2020版高中数学第二章统计2.2.1用样本的频率分布估计总体分布2课时频率分布折线图和茎叶图学案含解析必修3
- 格式:docx
- 大小:936.47 KB
- 文档页数:14
人教版高一数学必修三第二章统计目录2.1.1 简单随机抽样(新授课)2.1.2 系统抽样(新授课)2.1.3 分层抽样(新授课)2.2.1用样本的频率分布估计总体分布(2课时)(新授课)2.2.2用样本的数字特征估计总体的数字特征(2课时)(新授课)2.3.1 变量之间的相关关系(新授课)2.3.2 两个变量的线性相关(第一课时)(新授课)2.3.2 两个变量的线性相关(第二课时)(新授课)2.3.2 生活中线性相关实例(第三课时)(新授课)第二章统计单元检测题(一)第二章统计单元检测题(一)参考答案第二章统计单元检测题(二)第二章统计单元检测题(二)参考答案第二章统计单元检测题(三)第二章统计单元检测题(三)参考答案第二章统计一、课程目标:本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其他学科中提出具有一定价值的统计问题。
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性。
(3)在参与解决统计问题的过程中,学会用简单随机抽样从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
(4)通过试验、查阅资料、设计调查问卷等方法收集数据。
2、用样本估计总体(1)通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布彪、花频率分布直方图、频率折线图、茎叶土,体会它们各自的特点。
(2)通过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并做出合理的解释。
(4)进一步体会用样本估计总体的思想。
(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
(6)形成对数据处理过程进行初步评价的意识。
2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布(一)学习目标 1.体会分布的意义和作用.2.学会用频率分布表,画频率分布直方图表示样本数据.3.能通过频率分布表或频率分布直方图对数据做出总体统计.知识点一 用样本估计总体 思考 还记得我们抽样的初衷吗?答案 用样本去估计总体,为决策提供依据. 梳理 用样本的频率分布估计总体的分布. 知识点二 频率分布表与频率分布直方图思考1 要做频率分布表,需要对原始数据做哪些工作? 答案 分组,频数累计,计算频数和频率. 思考2 如何决定组数与组距? 答案 若极差组距为整数,则极差组距=组数.若极差组距不为整数,则⎣⎢⎡⎦⎥⎤极差组距+1=组数. 注意:[x]表示不大于x 的最大整数.思考3 同样一组数据,如果组距不同,得到的频率分布直方图也会不同吗?答案 不同.对于同一组数据分析时,要选好组距和组数,不同的组距与组数对结果有一定的影响.梳理 一般地,频数指某组中包含的个体数,各组频数和=样本容量;频率=频数样本容量,各组频率和等于1.在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用小长方形的面积来表示,各小长方形的面积的总和等于1.1.频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.( √ )2.频率分布直方图中小长方形的面积表示该组的个体数.( × ) 3.频率分布直方图中所有小长方形面积之和为1.( √ )题型一 频率分布的理解例1 关于频率分布直方图,下列说法正确的是( ) A .直方图中小长方形的高表示取某数的频率B .直方图中小长方形的高表示该组上的个体在样本中出现的频率C .直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值D .直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值 答案 D解析 注意频率分布直方图和条形图的区别,在直方图中,纵轴(小长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的小长方形的面积.反思与感悟 由频率的定义不难得出,各组数据的频率之和为1,因为各组数据的个数之和为样本容量.在列频率分布表时,可以利用这种方法检查是否有数据的丢失. 跟踪训练1 一个容量为20的样本数据,将其分组如下表:则样本在区间(-∞,50)上的频率为( ) A .0.5 B .0.25 C .0.6 D .0.7 答案 D解析 样本在区间(-∞,50)上的频率为2+3+4+520=1420=0.7.题型二 频率分布直方图的绘制例2 某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分): 48 64 52 86 71 48 64 41 86 79 71 68 82 84 68 64 62 68 81 57 90 52 74 73 56 78 47 66 55 64 56 88 69 40 73 97 68 56 67 59 70 52 79 44 55 69 62 58 32 58 根据上面的数据,回答下列问题:(1) 这次测验成绩的最高分和最低分分别是多少?(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图;(3)分析频率分布直方图,你能得出什么结论?