基于ARM9的触摸屏驱动开发及LCD显示程序设计
- 格式:pdf
- 大小:277.40 KB
- 文档页数:5
基于ARM9的DMA控制器驱动程序的设计一、引言DMA(Direct Memory Access)控制器是一种硬件设备,用于实现高速数据传输,减轻CPU的负担。
在ARM9处理器中,DMA控制器是一个重要的外设,可以实现高效的数据传输和处理。
本文将详细介绍基于ARM9的DMA控制器驱动程序的设计。
二、设计目标本次设计的目标是开发一个稳定可靠、高效的DMA控制器驱动程序,以实现数据在外设和内存之间的快速传输。
具体的设计目标如下:1. 实现数据在内存和外设之间的单向传输;2. 支持不同外设的数据传输,如串口、SPI、I2C等;3. 提供灵活的配置选项,包括数据传输方向、数据长度、传输模式等;4. 保证数据传输的准确性和可靠性;5. 提供友好的API接口,方便用户调用。
三、设计思路基于ARM9的DMA控制器驱动程序的设计主要包括以下几个方面:1. DMA控制器的初始化:包括寄存器的配置、中断的使能等;2. 数据传输的配置:根据用户需求,配置数据传输的方向、长度、传输模式等;3. DMA传输的启动和停止:根据用户的调用,启动或停止DMA传输;4. 中断的处理:处理DMA传输完成后的中断请求,进行相应的操作。
四、设计步骤1. DMA控制器的初始化(1)配置DMA控制器的寄存器,包括通道选择、传输方向、传输模式等;(2)使能DMA控制器的中断,以便在传输完成后触发中断请求。
2. 数据传输的配置(1)根据用户需求,选择合适的DMA通道;(2)配置数据传输的方向,可以是从外设到内存,也可以是从内存到外设;(3)配置数据传输的长度,即需要传输的数据大小;(4)配置传输模式,可以是单次传输或循环传输。
3. DMA传输的启动和停止(1)根据用户的调用,启动DMA传输;(2)在传输完成后,停止DMA传输。
4. 中断的处理(1)设置中断服务程序,用于处理DMA传输完成后的中断请求;(2)在中断服务程序中,进行相应的操作,如数据处理、状态更新等。
单片机与人机交互设计基于触摸屏和LCD的界面现代科技的快速发展使得单片机在各个领域中得到了广泛应用。
而人机交互设计则成为了确保单片机能够高效运行的关键因素之一。
在众多人机交互设计中,基于触摸屏和液晶显示屏(LCD)的界面设计被证明是一种相对简单而有效的设计方案。
本文将重点探讨基于触摸屏和LCD的界面在单片机中的应用。
一、触摸屏和LCD的基本原理触摸屏主要是通过电容或者电阻的方式来感知用户触摸操作,并将触摸信息转化为数字信号传递给单片机进行处理。
而LCD则是通过液晶材料的光学特性来显示图像和文字。
触摸屏和LCD在单片机中的应用可以实现用户与系统的直接交互,使得操作更加简洁、直观。
二、触摸屏和LCD的优势和应用场景1. 优势:- 方便易用:通过触摸屏和LCD,用户可以直接点击、滑动等方式进行操作,避免了繁琐的物理按钮设计和控制。
- 信息展示清晰:LCD的高分辨率和色彩显示能力使得界面展示更加清晰、生动,为用户提供舒适的视觉体验。
- 界面设计灵活:通过软件设计,开发人员可以根据具体需求自由设计界面,实现更多样化的功能和操作方式。
2. 应用场景:- 智能家居控制:通过触摸屏和LCD,用户可以方便地控制家居设备,如调节灯光、温度、音量等。
- 工业控制系统:触摸屏和LCD可以在工业环境中应用,通过图像化的界面进行开关控制、参数调整等操作。
- 汽车导航系统:借助触摸屏和LCD,驾驶员可以方便地控制导航、音响等系统,提高驾驶的安全性和便利性。
三、触摸屏和LCD在单片机开发中的实现方式1. 硬件配置:单片机需要配合相应的触摸屏和LCD模块来完成交互设计。
常见的触摸屏包括电容触摸屏和电阻触摸屏,其中电容触摸屏在精度和响应速度上更有优势。
