径为1,四棱锥的高为球的半径,四棱锥的底面为等腰梯形,上底为2,下底为1,高为32,所以该组合体的体积V131221321144313343.答案343。
2021年高考数学大一轮总复习 第7篇 第2节 空间几何体的表面积与体积课时训练 理 新人教A 版一、选择题1.(xx 湖北黄冈4月调研)某三棱锥的三视图如图所示,该三棱锥的体积为( )A .20 B.403C .56D .60解析:空间几何体是底面为直角三角形的三棱锥,底面直角三角形的直角边边长分别为4,5,三棱锥的高为4,故其体积为13×12×4×5×4=403.故选B. 答案:B2.(xx 山东枣庄一模)一个几何体的三视图如图所示,其中长度单位为cm ,则该几何体的体积为( )A .18 cm 3B .48 cm 3C .45 cm 3D .54 cm 3解析:由题中三视图可知,该几何体是四棱柱,底面为直角梯形其上底为4,下底为5,高为3.棱柱的高为4,所以四棱柱的体积为4+52×3×4=54(cm 3),故选D. 答案:D3.(xx 河南省十所名校三联)某几何体的三视图如图所示,则该几何体的表面积为( )A.2π B .22π C .(22+1)πD .(22+2)π解析:由题中三视图可知该几何体是两个底面半径为1,高为1的圆锥的组合体,圆锥的母线长度为2,故其表面积是2×π×1×2=22π.故选B.答案:B4.(xx 山东烟台高三期末)一个几何体的三视图如图所示,则该几何体的表面积是( )A .6+8 3B .12+7 3C .12+8 3D .18+2 3解析:该空间几何体是一个三棱柱.底面等腰三角形的高是1,两腰长为2,所以其底边长是23,两个底面三角形的面积之和是23,侧面积是(2+2+23)×3=12+63,故其表面积是12+8 3.故选C.答案:C5.(xx 河南开封二检)已知三棱锥O -ABC ,A ,B ,C 三点均在球心为O 的球表面上,AB =BC =1,∠ABC =120°,三棱锥O -ABC 的体积为54,则球O 的表面积是( ) A .64π B .16π C.323π D .544π解析:△ABC 的面积是34,设球心O 到平面ABC 的距离为h ,则13×34×h =54,所以h =15.△ABC 外接圆的直径2r =332=2,所以r =1.球的半径R =152+1=4,故所求的球的表面积是4π×42=64π. 故选A. 答案:A6.(xx 潍坊模拟)已知矩形ABCD 的面积为8,当矩形ABCD 周长最小时,沿对角线AC 把△ACD 折起,则三棱锥外接球表面积等于( )A .8πB .16πC .482πD .50π解析:设矩形长为x ,则宽为8x(x >0),周长P =2⎝⎛⎭⎪⎫x +8x ≥2·2x ·8x=8 2. 当且仅当x =8x,即x =22时,周长取到最小值.此时正方形ABCD 沿AC 折起,取AC 的中点为O ,则OA =OB =OC =OD ,三棱锥D -ABC 的四个顶点都在以O 为球心,以2为半径的球上,此球的表面积为4π·22=16π.答案:B 二、填空题7.有一根长为3π cm,底面直径为2 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________cm.解析:把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图),由题意知BC =3π cm,AB =4π cm,点A 与点C 分别是铁丝的起、止位置,故线段AC 的长度即为铁丝的最短长度.AC =AB 2+BC 2=5π(cm),故铁丝的最短长度为5π cm. 答案:5π8.(xx 年高考江苏卷)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点.设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.解析:V 1V 2=13×12AD ·AE ·sin ∠EAD ·AF 12AC ·AB ·sin∠CAB ·AA 1=13AD AB ·AE AC ·AF AA 1=13×12×12×12 =124. 答案:1∶249.(xx 吉林省吉林市二模)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥外接球的表面积等于________cm 2.解析:由题中三视图知该几何体为三棱锥C 1-ABC ,可补成长方体如图所示,其中AB =3,BC =1,CC 1=2,其外接球的直径AC 1=14,故其外接球的表面积为14π cm 2. 答案:14π10.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,则圆柱的表面积为________.解析:由圆锥的底面半径为2,母线长为4, 得圆锥的高h =42-22=23,由圆柱高为3,则圆柱的底面半径r =1.S 表面=2S 底面+S 侧面=2π+2π×3=(2+23)π.答案:(2+23)π三、解答题11.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V=1×1×3= 3.(2)由题中三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,S=2×(1×1+1×3+1×2)=6+2 3.12.(xx安徽黄山三校联考)如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).(1)求证:EF⊥A′C;(2)求三棱锥F-A′BC的体积.(1)证明:在△ABC中,EF是等腰直角△ABC的中位线,∴EF⊥AC,在四棱锥A′-BCEF中,EF⊥A′E,EF⊥EC,又EC∩A′E=E,∴EF⊥平面A′EC,又A ′C ⊂平面A ′EC , ∴EF ⊥A ′C .(2)解:在直角梯形BCEF 中,EC =2,BC =4, ∴S △FBC =12BC ·EC =4,∵A ′O ⊥平面BCEF , ∴A ′O ⊥EC , 又∵O 为EC 的中点,∴△A ′EC 为正三角形,边长为2, ∴A ′O =3,∴V F -A ′BC =V A ′-FBC =13S △FBC ·A ′O=13×4× 3 =433.31775 7C1F 簟34176 8580 薀b 5v36771 8FA3 辣•Z30604 778C 瞌 29180 71FC 燼27479 6B57 歗-25524 63B4 掴。
8-2空间几何体的表面积与体积A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(2012·烟台调研)棱长为2的正四面体的表面积是( ). A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3. 答案 C2.(2012·福州质检)把球的表面积扩大到原来的2倍,那么体积扩大到原来的( ).A .2倍B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍. 答案 B3.(2012·潍坊模拟)如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( ).A.1423B.2843C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843.答案 B4.(2011·温州检测(二))如图所示,一个空间几何体的正(主)视图和侧(左)视图都是边长为2的正方形,俯视图是一个直径为2的圆,则这个几何体的全面积为( ).A .2πB .4πC .6πD .8π解析 由三视图知该空间几何体为圆柱,所以其全面积为π×12×2+2π×1×2=6π. 答案 C5.(2012·厦门模拟)已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( )A .24-32πB .24-π3 C .24-π D .24-π2解析 据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2. 答案 A二、填空题(每小题4分,共12分)6.(2011·福建)三棱锥P ABC 中,P A ⊥底面ABC ,P A =3,底面ABC 是边长为2的正三角形,则三棱锥P ABC 的体积等于________.解析 依题意有,三棱锥P ABC 的体积V =13S △ABC ·|P A |=13×34×22×3= 3. 