解(1)这次测验成绩的最低分是32分,最高分是97分.(2)根据题意,列出样本的频率分布表如下:频率分布直方图如图所示.(3)从频率分布直方图可以看出,这50名学生的智力测验成绩大体上呈两头小、中间大,左右基本对称的状态,说明这50名学生中智力特别好或特别差的占极少数,而智力一般的占多数,这是一种最常见的分布.反思与感悟组距和组数的确定没有固定的标准,将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.跟踪训练2一个农技站为了考察某种麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.77.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm 之间的麦穗所占的百分比. 解 (1)计算极差:7.4-4.0=3.4; (2)决定组距与组数:若取组距为0.3,因为3.40.3≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12;(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55; (4)列频率分布表:(5)绘制频率分布直方图如图.从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm 之间的麦穗约占41%. 题型三 频率分布表及频率分布直方图的应用例3 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).解 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生一周课外阅读时间少于12小时的频率是1-10100=0.9.故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在[4,6)组内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在[8,10)组内的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生该周课外阅读时间的平均数在第4组.反思与感悟 在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.跟踪训练3 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率约是多少? 解 (1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的, 因此第二小组的频率为42+4+17+15+9+3=0.08.因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校全体高一年级学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )A .20B .30C .40D .50 答案 B解析 样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.2.已知样本数据:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的是() A.[5.5,7.5) B.[7.5,9.5)C.[9.5,11.5) D.[11.5,13.5]答案 D解析列出频率分布表,依次对照就可以找到答案,频率分布表如下:从表中可以看出频率为0.2的是[11.5,13.5],故选D.3.如图是将高三某班60名学生参加某次数学模拟考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班的优秀(120分及以上为优秀)率为________.答案30%解析优秀率为10×(0.022 5+0.005+0.002 5)=0.3=30%.4.一个频数分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)内的频率为0.6,则估计样本在[40,50),[50,60)内的数据个数之和是________.答案21解析根据题意,设分布在[40,50),[50,60)内的数据个数分别为x,y.∵样本中数据在[20,60)内的频率为0.6,样本容量为50,∴4+5+x+y50=0.6,解得x+y=21.即样本在[40,50),[50,60)内的数据个数之和为21.5.暑假期间某班为了增强学生的社会实践能力,把该班学生分成四个小组到一果园帮果农测量果树的产量,某小组来到一片种植苹果的山地,他们随机选取20株作为样本测量每一株的果实产量(单位:kg),获得的数据按照区间[40,45),[45,50),[50,55),[55,60]进行分组,得到如下频率分布表:已知样本中产量在区间[45,50)内的株数是产量在区间[50,60]内的株数的43倍.(1)分别求出a ,b ,c 的值; (2)作出频率分布直方图. 解 (1)易得c =1.0.由题意得⎩⎪⎨⎪⎧a =43(0.1+b ),0.3+a +0.1+b =1.0,∴a =0.4,b =0.2.(2)根据频率分布表画出频率分布直方图,如图所示.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,我们通常用样本的频率分布表或频率分布直方图去估计总体的分布. 