同时,为了提供图像显示功能,LCD模块通常需要支持合适的分辨率和显示颜色。
2. 软件开发:通过单片机的编程实现触摸屏和LCD的交互功能。
开发人员可以借助相关的开发工具进行代码编写和调试。
随着工业需求的不断提高,普通10.4寸,12.1寸,15寸的人机界面已经不能满足很多客户的需求,现在市面上推出了VGA组态人机界面,可以驱动多种分辨率的触摸屏显示器,22寸,42寸等宽屏都不是问题。
开发过程跟普通人机界面大为相似,唯一不同的是分辨率选择,触摸屏显示器选择等。
下面介绍开发方法:组态软件编程步骤(到广州市微嵌计算机科技有限公司官方网站下载:):组态软件编程步骤:1.新建组态软件工程属性,选择最佳分辨率(比如42寸屏的分辨率是1920*1080,但是选项中没有,那就应该按照比值最近法选,因为1920除以1080等于1.7777,可选分辨率里面的1366除以768等于1.7778,而其他分辨率比值都没有这个接近,就选1366*768为最佳分辨率),选择与PLC,单片机等从设备的通讯协议,支持Modbus RTU和西门子,欧姆龙,台达,三菱,松下等主流PLC2.进入前一步所设置分辨率(1024*768)3.编程好上位机之后就可以点击“调试”菜单里面的下载到设备了至于单片机如何驱动这个触摸液晶屏,步骤如下:很多时候,工业控制或者产品设计方面受到PLC这种功能确定,扩展麻烦,成本昂贵等方面的制约因素,需要独立开发一种特殊功能,但是又需要连接触摸屏通讯,工程师在这个方面往往需要花费很大功夫,现在我要帮大家解决的问题就是单片机与人机界面触摸屏通讯的最简单,最有效的2种方法,其实就是分为2种通讯协议,即工业标准的Modbus RTU协议和工程师自己定义的自由协议。
本实例采用广州市微嵌计算机科技有限公司(公司网站:)的人机界面作为参考,因为公司提供一系列的技术支持和公布单片机源代码,加上公司的人机界面支持自由协议等等先天优势,开发工程方便有效。
方案比较:方案一modbus—rtu协议:优点:工业标准通讯协议,具有通用性,,传输数据量大缺点:需要时间去了解协议的格式和以及按照规定编写通讯程序(我们提供MODBUS-RTU源代码,客户直接移植就可以,不必费心)方案二自由协议:优点:数据格式客户自己定义,灵活多变,定制性强,可以模拟任何已知报文的通讯协议缺点:传输数据量不大,通用性不强,移植不方便工程师可以根据以上两种通讯协议的优缺点来选择理想的方案;现在我们重点介绍广州市微嵌计算机科技有限公司的人机界面的自由通讯协议。
ARM9系统的硬件设计ARM9系统的硬件设计指的是基于ARM9内核的嵌入式系统的硬件组成和设计方法。
ARM9是英国ARM公司推出的第九代32位内核处理器,被广泛应用于移动设备、嵌入式系统、消费电子产品等领域。
下面将详细介绍ARM9系统的硬件设计内容。
一、ARM9系统硬件设计的基本原则1.系统性能和功耗平衡:硬件设计要充分考虑系统性能和功耗之间的平衡,尽量在不影响系统性能的情况下降低功耗。
2.硬件模块化设计:将整个系统划分为多个模块,每个模块负责特定的功能,便于维护和升级。
3.充分利用硬件资源:合理利用硬件资源,提高系统的性能和效率。
4.合理布局和连接:设计时应合理布局硬件组件和引脚连接,减少信号干扰和传输延迟。
5.异常处理:系统设计要考虑到异常情况的处理,保证系统的稳定性和可靠性。
二、ARM9系统硬件设计的基本组成1.处理器:ARM9内核的处理器是系统的核心部件,负责执行指令和控制系统运行。
2.存储器:包括RAM、ROM和闪存等,用于存储指令和数据,RAM用于存储工作数据,ROM和闪存用于存储软件和操作系统。
3.外设接口:包括串口、并口、USB接口等,用于与外部设备通信。
4.时钟和定时器:时钟提供系统的时序和时基,定时器用于定时和计数。
5.中断控制器:用于处理外部中断和异常,保证系统的正常运行。