答案37.(2009·全国Ⅱ)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C .若圆C 的面积等于7π4,则球O 的表面积等于________.解析 设圆C 的半径为r ,有πr 2=7π4. 得r 2=74.又设球的半径为R ,如图所示,有OB =R ,OC =R 2·22=24R ,CB =r .在Rt △OCB 中,有OB 2=OC 2+CB 2,即R 2=18R 2+r 2⇒78R 2=74,∴R 2=2,∴S 球=4πR 2=8π. 答案 8π8.(2012·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 26三、解答题(共23分)9.(11分)(2012·杭州模拟)某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH ,下半部分是长方体ABCDEFGH .图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积. 解 (1)侧视图同正视图,如图所示: (2)该安全标识墩的体积为V =V PEFGH +V ABCDEFGH =13×402×60+402×20 =64 000(cm 3).10.(12分)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积.解 (1)这个几何体的直观图如图所示. (2)这个几何体可看成是正方体AC 1及直 三棱柱B 1C 1Q-A 1D 1P 的组合体. 由P A 1=PD 1=2,A 1D 1=AD =2,可得 P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2), 体积V =23+12×(2)2×2=10(cm 3).B 级 综合创新备选(时间:30分钟满分:40分)一、选择题(每小题5分,共10分)1.(2011·江门一模)某型号的儿童蛋糕上半部分是半球,下半部分是圆锥,其三视图如图所示,则该型号蛋糕的表面积S=().A.115 π B.110 πC.105 π D.100 π解析由三视图可知,圆锥的母线长为122+52=13,该型号蛋糕的表面积S=2π×52+π×5×13=115 π.答案 A2.(2011·辽宁)已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为().A.3 3 B.2 3 C. 3 D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥S-ABD和C-ABD,在△SAD和△SBD中,由已知条件可得AD=BD=33x,又因为SC为直径,所以∠SBC=∠SAC=90°,所以∠DCB=∠DCA=60°,在△BDC中,BD=3(4-x),所以33x=3(4-x),所以x=3,AD=BD=3,所以三角形ABD为正三角形,所以V=13S△ABD×4= 3.答案 C二、填空题(每小题4分,共8分)3.(2011·四川)如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________.解析 由球的半径为R ,可知球的表面积为4πR 2. 设内接圆柱底面半径为r ,高为2h ,则h 2+r 2=R 2.而圆柱的侧面积为2πr ·2h =4πrh ≤4πr 2+h 22=2πR 2(当且仅当r =h 时等号成立),即内接圆柱的侧面积最大值为2πR 2,此时球的表面积与内接圆柱的侧面积之差为2πR 2. 答案 2πR 24.(2012·南京调研)如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm.解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm).答案 13三、解答题(共22分)5.(10分)(2012·阳泉月考)已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .解 由题设可知,几何体是一个高为4的四棱锥, 其底面是长、宽分别为8和6的矩形,正侧面及其相 对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2. 故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2. 6.(12分)四面体的六条棱中,有五条棱长都等于a .(1)求该四面体的体积的最大值; (2)当四面体的体积最大时,求其表面积. 解 (1)如图,在四面体ABCD 中,设AB =BC = CD =AC =BD =a ,AD =x ,取AD 的中点为P ,BC 的中点为E ,连接BP 、EP 、CP .得到AD ⊥平面BPC , ∴V A-BCD =V A-BPC +V D-BPC =13·S △BPC ·AP +13S △BPC ·PD =13·S △BPC ·AD =13·12·aa 2-x 24-a 24·x=a12(3a 2-x 2)x 2≤a 12·3a 22=18a 3(当且仅当x =62a 时取等号). ∴该四面体的体积的最大值为18a 3.(2)由(1)知,△ABC 和△BCD 都是边长为a 的正三角形,△ABD 和△ACD 是全等的等腰三角形,其腰长为a ,底边长为62a , ∴S 表=2×34a 2+2×12×62a ×a 2-⎝ ⎛⎭⎪⎫64a 2=32a 2+62a ×10a 4=32a 2+15a 24 =23+154a 2.。
(C)42π(D)36π该几何体下半部分是高为的圆柱的一半,所以其体积为B.,βπ(D)16π22,所以x=π,所以旋转体一个几何体的三视图如图所示(B)(D)+2,该几何体由两个三棱锥组成A.)(C)③④(D)②④经正方体的表面,按最短路线爬行到达顶点由三视图知其直观图为两个圆台的组合体水面高度随时间变化的变化率先逐渐减小后逐渐增大)(A)1 (B)2-D)2-ABC,1=,BD==,AB=BC=AD=DC=,=,=1,(B) cm3(D) cm3中的虚线长为图,A.则该几何体的外接球的表面积为(D)由三视图知该几何体为四棱锥,分别是对应边的中点,的正方形,h=,R2=,B.为底面的中心(D)建立空间直角坐标系.设A(0,-1,0),B(0,1,0),S(0,0,),M(0, 0,),P(x,y,0),=(0,1,),=(x,y,-).ABCDA1B1C1D1的内切球(B)根据正方体的几何特征知每小题5分解析:由三视图可知,该几何体有两个面是直角三角形,如图,底面是正三角形,最大的面是边长分别为2,=2,=2的面,其面积为×2×=.答案:14.正△ABC与正△BCD所在平面垂直,则二面角ABDC的正弦值为.解析:取BC中点O,连接AO,DO,建立如图所示坐标系,设BC=1,则A(0,0,),B(0,-,0),D(,0,0).所以=(0,0,),=(0,,),=(,,0).设平面ABD的法向量为n=(x0,y0,z0),则·n=0,且·n=0,x0=1,的一个法向量n=(1,-,1).sin<n,>=.:已知函数轴围成的封闭图形绕x轴旋转一周.已知一个三棱锥的所有棱长均为,,AE==.R2=(-R)2+,即内切球的半径是.三、解答题ADEF;所成角的正弦值.EM=AD,则EO⊥平面ABCD,故以轴的正方向建立空间平面直角坐标系E(0,0,),A(3,0,0),C(-1,4,0),F(2,0,),所以=(3,0,-),=(-4,4,0),=(3,-4,).为平面EAC的法向量,则x=1,可得n=(1,1,),cos<,n>===,所成角的正弦值为EF;OEF所成角的正弦值.的边长为2,点E是xyz,O(0,0,1),G(,,0),=(0,1,-1),=(1,0,-1),=(,,-2).n=(1,1,1),==,与平面OEF.求直线PB与平面.于点M,连接FM.是平行四边形.E(0,0,0),B(3,0,0),P(0,0,m),C(3,2,0),F(,1,),的一个法向量为n=(x,y,z),由得z=1,得n=(0,-m,1).的一个法向量为cos<n,a>===.m=2.所成角.PBE==,.正三棱柱ABCA1B1C1底边长为2,E,F分别为BB1,AB的中点.(1)已知M为线段B1A1上的点,且B1A1=4B1M,求证:EM∥平面A1FC;(2)若二面角EA1CF所成角的余弦值为,求AA1的值.