2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式,用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.一、选择题1.观察新生婴儿的体重(单位:g),其频率分布直方图如图所示,则新生婴儿的体重在[2 700,3 000)内的频率为( )A .0.001B .0.01C .0.003D .0.3答案 D解析 频率=频率组距×组距,组距=3 000-2 700=300,频率组距=0.001, ∴频率=0.001×300=0.3.2.容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是( ) A .14和0.14 B .0.14和14 C.114和0.14 D.13和114答案 A解析 x =100-(10+13+14+15+13+12+9)=100-86=14,第三组的频率为14100=0.14.3.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18 答案 C解析 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36×1=18, 有疗效的人数为18-6=12.4.某校为了解高三学生的身体情况,抽取了100名女生的体重.将所得的数据整理后,画出了如图所示的频率分布直方图,则所抽取的女生中体重在[40,45) kg 的人数是( )A .10B .2C .5D .15 答案 A解析 由图可知频率=频率组距×组距,频率=0.02×5=0.1,∴女生体重在[40,45) kg 的人数为0.1×100=10.5.为了了解某幼儿园儿童的身高情况,抽查该园120名儿童的身高绘制成如图所示的频率分布直方图,则抽查的120名儿童身高大于或等于98 cm 且小于104 cm 的有( )A .90名B .75名C .65名D .40名 答案 A解析 由图可知身高大于或等于98 cm 且小于104 cm 的儿童的频率为(0.1+0.15+0.125)×2=0.75,抽查的120名儿童有120×0.75=90(名)儿童的身高大于或等于98 cm 且小于104 cm. 6.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 的值为( ) A .20 B .27 C .6 D .60答案 D解析 ∵n ·2+3+42+3+4+6+4+1=27,∴n =60.7.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 答案 B解析 ∵少于60分的学生人数为600×(0.05+0.15)=120, ∴不少于60分的学生人数为600-120=480.8.对某种电子元件使用寿命进行跟踪调查,所得样本频率分布直方图如图.由图可知,这一批电子元件中寿命在100~300 h 的电子元件的数量与寿命在300~600 h 的电子元件的数量的比是( )A .1∶2B .1∶3C .1∶4D .1∶6 答案 C解析 由题意,寿命在100~300 h 的电子元件的频率为100×⎝⎛⎭⎫12 000+32 000=0.2,寿命在300~600 h 的电子元件的频率为100×⎝⎛⎭⎫1400+1250+3 2 000=0.8,则寿命在100~300 h 的电子元件的数量与寿命在300~600 h 的电子元件的数量比大约是0.2∶0.8=1∶4. 二、填空题9.将一个容量为n 的样本分成若干组,已知甲组的频数和频率分别为36和14,则容量n =________,频率为16的乙组的频数是________.答案 144 24解析 14=36n ,所以n =36×4=144,同理16=x144,x =24.10.某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图所示),现规定不低于70分为合格,则合格人数是________.答案 600解析 由频率分布直方图知合格的频率为(0.035+0.015+0.01)×10=0.6, 故合格人数为1 000×0.6=600.11.下列命题正确的是________.(填序号)①频率分布直方图中每个小矩形的面积等于相应组的频数; ②频率分布直方图中各小矩形面积之和等于1;③频率分布直方图中各小矩形的高(平行于纵轴的边)表示频率与组距的比. 答案 ②③解析 在频率分布直方图中,横轴表示样本数据,纵轴表示频率组距.由于小矩形的面积=组距×频率组距=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1.综上可知②③正确.12.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.答案 9解析 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.13.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.则频率分布直方图中x 的值为 __________.答案 0.004 4解析 ∵(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1,∴x =0.004 4. 三、解答题14.为加强中学生实践创新能力和团队精神的培养,促进教育教学改革,某市教育局将举办全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表解答问题:(1)求a ,b ,c ,d ,e 的值; (2)作出频率分布直方图.