6.显示控制器:用于控制和管理显示设备,如LCD显示屏。
7.输入输出设备:如触摸屏、键盘、鼠标等,用于用户与系统的交互。
8.电源管理:包括电源管理单元和电源管理软件,用于控制和管理系统的电源消耗。
三、ARM9系统硬件设计的关键技术1.PCB设计:根据系统需求和硬件组件的布局,设计合适的PCB板,保证信号传输的稳定和可靠。
2.时钟设计:根据系统需求设计合适的时钟方案,保证系统的协调和同步。
3.内存管理:根据系统的存储需求,选择适当的存储器类型和容量,合理划分存储区域。
4.性能优化:通过合理的硬件配置和系统参数调整,提高系统的运行速度和性能。
– 42 – 2012年第11卷第3期引言信息化社会的到来,促进了现代信息显示技术的发展,信息传播具有越来越重要的地位,同时受众对视觉媒体的要求也愈来愈高,要求传播媒体反映迅速、现实(实时性)、醒目(色彩丰富、栩栩如生)。
而随着微电子技术、自动化技术、计算机技术的迅速发展,随着LED材料技术和工艺水平提高,LED显示屏以突出的优势成为平板显示的主流产品之一。
而为了满足日益复杂的需求,LED 显示屏控制系统要具有足够的灵活性和可靠性[1]。
本文提出一种嵌入式LED显示屏控制系统的设计方案。
该方案的主控单元采用ARM9芯片,扫描控制单元采用FPGA芯片,以达到简化电路结构,提高整个控制系统的灵活性和可靠性的目的[2]。
1 系统组成整个系统由三大部分组成:上位计算机,显示控制系统和LED显示屏。
其中主要部分是显示控制系统电路[3]。
结构图如图一所示。
图一 LED屏显示控制系统组成整个系统工作流程如下,上位机与显示控制电路之间通讯方式为标准RS-232计算机数据串行通讯,上位机向显示控制电路发送指令集。
数据转换信号控制部分采用32位ARM微处理器接收指令集,完成显示数据的访问和控制信号的产生,接着将数据信号和控制信号发送给扫描控制电路(它的核心为FPGA芯片)并把从ARM接收到的灰度数据基于ARM的LED屏显示控制系统的设计任蓉 吕强(武汉工业学院电气与电子工程学院,湖北,武汉 430024)摘 要:本文根据LED显示模块的结构特点,结合CPLD技术以实现LED显示屏动态扫描显示,设计出基于ARM+FPGA的LED屏显示系统。
从硬件和软件两个方面设计,实现LED屏的显示。
硬件方面采用ARM9芯片S3C2440A为主控制单元,FPGA为扫描控制单元,完成数据存储,更新以及与上位机的通信等。
软件方面包括上位机应用软件和嵌入式控制软件,上位机软件编辑LED显示屏上显示的数据信息,实现与下位机的通信;嵌入式控制软件实现数据接收和存储,数据输出和图像显示,从而实现对LED屏的控制。
基于ARM9的可视电话终端系统设计摘要:现有的IP(Internet Protocol,因特网协议)可视电话产品大多依赖于PC (Personal Computer,个人计算机) 机。
如果能在嵌入式微处理器上开发出与普通电话类似的可视电话终端产品,就能普及可视电话。
本文设计了一种基于ARM9(Advanced RISC Machines)平台和Windows CE操作系统的嵌入式可视电话终端系统设计方案。
关键词:ARM9可视电话IP网根据通讯媒体的不同,可视电话有好几种类型。
有基于普通电话线(PSTN)的,基于PSTN的可视电话是较早实用化的可视电话产品,是由于PSTN网络的高普及率。
但是由于普通电话线网的带宽很低所以基于PSTN网的可视电话音视频质量并不是很好。
可视电话还有基于电路交换(ISDN),可靠性比较高,并且有服务质量保证的。
目前已经有较多的用户。
但是虽然其带宽比PSTN高一倍以上,音视频质量有较大的改善,但是其普及率不高。
而IP网的带宽比前两者都高出很多,一般都是10M以上的,且普及率也较高,仅次于PSTN 网。