(1)证明:取B1A1中点为N,连接BN,则BN∥A1F,又B1A1=4B1M,N为B1A1的中点,则M为B1N的中点.所以EM为△BNB1中位线,则EM∥BN,所以EM∥A1F.因为EM⊄平面A1FC,A1F⊂平面A1FC,故EM∥平面A1FC.(2)解:如图,以F为坐标原点建立空间直角坐标系,设AA1=a.则F(0,0,0),A1(-1,0,a),E(1,0,),C(0,,0),=(-1,,-),=(0,,0),=(2,0,-),=(1,,-a).设平面A1CF法向量为m=(x,y,z),则取z=1,得m=(a,0,1).设平面A1EC法向量为n=(x1,y1,z1),取x1=a,得n=(a,a,4).设二面角EA1CF的平面角为,,=cos<m,n>==.a2=,AA1=.本小题满分所成角的正弦值为,求AD的长.ABCD,而AD⊂平面ABCD,平面PBD,所以AD两两互相垂直轴建立如图所示的空间直角坐标系BDC=可得A(λ,,0),P(0,0,4),,0,-4),=(-,,0),=(0,0,4).由题意可得y=3,则x=4,z=0,得平面PCD的一个法向量22.(本小题满分四边形ABCD为矩形在棱DF上..所以AF⊥B(1,0,0),E(,0,1),P(0,1,),C(1,2,0),=(-,0,1),=(-1,-1,),==,.ADF,所以平面ADF的一个法向量n1==(1,0,0).,=(0,,),=(1,2,0).|==..。
(江苏专用)2018高考数学一轮复习第八章立体几何第42课空间几何体的结构及其表面积与体积课时分层训练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018高考数学一轮复习第八章立体几何第42课空间几何体的结构及其表面积与体积课时分层训练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018高考数学一轮复习第八章立体几何第42课空间几何体的结构及其表面积与体积课时分层训练的全部内容。
第八章 立体几何 第42课 空间几何体的结构及其表面积与体积课时分层训练A 组 基础达标 (建议用时:30分钟)1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________.错误! [依题意知,该几何体是以错误!为底面半径,错误!为高的两个同底圆锥组成的组合体,则其体积V =错误!π(错误!)2×2错误!=错误!π.]2.正三棱柱ABC 。
A 1B 1C 1的底面边长为2,侧棱长为错误!,D 为BC 中点,则三棱锥A B 1DC 1的体积为________。
【导学号:62172232】1 [在正△ABC 中,D 为BC 中点, 则有AD =错误!AB =错误!,S △DB 1C 1=错误!×2×错误!=错误!.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A .B 1DC 1底面上的高.∴V 三棱锥A B 1DC1=错误!S △DB 1C 1·AD =错误!×错误!×错误!=1.]3.已知底面边长为1,侧棱长为错误!的正四棱柱的各顶点均在同一个球面上,则该球的体积为________.错误! [依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R ,则2R =错误!=2,解得R =1,所以V =错误!R 3=错误!.]4.已知圆台的母线长为4 cm,母线与轴的夹角为30°,上底面半径是下底面半径的错误!,则这个圆台的侧面积是________ cm 2.24π [将圆台还原为圆锥后的轴截面如图所示,由题意知AC =4 cm ,∠ASO =30°,O 1C =错误!OA ,设O 1C =r ,则OA =2r , 又错误!=错误!=sin 30°,∴SC=2r,SA=4r。
高考数学(理科)一轮复习空间几何体的表面积与体积学案含答案本资料为woRD文档,请点击下载地址下载全文下载地址学案41 空间几何体的表面积与体积导学目标:1.了解球、棱柱、棱锥、棱台的表面积的计算公式.2.了解球、柱、锥、台的体积的计算公式.3.培养学生的空间想象能力、逻辑推理能力和计算能力,会利用所学公式进行必要的计算.4.提高认识图、理解图、应用图的能力.自主梳理.多面体的表面积设直棱柱高为h,底面多边形的周长为c,则S直棱柱侧=______.设正n棱锥底面边长为a,底面周长为c,斜高为h′,则S正棱锥侧=____________=____________.设正n棱台下底面边长为a,周长为c,上底面边长为a′,周长为c′,斜高为h′,则S正棱台侧=__________=____________.设球的半径为R,则S球=____________.2.几何体的体积公式柱体的体积V柱体=______.特别地,底面半径是r,高是h的圆柱体的体积V圆柱=πr2h.锥体的体积V锥体=________.特别地,底面半径是r,高是h的圆锥的体积V圆锥=13πr2h.台体的体积V台体=______________.特别地,上、下底面的半径分别是r′、r,高是h的圆台的体积V圆台=13πh.球的体积V球=__________.自我检测.已知两平行平面α,β间的距离为3,P∈α,边长为1的正三角形ABc在平面β内,则三棱锥P—ABc的体积为A.14B.12c.36D.342.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A—BcD,则它的表面积与正方体表面积的比为A.3∶3B.2∶2c.3∶6D.6∶63.设三棱柱ABc—A1B1c1的体积为V,P,Q分别是侧棱AA1,cc1上的点,且PA=Qc1,则四棱锥B—APQc的体积为A.16VB.14Vc.13VD.12V4.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πc.11πD.12π5.某几何体的三视图如下,则它的体积是A.8-2π3B.8-π3c.8-2πD.2π3探究点一多面体的表面积及体积例1 三棱柱的底面是边长为4的正三角形,侧棱长为3,一条侧棱与底面相邻两边都成60°角,求此棱柱的侧面积与体积.变式迁移1 已知三棱柱ABc—A1B1c1的侧棱与底面边长都等于2,A1在底面ABc上的射影为Bc的中点,则三棱柱的侧面面积为________.探究点二旋转体的表面积及体积例2如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积及其体积.变式迁移2 直三棱柱ABc—A1B1c1的各顶点都在同一球面上.若AB=Ac=AA1=2,∠BAc=120°,则此球的表面积等于________.探究点三侧面展开图中的最值问题例3 如图所示,长方体ABcD-A1B1c1D1中,AB=a,Bc=b,cc1=c,并且a>b>c>0.求沿着长方体的表面自A到c1的最短线路的长.变式迁移3如图所示,在直三棱柱ABc-A1B1c1中,底面为直角三角形,∠AcB=90°,Ac=6,Bc=cc1=2.P是Bc1上一动点,则cP+PA1的最小值是________..有关柱、锥、台、球的面积和体积的计算,应以公式为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素.2.当给出的几何体比较复杂,有关的计算公式无法运用,或者虽然几何体并不复杂,但条件中的已知元素彼此离散时,我们可采用“割”、“补”的技巧,化复杂几何体为简单几何体,或化离散为集中,给解题提供便利.几何体的“分割”:几何体的分割即将已知的几何体按照结论的要求,分割成若干个易求体积的几何体,进而求之.几何体的“补形”:与分割一样,有时为了计算方便,可将几何体补成易求体积的几何体,如长方体、正方体等.另外补台成锥是常见的解决台体侧面积与体积的方法,由台体的定义,我们在有些情况下,可以将台体补成锥体研究体积.一、选择题.一个空间几何体的三视图如图所示,则该几何体的表面积为A.48B.32+817c.48+817D.802.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是B.163c.243D.4833.已知正方体ABcD—A1B1c1D1的棱长为a,长为定值的线段EF在棱AB上移动,若P是A1D1上的定点,Q是c1D1上的动点,则四面体P—QEF的体积是A.有最小值的一个变量B.有最大值的一个变量c.没有最值的一个变量D.一个不变量4.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为A.