解 (1)根据题意,得分在[60.5,70.5)内的频数是a =50×0.26=13,在[90.5,100.5]内的频数是b =50-13-15-18=4,在[70.5,80.5)内的频率是c =1550=0.30,在[90.5,100.5]内的频率是d =450=0.08,频率和e =1. (2)根据频率分布表作出频率分布直方图,如图所示.四、探究与拓展15.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:根据上面的频率分布表,可知①处的数值为________,②处的数值为__________. 答案 3 0.025解析 由位于[110,120)的频数为 36,频率=36n =0.300,得样本容量n =120,所以[130,140)的频率=12120=0.1,②处的数值=1-0.050-0.200-0.300-0.275-0.1-0.050=0.025;①处的数值为0.025×120=3.。
第2课时频率分布折线图和茎叶图学习目标 1.了解频率分布折线图和总体密度曲线的定义.2.理解茎叶图的概念,会画茎叶图.3.了解频率分布直方图、频率分布折线图、茎叶图的各自特征,学会选择不同的方法分析样本的分布,从而作出总体估计.知识点一频率分布折线图和总体密度曲线1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线在样本频率分布直方图中,随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线,它反映了总体在各个范围内取值的百分比.知识点二茎叶图1.将所有两位数的十位数字作为茎,个位数字作为叶,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶可以按从大到小(或从小到大)的顺序同行列出(也可以没有大小顺序).2.茎叶图的优点与不足(1)优点:一是原始数据信息在图中能够保留,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.(2)不足:当样本数据较多时,茎叶图就显得不太方便.1.频率分布折线图就是总体密度曲线.( ×)2.对于两位数的茎叶图,中间的数字表示十位数,旁边的数字表示个位数.( √) 3.对于三位数的茎叶图,中间的数字表示百位数,旁边的数字表示十位和个位数.( ×) 4.茎叶图只可以分析单组数据,不能对两组数据进行比较.( ×)题型一识读茎叶图例1 甲、乙两个班级各随机选出15名同学进行测验,成绩的茎叶图如图所示(单位:分),则甲班、乙班的最高成绩分别是________,从图中看,________班的平均成绩较高.答案96,92 乙解析由茎叶图知甲班的最高成绩为96分,乙班的最高成绩为92分,再根据茎叶图的分布特点知,乙班的成绩分布集中在下面,故乙班的平均成绩较高.反思感悟(1)当数据是两位数时,十位上的数字为“茎”,个位上的数字为“叶”;如果是三位数,通常把百位和十位部分作为“茎”,个位上的数字为“叶”;如果是小数,通常把整数部分作为“茎”,小数部分作为“叶”.解题时要根据数据的特点合理地选择茎和叶.(2)应用茎叶图对两组数据进行比较时,要从数据分布的对称性、稳定性等几方面来比较.跟踪训练1 (1)如图所示,茎叶图表示某城市一台自动售货机在16天内的销售额情况(单位:元),图中的数字7表示的意义是这台自动售货机该天的销售额为( )A.7元B.70元C.27元D.72元(2)甲、乙两名同学12次考试中数学成绩的茎叶图如图所示,则下列说法正确的是( )A.甲同学比乙同学发挥稳定,且平均成绩也比乙同学高B.甲同学比乙同学发挥稳定,但平均成绩比乙同学低C.乙同学比甲同学发挥稳定,且平均成绩也比甲同学高D.乙同学比甲同学发挥稳定,但平均成绩比甲同学低答案(1)C (2)C解析(1)茎表示十位数字,叶表示个位数字,所以7表示27.(2)由茎叶图的性质可知乙同学比甲同学发挥稳定,且平均成绩比甲同学高.题型二茎叶图及其应用命题角度1 茎叶图的绘制例2 某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产量数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434, 443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410, 412,415,416,422,430.(1)画出茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,得出统计结论.解(1)茎叶图如图.(2)样本容量不大,画茎叶图很方便,此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息丢失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A亩产量的平均数比品种B亩产量的平均数大;②品种A的亩产量波动比品种B的亩产量波动大,故品种A的亩产量稳定性较差.反思感悟(1)画茎叶图时,用中间的数表示数据的十位和百位数,两边的数分别表示两组数据的个位数.要先确定中间的数取数据的哪几位,填写数据时边读边填.比较数据时从数据分布的对称性、稳定性等几方面来比较.(2)绘制茎叶图的关键是分清茎和叶,一般地说数据是两位数时,十位数字为“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要根据数据的特点合理选择茎和叶.