第16讲 智能计算原理.ppt
- 格式:ppt
- 大小:52.50 KB
- 文档页数:13
1. 什么是计算智能,它的特征、组成部分?计算智能:它依靠生产者提供的数字、数据材料进行加工处理,而不是依赖知识。
特征:自学习、自组织、自适应。
组成部分:进化计算、人工神经网络、模糊系统。
2. 什么是Hebb 规则?Hebb 规则:网络中若第i 和第j 个神经元同时处于兴奋状态,则它们之间的连接权值应当加强。
3. 遗传算法的基本原理和具体步骤?基本原理:遗传算法是一类通过模拟生物界自然选择和自然遗传机制的随机化搜索算法。
它模拟的是由称为染色体的二进制位串组成的种群的进化过程,通过有组织地然而是随机地信息交换来重新组合那些适应性好的串。
使适应性好的染色体比适应性差的染色体得到更多的繁殖机会。
具体步骤:1、初始化种群,随机产生。
2、利用适应值函数对每个染色体进行评价。
3、遗传操作:选择、交叉、变异。
4、得到新的一代,重新评价染色体。
5、判断是否满足结束条件,满足,则结束;不满足,则返回3。
4. 基于树结构的进化算法的基本原理?GP :⑴随机产生一个适用于给定问题的初始种群,即搜索空间,种群中的每个个体为树形结构;计算每个个体的适应度值;选择遗传操作对种群不断进行迭代优化,直到找到最优解或近似最优解。
⑵和GA 比较GP 的最大特点是它的种群中的每个个体是有结构的(分层的树状结构)。
⑶树结构个体的遗传操作也是有三种:复制、交叉和突变。
⑷和线性染色体相比,树性染色体的宽度和深度是可以变化的。
PIPE :概率增强式程序进化,首先要有一个等概率的完全概率原型树,然后依据这个概率原型树去生成初始种群,并计算每个个体的适应值,利用这个适应值和每个节点处的内容去修改概率原型树,直到概率原型树满足设定的终止条件为止。
GEP :⑴按照GA 的方式生成初始种群,依据表达式能构成树的规则检查种群中的那些个体能构成树型结构,并计算它们的适应值,最后依据适应值的大小通过改变表达式的形式来改变树形结构,直到找到满足终止条件的个体为止。
智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。
从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。
这是我们向自然界学习的一个方面。
另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。
这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。
1人工神经网络算法“人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。
早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。
其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。
据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。
每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。
轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。
其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。
树突的功能是接受来自其它神经元的兴奋。
神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。
神经元的树突与另外的神经元的神经末梢相连的部分称为突触。
2.1 人工神经网络的特点人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。
人脑的每个神经元大约有103~104个树突及相应的突触,一个人的大脑总计约形成1014~1015个突触。