πa2B.73πa2c.113πa2D.5πa25.某四面体的三视图如图所示,该四面体四个面的面积中最大的是A.8B.62c.10二、填空题6.如图,半径为2的半球内有一内接正六棱锥P—ABcDEF,则此正六棱锥的侧面积是________.7.一块正方形薄铁片的边长为4cm,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁片围成一个圆锥筒,则这个圆锥筒的容积等于________cm3.8.如图,半径为R的球o中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________.三、解答题9.如图组合体中,三棱柱ABc—A1B1c1的侧面ABB1A1是圆柱的轴截面,c是圆柱底面圆周上不与A、B重合的一个点.当点c是弧AB的中点时,求四棱锥A1—Bcc1B1与圆柱的体积比.0.如图,四面体ABcD中,△ABc与△DBc都是边长为4的正三角形.求证:Bc⊥AD;试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,说明理由.1.如图,多面体ABFEDc的直观图及三视图如图所示,m,N分别为AF,Bc的中点.求证:mN∥平面cDEF;求多面体A—cDEF的体积.学案41 空间几何体的表面积与体积自主梳理.ch12nah′12ch′12nh′12h′4πR2 2.Sh 13Sh 13h 43πR3自我检测.D [由题意,S△ABc=34,三棱锥的高h=3,∴V三棱锥P—ABc=13Sh=34.]2.A [设正方体棱长为a,则正四面体棱长AB=2a,∴S正四面体表=4×34×2=23a2.∵S正方体表=6a2,∴四面体的表面积与正方体表面积的比为3∶3.]3.c4.D [据三视图可知该几何体由球和圆柱体组成,如图所示,故该几何体的表面积为S=S圆柱+S球=2π+6π+4π=12π.]5.A [由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V=23-13×π×2=8-2π3,故选A.]课堂活动区例1 解题导引对于斜棱柱表面积及体积的求解必须求各个侧面的面积和棱柱的高.解决此类斜棱柱侧面积问题的关键:在已知棱柱高的条件下,用线面垂直⇒线线垂直的方法作出各个侧面的高,并在相应的直角三角形中求解侧面的高.解如图,过点A1作A1o⊥面ABc于点o,连接Ao.过点A1作A1E⊥AB于点E,过点A1作A1F⊥Ac于点F,连接Eo,Fo,易得oE⊥AB,oF⊥Ac,∵AA1和AB与Ac都成60°角,∴△A1AE≌△A1AF,∴A1E=A1F.∵A1o⊥面ABc,∴Eo=Fo.∴点o在∠BAc的角平分线上,延长Ao交Bc于点D,∵△ABc是正三角形,∴Bc⊥AD.∴Bc⊥AA1.∵AA1∥BB1,∴侧面BB1c1c是矩形,∴三棱柱的侧面积为S=2×3×4×sin60°+3×4=12+123.∵AA1=3,AA1与AB和Ac都成60°角,∴AE=32.∵∠BAo=30°,∴Ao=3,A1o=6.∴三棱柱的体积为V=34×16×6=122.变式迁移1 27+4解析如图所示,设D为Bc的中点,连接A1D,AD.∵△ABc为等边三角形,∴AD⊥Bc,∴Bc⊥平面A1AD,∴Bc⊥A1A,又∵A1A∥B1B,∴Bc⊥B1B,又∵侧面与底面边长都等于2,∴四边形BB1c1c是正方形,其面积为4.作DE⊥AB于E,连接A1E,则AB⊥A1E,又∵AD=22-12=3,DE=AD•BDAB=32,∴AE=AD2-DE2=32,∴A1E=AA21-AE2=72,∴S四边形ABB1A1=7,∴S三棱柱侧=27+4.例2 解题导引解决这类题的关键是弄清楚旋转后所形成的图形的形状,再将图形进行合理的分割,然后利用有关公式进行计算.求全面积时不要忘记“内表面”.解如图所示,过c作co1⊥AB于o1,在半圆中可得∠BcA=90°,∠BAc=30°,AB=2R,∴Ac=3R,Bc=R,co1=32R,∴S球=4πR2,S圆锥Ao1侧=π×32R×3R=32πR2,S圆锥Bo1侧=π×32R×R=32πR2,∴S几何体表=S球+S圆锥Ao1侧+S圆锥Bo1侧=112πR2+32πR2=11+32πR2,∴旋转所得到的几何体的表面积为11+32πR2.又V球=43πR3,V圆锥Ao1=13•Ao1•πco21=14πR2•Ao1,V圆锥Bo1=13Bo1•πco21=14πR2•Bo1,∴V几何体=V球-=43πR3-12πR3=56πR3.变式迁移2 20π解析在△ABc中,AB=Ac=2,∠BAc=120°,可得Bc=23,由正弦定理,可得△ABc外接圆的半径r=2,设此圆圆心为o′,球心为o,在Rt△oBo′中,易得球半径R=5,故此球的表面积为4πR2=20π.例3 解题导引本题可将长方体表面展开,利用平面内两点间的线段长是两点间的最短距离来解答.解将长方体相邻两个面展开有下列三种可能,如图所示.三个图形甲、乙、丙中Ac1的长分别为:a+b2+c2=a2+b2+c2+2ab,a2+b+c2=a2+b2+c2+2bc,a+c2+b2=a2+b2+c2+2ac,∵a>b>c>0,∴ab>ac>bc>0.故最短线路的长为a2+b2+c2+2bc.变式迁移3 52解析将△Bcc1沿Bc1线折到面A1c1B上,如图所示.连接A1c即为cP+PA1的最小值,过点c作cD垂直A1c1延长线交于D,△Bcc1为等腰直角三角形,∴cD=1,c1D=1,A1D=A1c1+c1D=7.∴A1c=A1D2+cD2=49+1=52.课后练习区.c [由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S表=42+2×4+12××4×2+4×17×2=48+817.]2.D [由43πR3=32π3,∴R=2.∴正三棱柱的高h=4.设其底面边长为a,则13•32a=2,∴a=43.∴V=34×2×4=483.]3.D 4.B5.c [将三视图还原成几何体的直观图如图所示.它的四个面的面积分别为8,6,10,62,故最大的面积应为10.6.67解析取底面中心为o,AF中点为m,连接Po、om、Pm、Ao,则Po⊥om,om⊥AF,Pm⊥AF,∵oA=oP=2,∴om=3,Pm=4+3=7.∴S侧=6×12×2×7=67.7.153π解析围成圆锥筒的母线长为4cm,设圆锥的底面半径为r,则2πr=14•2π×4,∴r=1,∴圆锥的高h=42-12=15.∴V圆锥=13•πr2•h=153π.8.2πR2解析方法一设圆柱的轴与球的半径的夹角为α,则圆柱高为2Rcosα,圆柱底面半径为Rsinα,∴S圆柱侧=2π•Rsinα•2Rcosα=2πR2sin2α.当sin2α=1时,S圆柱侧最大为2πR2,此时,S球表-S圆柱侧=4πR2-2πR2=2πR2.方法二设圆柱底面半径为r,则其高为2R2-r2.∴S圆柱侧=2πr•2R2-r2,S′圆柱侧=4πR2-r2-4πr2R2-r2.令S′圆柱侧=0,得r=22R.当0<r<22R时,S′>0;当22R<r<R时,S′<0.∴当r=22R时,S圆柱侧取得最大值2πR2.此时S球表-S圆柱侧=4πR2-2πR2=2πR2.方法三设圆柱底面半径为r,则其高为2R2-r2,∴S圆柱侧=2πr•2R2-r2=4πr2R2-r2≤4πr2+R2-r22=2πR2.∴当r=22R时,S圆柱侧最大为2πR2.此时S球表-S圆柱侧=4πR2-2πR2=2πR2.9.解设圆柱的底面半径为r,母线长为h,当点c是弧的中点时,三角形ABc的面积为r2,三棱柱ABc—A1B1c1的体积为r2h,三棱锥A1—ABc的体积为13r2h,四棱锥A1—Bcc1B1的体积为r2h-13r2h=23r2h,圆柱的体积为πr2h,故四棱锥A1—Bcc1B1与圆柱的体积比为2∶3π.0.证明取Bc的中点E,连接AE,DE,EF,∵△ABc与△DBc都是边长为4的正三角形,∴AE⊥Bc,DE⊥Bc.又AE∩DE=E,∴Bc⊥平面AED.又AD⊂面AED,∴Bc⊥AD.解由已知得,△AED为等腰三角形,且AE=ED=23,设AD=x,F为棱AD的中点,则EF=12-12x2,S△AED=12x12-x24=1448x2-x4,V=13S△AED•=1348x2-x4,当x2=24,即x=26时,Vmax=8,∴该四面体存在最大值,最大值为8,此时棱长AD=26.1.证明由多面体ABFEDc的三视图知,三棱柱AED—BFc中,底面DAE是等腰直角三角形,DA=AE=2,DA⊥平面ABFE,面ABFE,ABcD都是边长为2的正方形.连接EB,则m是EB的中点,在△EBc中,mN∥Ec,且Ec⊂平面cDEF,mN⊄平面cDEF,∴mN∥平面cDEF.解∵DA⊥平面ABFE,EF⊂平面ABFE,∴EF⊥AD.又EF⊥AE,AE∩AD=A,∴EF⊥平面ADE. 又DE⊂平面ADE,∴EF⊥DE,∴四边形cDEF是矩形,且平面cDEF⊥平面DAE.取DE的中点H,连接AH,∵DA⊥AE,DA=AE=2,∴AH=2,且AH⊥平面cDEF.∴多面体A—cDEF的体积V=13ScDEF•AH=13DE•EF•AH=83.。