跟踪训练2 某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.试制作茎叶图来对比描述这些数据.解以十位数字为茎,个位数字为叶,制作茎叶图如图:命题角度2 茎叶图的应用例3 某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79根据两组数据作出两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).解两地区用户满意度评分的茎叶图如图:通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.反思感悟茎叶图可保留原始数据,还可以通过叶的疏密情形,得到样本数据的分布离散情形.跟踪训练3 某中学甲、乙两名同学最近几次的数学考试成绩情况如下:甲的得分:95,81,75,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.解 甲、乙两人数学成绩的茎叶图如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的;甲同学的得分情况除一个特殊得分外,也大致对称,但分数分布相对于乙来说,趋向于低分阶段.因此乙同学发挥比较稳定,总体得分情况比甲同学好.茎叶图与频率分布直方图的综合应用典例 在某市的青少年才艺表演评比活动中,参赛选手成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如图所示,据此回答以下问题:求参赛总人数和频率分布直方图中[80,90)矩形的高,并补全频率分布直方图.解 由茎叶图知,分数在[50,60)的频数为2.由频率分布直方图知,分数在[50,60)的频率为0.008×10=0.08,所以参赛总人数为20.08=25.所以分数在[80,90)的人数为25-2-7-10-2=4,所以分数在[80,90)的频率为425=0.16, 故频率分布直方图中[80,90)矩形的高为0.1610=0.016.补全频率分布直方图,如图所示.[素养评析] (1)茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录,但样本容量较大时,使用茎叶图就不合适;而频率分布表和频率分布直方图可以处理样本容量很大的数据,但损失了样本的原始数据,而且必须在完成抽样后才能制作.(2)茎叶图和频率分布直方图都是用来整理数据的,根据整理的数据,提取信息,进行推断,获得结论,这是重要的数学素养之数据分析.1.如果想用统计图来反映各数据的变化趋势,比较合适的统计图是( )A.条形图B.折线图C.扇形图D.其他图形答案 B解析能反映各数据的变化趋势的统计图是折线图.2.如图是总体密度曲线,下列说法正确的是( )A.组距越大,频率分布折线图越接近于它B.样本容量越小,频率分布折线图越接近于它C.阴影部分的面积代表总体在(a,b)内取值的百分比D.阴影部分的平均高度代表总体在(a,b)内取值的百分比答案 C3.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151)上的运动员人数是( )A.3B.4C.5D.6答案 B解析由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151)的运动员共有4组,故由系统抽样法知,共抽取4名.故选B.4.从甲、乙两种玉米苗中各抽6株,分别测得它们的株高如图所示(单位:cm).根据数据估计( )A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐答案 D解析由题干中的茎叶图可知,甲种玉米的株高集中在20cm段,乙种玉米的株高集中在30cm 和40cm段,则甲种玉米的平均株高小于乙种玉米的平均株高,但乙种玉米的株高较分散,故选D.5.如图茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的平均分是89,则污损的数字是________.答案 3解析设污损的叶对应的成绩是x,由茎叶图可得89×5=83+83+87+x+99,所以x=93,故污损的数字是3.1.估计总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录;而频率分布表和频率分布直方图则损失了样本的原始信息,必须在完成抽样后才能制作.一、选择题1.下列关于茎叶图的叙述正确的是( )A.茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同B.对于重复的数据,只算一个C.茎叶图中的叶是“茎”十进制的上一级单位D.制作茎叶图的程序是:第一步:画出茎;第二步:画出叶;第三步:将“叶子”任意排列答案 A2.当样本数据增加时,下列说法正确的是( )A.频率分布表不会变化B.茎叶图不会变化C.频率折线图不会变化D.频率分布直方图变化不太大答案 D3.在茎叶图中比40大的数据的个数为( )A.1B.4C.3D.5答案 C4.某校举行演讲比赛,9位评委给选手A打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若统计员计算无误,则数字x应该是( )A.5 B.4C.3 D.2答案 D解析去掉最低分87,去掉最高分94(假设x≤4),则7×91=80×2+9+8+90×5+2+3+2+1+x,∴x=2,符合题意.同理可验证x>4不合题意.5.