空间几何体的结构及其表面积、体积1.下列说法中正确的是()A.斜三棱柱的侧面展开图一定是平行四边形B.水平放置的正方形的直观图有可能是梯形C.一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2.一个球的表面积是16π,那么这个球的体积为()A.163πB.323πC.16πD.24π3.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为()A.1+ 2 B.1+2 2C.2+ 2 D.2+2 24.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为()A.32 B.32πC.16πD.8π5.如图,正方体ABCD-A1B1C1D1的棱长为1,E为棱DD1上的点,F为AB 的中点,则三棱锥B1-BFE的体积为()A.13B.14C.112D.166.(多选)(2020·山东潍坊期末)已知等腰直角三角形的直角边长为1,现将该三角形绕其某一边所在直线旋转一周,则所形成的几何体的表面积可以为()A.2πB.(1+2)πC.22πD.(2+2)π7.(2020·全国卷Ⅱ)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A. 3 B.3 2C.1 D.3 28.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF =2,则该多面体的体积为()A.23B.33C.43D.329.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.10.(2021·全国统一考试模拟演练)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.11.根据不同的程序,3D打印既能打印实心的几何体模型,也能打印空心的几何体模型.如图所示的空心模型是体积为17176π cm3的球挖去一个三棱锥P-ABC后得到的几何体,其中P A⊥AB,BC⊥平面P AB,BC=1 cm.不考虑打印损耗,当用料最省时,AC=________cm.12.已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为________.设线段AB为该圆锥底面圆的一条直径,一质点从A出发,沿着该圆锥的侧面运动,到达B点后再沿侧面回到A点,则该质点运动路径的最短长度为________.能力提高1.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26B.36C.23D.222.(多选)已知A,B,C三点均在球O的表面上,AB=BC=CA=2,且球心O到平面ABC的距离等于球半径的13,则下列结论正确的是()A.球O的表面积为6πB.球O的内接正方体的棱长为1C.球O的外切正方体的棱长为4 3D.球O的内接正四面体的棱长为2空间几何体的结构及其表面积、体积1.下列说法中正确的是( )A .斜三棱柱的侧面展开图一定是平行四边形B .水平放置的正方形的直观图有可能是梯形C .一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体D .用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台[答案] D2.一个球的表面积是16π,那么这个球的体积为( ) A .163π B .323π C .16πD .24πB [设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.]3.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A .1+ 2B .1+2 2C .2+ 2D .2+2 2C [由三视图可得该“阳马”的底面是边长为1的正方形,高为1,则表面积为1+2×12×1×1+2×12×2×1=2+2,故选C.]4.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.]5.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为棱DD 1上的点,F 为AB 的中点,则三棱锥B 1-BFE 的体积为( )A.13 B .14 C.112D .16C [由等体积法可知V B 1-BFE =V E -BFB 1=13S △BB 1F ·AD =16×1×12×1=112.故选C.] 6.(多选)(2020·山东潍坊期末)已知等腰直角三角形的直角边长为1,现将该三角形绕其某一边所在直线旋转一周,则所形成的几何体的表面积可以为( )A.2π B .(1+2)π C .22πD .(2+2)πAB [若以直角边所在直线为旋转轴,得到一个底面半径为1、高为1的圆锥,其表面积为π×1+π×1×2=(1+2)π;若以斜边所在直线为旋转轴,得到两个底面半径为22、高为22的圆锥所形成的组合体,其表面积为2×π×22×1=2π.故选AB.]7.(2020·全国卷Ⅱ)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A . 3B .32 C .1D .32C [由等边三角形ABC 的面积为934,得34×AB 2=934,得AB =3,则△ABC 的外接圆半径r =23×32AB =33AB = 3.设球的半径为R ,则由球的表面积为16π,得4πR 2=16π,得R =2,则球心O 到平面ABC 的距离d =R 2-r 2=1,故选C.]8.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A .23B .33C .43D .32A [(分割法)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12, AG =GD =BH =HC =32,取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC=13×24×12×2+24×1=23.故选A.]9.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.2+22 [如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E .图①图②在Rt△ABE中,AB=1,∠ABE=45°,∴BE=2 2.而四边形AECD为矩形,AD=1,∴EC=AD=1,∴BC=BE+EC=22+1.由此可还原原图形如图②.在原图形中,A′D′=1,A′B′=2,B′C′=2 2+1,且A′D′∥B′C′,A′B′⊥B′C′,∴这块菜地的面积S=12(A′D′+B′C′)×A′B′=12×⎝⎛⎭⎪⎫1+1+22×2=2+22.]10.(2021·全国统一考试模拟演练)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π[截面图如图所示,底面半径为5,圆周直径为10,则圆台的下底面位于圆周的直径上,OC=OB=5,O′C=4,∠OO′C=π2,则圆台的高为3,V=13h(S1+S1S2+S2)=25π+16π+20π=61π.]11.根据不同的程序,3D打印既能打印实心的几何体模型,也能打印空心的几何体模型.如图所示的空心模型是体积为17176π cm3的球挖去一个三棱锥P-ABC后得到的几何体,其中P A⊥AB,BC⊥平面P AB,BC=1 cm.不考虑打印损耗,当用料最省时,AC=________cm.3[设球的半径为R,由球的体积4π3R3=17176π,解得R=172cm.因为BC⊥平面P AB,所以BC⊥PB,BC⊥AB,BC⊥P A.因为P A⊥AB,AB∩BC=B,所以P A⊥平面ABC,所以P A⊥AC.由BC⊥AB可知,AC为截面圆的直径,故可设AC=x cm(1<x<17),取PC 的中点O ,连接OA ,OB (图略),则PO =OC =OA =OB ,故O 为球心,所以PC =17cm.在Rt △P AC 中,P A =17-x 2 cm ,在Rt △ABC 中,AB =x 2-1 cm , 所以V P -ABC =13×S △ABC ×P A =13×12×x 2-1×1×17-x 2=16(x 2-1)(17-x 2)≤16⎝ ⎛⎭⎪⎫x 2-1+17-x 222=43(cm 3),当且仅当x 2-1=17-x 2,即x =3时,等号成立. 所以当用料最省时,AC =3 cm.]12.已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为________.设线段AB 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为________.22π36 [该圆锥的高h =32-1=2 2. 所以该圆锥的体积V =13×π×12×22=223π. 将圆锥侧面沿母线SA 展开,如图所示.因为圆锥底面周长为2π,所以侧面展开后得到的扇形的圆心角∠ASA ′=2π3. 由题意知点B 是侧面展开后得到的扇形中弧AA ′的中点, 连接AB ,A ′B ,SB ,则∠ASB =π3,可得AB =A ′B =AS =3. 所以该质点运动路径的最短长度为AB +A ′B =6.]能力提高1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B .36 C.23D .22A [由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.]2.(多选)已知A ,B ,C 三点均在球O 的表面上,AB =BC =CA =2,且球心O 到平面ABC 的距离等于球半径的13,则下列结论正确的是( )A .球O 的表面积为6πB .球O 的内接正方体的棱长为1C .球O 的外切正方体的棱长为43 D .球O 的内接正四面体的棱长为2AD [设球O 的半径为r ,△ABC 的外接圆圆心为O ′,半径为R .易得R =233.因为球心O 到平面ABC 的距离等于球O 半径的13,所以r 2-19r 2=43,得r 2=32.所以球O 的表面积S =4πr 2=4π×32=6π,选项A 正确;球O 的内接正方体的棱长a 满足3a =2r ,显然选项B 不正确;球O 的外切正方体的棱长b 满足b =2r ,显然选项C 不正确;球O 的内接正四面体的棱长c 满足c =263r =263×62=2,选项D 正确.故选AD.]。
2025年高考数学一轮复习-空间几何体的结构、表面积和体积-专项训练一、基本技能练1.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等2.如图所示的等腰梯形是一个几何图形的斜二测直观图,其底角为45°,上底和腰均为1,下底为2+1,则此直观图对应的平面图形的面积为()A.1+2B.2+2C.2+22D.4+223.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为()A.4B.43D.3C.234.已知在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2,则将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为() A.(5+2)π B.(4+2)πC.(5+22)πD.(3+2)π5.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷、佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45°,则该正四棱锥的一个侧面与底面的面积之比为()A.3∶2B.2∶2C.3∶3D.3∶46.过圆锥的轴作截面,如果截面为正三角形,则称该圆锥为等边圆锥.已知在一等边圆锥中,过顶点P 的截面与底面交于CD ,若∠COD =90°(O 为底面圆心),且S △PCD =72,则这个等边圆锥的表面积为()A.2π+2πB.3πC.2π+3πD.π+3π7.如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为()A.13B.23C.1D.438.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为5-12,约为0.618.这个比例被公认为是最能引起美感的比例,因此被称为黄金比.在几何世界中有很多黄金图形,在三角形中,如果相邻两边之比等于黄金比,且它们夹角的余弦值为黄金比值,那么这个三角形一定是直角三角形,且这个三角形称为黄金分割直角三角形.在正四棱锥中,以黄金分割直角三角形的长直角边作为正四棱锥的高,黄金分割直角三角形的短直角边的边长作为底面正方形的边心距(正多边形的边心距是正多边形的外接圆圆心到正多边形某一边的距离),斜边作为正四棱锥的斜高,这样得到的正四棱锥称为黄金分割正四棱锥.在黄金分割正四棱锥中,以该正四棱锥的高为边长的正方形的面积与该正四棱锥的侧面积之比为()A.5-12B.5+12C.1D.149.如图,在棱长为2的正方体ABCD-A′B′C′D′中,点E,F,G分别是棱A′B′,B′C′,CD的中点,则由点E,F,G确定的平面截正方体所得的截面多边形的面积等于________.10.已知圆锥的顶点为S,底面圆周上的两点A,B满足△SAB为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________.11.如图,已知正三棱柱ABC-A1B1C1的各棱长均为2,点D在棱AA1上,则三棱锥D-BB1C1的体积为________.12.已知三棱锥S-ABC中,∠SAB=∠ABC=π2,SB=4,SC=213,AB=2,BC =6,则三棱锥S-ABC的体积为________.二、创新拓展练13.(多选)攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧面与底面所成的锐二面角为θ,这个角接近30°.若取θ=30°,侧棱长为21米,则()A.正四棱锥的底面边长为6米B.正四棱锥的底面边长为3米C.正四棱锥的侧面积为243平方米D.正四棱锥的侧面积为123平方米14.(多选)如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=12,则下列结论中错误的是()A.AC⊥AFB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.△AEF的面积与△BEF的面积相等15.(多选)《九章算术》是《算经十书》中最重要的一部,其中将有三条棱互相平行且有一个面为梯形的五面体称为“羡除”,则()A.“羡除”有且仅有两个面为三角形B.“羡除”一定不是台体C.不存在有两个面为平行四边形的“羡除”D.“羡除”至多有两个面为梯形16.(多选)如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB.记三棱锥E-ACD,F-ABC,F-ACE的体积分别为V1,V2,V3,则()A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1参考答案与解析一、基本技能练1.答案C解析棱柱的侧面都是平行四边形,选项A错误;其他侧面可能是平行四边形,选项B错误;棱柱的侧棱与底面边长并不一定相等,选项D错误;易知选项C正确.2.答案B解析∵平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,∴平面图形为直角梯形,且直角腰长为2,上底边长为1,下底边长为2+1,∴平面图形的面积S=1+1+22×2=2+ 2.故选B.3.答案B解析易知该几何体是由上、下两个全等的正四棱锥组成的,其中正四棱锥底面边长为2,棱锥的高为1,所以该多面体的体积V =2×13×(2)2×1=43.4.答案A解析因为在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在的直线旋转一周得到的几何体是一个底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥后剩余的部分,如图所示.