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B.0.4C.0.5 D.0.6答案 B解析依据茎叶图,在区间[22,30)内的频数为4,样本容量为10,故对应的频率为410=0.4,故选B.6.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分答案 A解析从茎叶图上看,由于甲运动员的成绩多数集中在31以上,而乙运动员的成绩集中在12到29之间,所以甲运动员成绩较好.7.给出如图所示的三幅统计图及四个命题:①从折线统计图能看出世界人口的变化情况;②2050年非洲人口将达到大约15亿;③2050年亚洲人口比其他各洲人口的总和还要多;④从1957年到2050年各洲中北美洲人口增长速度最慢.其中命题正确的有( )A.①②B.①③C.①④D.②④答案 B解析①从折线统计图能看出世界人口的变化情况,故①正确;②从条形统计图中可得:2050年非洲人口大约将达到18亿,故②错误;③从扇形统计图中能够明显地得到结论:2050年亚洲人口比其他各洲人口的总和还要多,故③正确;④由题中三幅统计图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故④错误.因此正确的命题有①③.故选B.8.如图是2017年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m,n均为数字0~9中的一个),在去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则有( )A.a1>a2B.a1,a2的大小与m的值有关C.a2>a1D.a1,a2的大小与m,n的值有关答案 A解析 由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据, 代入数据可以求得甲的平均分为a 1=80+15×(1+5+5+m +9)=84+m5,乙的平均分为a 2=80+15×(1+2+4+4+7)=83.6,∵m ≥0,∴a 1>a 2.9.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出了频率分布直方图,并作出了分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据),如图.则样本容量n 和频率分布直方图中x ,y 的值分别为( ) A .50,0.030,0.004 B .30,0.040,0.003 C .30,0.030,0.040 D .50,0.300,0.400答案 A解析 由题意可知,样本容量n =80.016×10=50,y =250×10=0.004,x =0.100-0.004-0.010-0.016-0.040=0.030. 二、填空题10.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.根据茎叶图判断________班的平均身高较高. 答案 乙解析 由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间.因此乙班平均身高高于甲班.11.如图所示是一个班的数学成绩的茎叶图,则优秀率(90分以上)是________,最低分是________.答案 4% 51 解析 ∵总数为25, ∴优秀率为125×100%=4%.最低分是51.12.从甲、乙两个班中各随机选出15名同学进行随堂测验,成绩的茎叶图如图所示,则甲、乙两班的最高成绩分别是______,______.从图中看,________班的平均成绩较高.答案 96 92 乙解析 由茎叶图可知,甲班的最高分是96,乙班的最高分是92.甲班的成绩集中在(60,80)内,乙班的成绩集中在(70,90)内,故乙班的平均成绩较高. 三、解答题13.甲、乙两个网站为了了解各自受欢迎的程度,分别随机选取了14天记录上午8:00~10:00间各自的点击量:甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25; 乙:12,37,21,5,54,52,61,45,19,6,19,36,42,14.你能用哪些方法表示上面的数据?你认为甲、乙两个网站哪个更受欢迎? 解 方法一 列频数分布表如下:[0,60)上,从数据的分布情况来看,甲网站更受欢迎. 方法二 画出茎叶图如图所示.由茎叶图可以看出,甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方.从数据的分布情况来看,甲网站更受欢迎.14.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图(如图)表示,据此估计该校上学期200名教师中,使用多媒体进行教学的次数在[15,25)内的人数.解 由茎叶图,知抽取的20名教师中使用多媒体进行教学的次数在[15,25)内的人数为6,频率为620,故200名教师中使用多媒体进行教学的次数在[15,25)内的人数为620×200=60.15.从甲、乙两个城市所有的自动售货机中随机抽取16台,记录了上午8∶00~11∶00之间各自的销售情况(单位:元):甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41; 乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.试用纵坐标为频数的频数分布直方图与茎叶图的方式分别表示上面的数据,并简要说明各自的优点.解 用频数分布直方图表示如图:的个位数.间的具体数目;而用茎叶图表示有关数据,对数据的记录和表示都带来方便.。