所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.5.答案D解析设塔顶是正四棱锥P -ABCD (如图),PO 是正四棱锥的高.设正四棱锥底面边长为a ,则底面面积S 1=a 2,因为AO =22a ,∠PAO =45°,所以PA =2×22a =a ,所以△PAB 是正三角形,其面积为S 2=34a 2,所以S 2∶S 1=34a 2∶a 2=3∶4.6.答案B解析如图,连接PO ,设圆锥的母线长为2a ,则圆锥的底面圆的半径为a ,高为PO =3a .由已知得CD =2a ,PC =PD =2a ,则S △PCD =12×2a ×(3a )2+22a 2=72,从而可得a =1,圆锥的表面积为πa ×2a +πa 2=3πa 2=3π.7.答案B解析∵ED ⊥平面ABCD 且AD ⊂平面ABCD ,∴ED ⊥AD .∵在正方形ABCD 中,AD ⊥DC ,又DC ∩ED =D ,DC ,ED ⊂平面CDEF ,∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF .∵V E -ABCD =13·ED ·S 正方形ABCD =13×2×2×2=83,V B -EFC =13·BC ·S △EFC =13×2×2×1×12=23,∴V ABCDEF =V E -ABCD +V B -EFC =83+23=103.又V F -ABCD =13·FC ·S 正方形ABCD =13×1×2×2=43,V A -DEF =13·AD ·S △DEF =13×2×2×2×12=43,∴V A -BEF =V ABCDEF -V F -ABCD -V A -DEF =103-43-43=23.故选B.8.答案D解析如图,在黄金分割正四棱锥P -ABCD 中,O 是正方形ABCD 的中心,PE 是正四棱锥的斜高,设OE =a ,则CD =2a ,∴Rt△POE为黄金分割直角三角形,则OEPE=5-12,∴PE=5+12,则PO=PE2-OE2=1+52a,∴以该正四棱锥的高为边长的正方形的面积S=PO2=1+52a2,又正四棱锥的四个侧面是全等的,∴S侧=4S△PCD=4×12×CD×PE=2(1+5)a2,∴该正四棱锥的高为边长的正方形的面积与该正四棱锥的侧面积之比为1 4 .9.答案332解析分别取AD,CC′和AA′的中点为P,M,N,可得出过E,F,G三点的平面截正方体所得截面为正六边形EFMGPN,则正六边形的边长MG=CG2+CM2=222+2221,故截面多边形的面积S=6×34×12=332.10.答案82π解析设圆锥的母线长为l,由△SAB为等边三角形,且面积为43,所以12l 2sin π3=43,解得l =4;又设圆锥底面半径为r ,高为h ,则由轴截面的面积为8,得rh =8;又r 2+h 2=l 2=16,解得r =h =22,所以圆锥的侧面积S =πrl =π·22·4=82π.11.答案233解析如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为3.又S △BB 1C 1=12×2×2=2,∴V D -BB 1C 1=13×2×3=233.12.答案43解析∵∠ABC =π2,AB =2,BC =6,∴AC =AB 2+BC 2=22+62=210.∵∠SAB =π2,AB =2,SB =4,∴AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,∴AC ⊥AS .又∵SA ⊥AB ,AC ∩AB =A ,AC ,AB ⊂平面ABC ,∴AS ⊥平面ABC .∴AS 为三棱锥S -ABC 的高,∴V 三棱锥S -ABC =13×12×2×6×23=4 3.二、创新拓展练13.答案AC解析如图,在正四棱锥S -ABCD 中,O 为正方形ABCD 的中心,H 为AB 的中点,则∠SHO 为侧面SAB 与底面ABCD 所成的锐二面角,且SH ⊥AB ,∠SHO =30°,设底面边长为2a ,所以OH =AH =a ,OS =33a ,SH =233.在Rt △SAH 中,a 2=21,解得a =3,所以正四棱锥的底面边长为6米,侧面积为S =12×6×23×4=243(平方米).14.答案AD解析由题意及图形知,当点F 与点B 1重合时,∠CAF =60°,故A 错误;由正方体ABCD -A 1B 1C 1D 1的两个底面平行,EF ⊂平面A 1B 1C 1D 1,知EF ∥平面ABCD ,故B 正确;由几何体的性质及图形知,三角形BEF 的面积是定值,点A 到平面DD 1B 1B 的距离是定值,故可得三棱锥A -BEF 的体积为定值,故C 正确;由图形可以看出,B 到直线EF 的距离与A 到直线EF 的距离不相等,故△AEF 的面积与△BEF 的面积不相等,故D 错误.故选AD.15.答案ABC解析由题意知AE ∥BF ∥CD ,四边形ACDE 为梯形,如图所示.选项A ,由题意知“羡除”有且仅有两个面为三角形,故A 正确;选项B ,因为AE ∥BF ∥CD ,所以“羡除”一定不是台体,故B 正确;选项C ,假设四边形ABFE 和四边形BCDF 为平行四边形,则AE ∥BF ∥CD ,且AE =BF =CD ,即四边形ACDE 为平行四边形,与已知四边形ACDE 为梯形矛盾,故不存在,故C 正确;选项D ,若AE ≠BF ≠CD ,则“羡除”有三个面为梯形,故D 错误.故选ABC.16.答案CD 解析如图,连接BD 交AC 于O ,连接OE ,OF .设AB =ED =2FB =2,则AB =BC =CD =AD =2,FB =1.因为ED ⊥平面ABCD ,FB ∥ED ,所以FB ⊥平面ABCD ,所以V 1=V E -ACD =13S △ACD ·ED =13×12AD ·CD ·ED =13×12×2×2×2=43,V 2=V F -ABC =13S △ABC ·FB =13×12AB ·BC ·FB =13×12×2×2×1=23.因为ED ⊥平面ABCD ,AC ⊂平面ABCD ,所以ED ⊥AC ,又AC ⊥BD ,且ED ∩BD =D ,ED ,BD ⊂平面BDEF ,所以AC ⊥平面BDEF .因为OE ,OF ⊂平面BDEF ,所以AC ⊥OE ,AC ⊥OF .易知AC=BD=2AB=22,OB=OD=12BD=2,OF=OB2+FB2=3,OE=OD2+ED2=6,EF=BD2+(ED-FB)2=(22)2+(2-1)2=3,所以EF2=OE2+OF2,所以OF⊥OE.又OE∩AC=O,OE,AC⊂平面ACE,所以OF⊥平面ACE,所以V3=V F-ACE=13S△ACE·OF=13×12AC·OE·OF=13×12×22×6×3=2,所以V3≠2V2,V1≠V3,V3=V1+V2,2V3=3V1,所以选项A,B不正确,选项C,D正确.故选CD.。
课时作业42空间几何体的表面积与体积一、选择题1.(2019·合肥一检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为(A)A.72+6π B.72+4πC.48+6π D.48+4π解析:由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×(2+2+π)=72+6π.2.如图是某四棱锥的三视图,则该几何体的表面积为(A)A .34+6 5B .6+65+4 3C .6+65+413D .17+6 5解析:由三视图得该几何体的直观图如图,其中,底面ABCD 为矩形,AD =6,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等腰三角形,且此四棱锥的高为4,故该几何体的表面积等于6×2+2×12×2×5+12×6×25+12×6×4=34+6 5.3.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )A .122πB .12πC .82πD .10π解析:因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.4.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积与原直三棱柱的体积的比值为( C )A.34B.14C.12D.38解析:由侧视图、俯视图知该几何体是高为2、底面积为12×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积与原直三棱柱的体积的比值为12.5.(2019·石家庄质量检测)如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( C )A .2 3B .2 2C .2D. 3解析:在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,故选C.6.(2019·西安八校联考)已知球的直径SC =4,A ,B 是该球球面上的两点,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积最大为( A )A .2 B.83 C. 3D .2 3解析:如图,因为球的直径为SC ,且SC =4,∠ASC =∠BSC =30°,所以∠SAC =∠SBC =90°,AC =BC =2,SA =SB =23,所以S △SBC=12×2×23=23,则当点A 到平面SBC 的距离最大时,棱锥A -SBC 即S -ABC 的体积最大,此时平面SAC ⊥平面SBC ,点A 到平面SBC 的距离为23sin30°=3,所以棱锥S -ABC 的体积最大为13×23×3=2,故选A.7.(2019·南昌摸底调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( B )A. 2 B .2 2 C. 3 D .2 3解析:取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.二、填空题8.某空间几何体的三视图如图所示,则该几何体的表面积为20+8 2.解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+8 2.9.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是33.解析:由正视图知三棱锥的形状如图所示,且AB =AD =BC =CD =2,BD =23,设O 为BD 的中点,连接OA ,OC ,则OA ⊥BD ,OC ⊥BD ,结合正视图可知AO ⊥平面BCD .又OC =CD 2-OD 2=1,∴V 三棱锥A -BCD =13×⎝ ⎛⎭⎪⎫12×23×1×1=33.10.(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为112.解析:连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC ,因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC ,所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形,又点M 到平面EHGF 的距离为12,所以四棱锥M -EFGH 的体积为13×(22)2×12=112.三、解答题11.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,BA ⊥AC . 又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2.又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE 綊13DC . 由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为 V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.12.(2019·南宁、柳州联考)如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC 的体积为312,求线段CE 的长.解:(1)证明:∵AB ⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,∴AB ⊥BC 1,在△CBC 1中,BC =1,CC 1=BB 1=2,∠BCC 1=60°,由余弦定理得BC 21=BC 2+CC 21-2BC ·CC 1·cos ∠BCC 1=12+22-2×1×2cos60°=3,∴BC 1=3,∴BC 2+BC 21=CC 21,∴BC ⊥BC 1,又AB ,BC ⊂平面ABC ,BC ∩AB =B , ∴BC 1⊥平面ABC . (2)∵AB ⊥平面BB 1C 1C , ∴V E -ABC =V A -EBC =13S △BCE ·AB =13S △BCE ·1=312,∴S △BCE =34=12CE ·(BC ·sin π3)=12CE ·32, ∴CE =1.13.(2019·河北五名校联考)如图,在由边长为1的小正方形组成的网格中画出了某多面体的三视图,则该多面体的外接球的表面积为( D )A .27πB .30πC .32πD .34π解析:根据三视图可知,此多面体为三棱锥A -BCD ,且侧面ABC ⊥底面BCD ,△ABC 与△BCD 都为等腰三角形,如图所示.根据题意可知,三棱锥A -BCD 的外接球的球心O 位于过△BCD 的外心O ′,且垂直于底面BCD 的垂线上,取BC 的中点M ′,连接AM ′,DM ′,OO ′,O ′B ,易知O ′在DM ′上,过O 作OM ⊥AM ′于点M ,连接OA ,OB ,根据三视图可知M ′D =4,BD =CD =25,故sin ∠BCD =255,设△BCD 的外接圆半径为r ,根据正弦定理可知,2r =BD sin ∠BCD =5,故BO ′=r =52,M ′O ′=32,设OO ′=x ,该多面体的外接球半径为R ,在Rt △BOO ′中,R 2=(52)2+x 2,在Rt △AMO 中,R 2=(32)2+(4-x )2,所以R =342,故该多面体的外接球的表面积S =4πR 2=34π.故选D.14.(2019·石家庄质量检测)三棱锥S -ABC 的各顶点都在同一球面上,若AB =3,AC =5,BC =7,侧面SAB 为正三角形,且与底面ABC 垂直,则此球的表面积等于205π3.解析:设△ABC 外接圆的圆心为O 1,△SAB 外接圆的圆心为O 2,过O 1,O 2分别作平面ABC ,平面SAB 的垂线交于点O ,则O 为球心.在△ABC 中,cos ∠BAC =52+32-722×3×5=-12,∴∠BAC =120°,设圆O 1的半径为r 1,根据正弦定理,得2r 1=BC sin ∠BAC =1433,∴r 1=733.△SAB 外接圆的圆心O 2为正三角形SAB 的中心,连接SO 2交AB 于点D ,则O 2D =13SD =32,且O 2D =OO 1=32.设外接球的半径为R ,连接O 1A ,则R 2=O 1A 2+OO 21=493+34=20512,∴此球的表面积S =4πR 2=205π3.尖子生小题库——供重点班学生使用,普通班学生慎用 15.如图,在四棱锥E -ABCD 中,△EAD 为等边三角形,底面ABCD 为等腰梯形,满足AB ∥CD ,AD =DC =12AB ,且AE ⊥BD .(1)证明:平面EBD ⊥平面EAD ;(2)若△EAD 的面积为3,求点C 到平面EBD 的距离. 解:(1)证明:如图,取AB 的中点M ,连接DM ,则DM ∥BC ,∴DM =12AB ,即点D 在以线段AB 为直径的圆上, ∴BD ⊥AD ,又AE ⊥BD ,且AE ∩AD =A , ∴BD ⊥平面EAD . ∵BD ⊂平面EBD , ∴平面EBD ⊥平面EAD .(2)∵BD ⊥平面EAD ,且BD ⊂平面ABCD , ∴平面ABCD ⊥平面EAD . ∵等边△EAD 的面积为3, ∴AD =AE =ED =2, 取AD 的中点O ,连接EO , 则EO ⊥AD ,EO =3,∵平面EAD ⊥平面ABCD ,平面EAD ∩平面ABCD =AD , ∴EO ⊥平面ABCD .由(1)知△ABD ,△EBD 都是直角三角形, ∴BD =AB 2-AD 2=23, ∴S △EBD =12ED ·BD =23, S △BCD =12BC ·CD sin120°= 3.设点C 到平面EBD 的距离为h ,由V C -EBD =V E -BCD ,得13S △EBD ·h =13S △BCD ·EO ,解得h =32.∴点C 到平面EBD 的距离为32.。