从它的发展趋势来看,IP网有可能成为将来最大的网络,集合各种网络。
基于IP还可以带来获得令人满意的音视频质量[1]。
1系统硬件设计1.1 嵌入式系统简介从狭义上说,嵌入式系统仅仅指装入另一个设备并且控制该设备的专用计算机系统。
而广义的讲,嵌入式系统是指具有特定功能或用途的计算机软硬件集合体。
嵌入式系统最大的特点是具有目的性和针对性,即每一套嵌入式系统的开发都有其特殊应用场合与特定功能,这也是嵌入式系统与通用计算机系统最主要的区别。
另外,嵌入式技术还与实时性有着天然的联系。
1.2 系统硬件的选择可视电话的系统很复杂,若也能使它进入普通消费者家庭,设计可视电话时需要考虑到方方面面。
首先要充分考虑成本和功耗的问题,以利于可视电话终端的普及这就要求所选择的硬件平台,既能提供足够的资源,又便于扩展。
基于ARM9的嵌入式电子触摸屏设计
汪鹏程
【期刊名称】《装备制造技术》
【年(卷),期】2018(000)004
【摘要】以ARM9内核的嵌入式微处理器S3C2440A为系统核心,采用广州友善之臂Friendly ARM的Mini2440开发板,选择广州友善之臂的LCD2VGA模块作为图像数据处理转换核心,设计一款小体积、低功耗的触摸屏控制系统.系统以Linux2.6.13为实时操控系统,利用Qt4.5构建桌面运行环境,采用C++编写应用的查询程序,实现了四线电阻屏与液晶显示器组成的触摸屏的控制功能.通过系统设备的实际使用,验证了系统设计的正确性和合理性,电子触摸屏的触控准确度高,响应速度快,系统稳定性好.
【总页数】3页(P123-125)
【作者】汪鹏程
【作者单位】桂林理工大学南宁分校,广西南宁 530000
【正文语种】中文
【中图分类】TP368
【相关文献】
1.基于ARM9的触摸屏控制器系统硬件模块设计与实现 [J], 马雅
2.基于ARM9的触摸屏驱动开发及LCD显示程序设计 [J], 庄育锋;蔡坤;张墨;郭磊
3.基于 ARM9的嵌入式电子稳像系统研究和实现 [J], 潘全;高山;伍先达
4.基于ARM9平台的嵌入式Linux系统移植实验设计 [J], 方帆
5.基于ARM9的嵌入式监控系统设计 [J], 李来文;陈希明;刘泽源;周昕;裴永旭;黄楚俊
因版权原因,仅展示原文概要,查看原文内容请购买。
湖南农业大学东方科技学院全日制普通本科生毕业论文基于STM32的触摸屏控制设计Based on STM32 and Touch Tcreen Control Design学生姓名:学号:年级专业及班级:2008级信息工程(2)班指导老师及职称:学部:理工学部提交日期:2012年5月湖南农业大学东方科技学院全日制普通本科生毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文是本人在指导老师的指导下,进行研究工作所取得的成果,成果不存在知识产权争议。
除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体在文中均作了明确的说明并表示了谢意。
同时,本论文的著作权由本人与湖南农业大学东方科技学院、指导教师共同拥有。
本人完全意识到本声明的法律结果由本人承担。
毕业论文(设计)作者签名:(作者手写签名)年月日目录摘要 (1)关键词 (1)1 前言 (2)ARM应用背景 (2)研究内容 (3)研究成果 (4)2 STM32处理器的概述 (4)STM32简介 (4)STM32的参数 (5)内部资源 (5)3 图片的处理和显示实现方法 (7)液晶显示电路设计: (7)图片的处理 (7)总体方案与硬件整体架构 (7)本例中FSMC的使用 (9)ILI9325 (10)显示实现 (10)TFTLCD字显示 (11)TFTLCD图显示 (12)供电部分电路设计 (13)4 软件设计模块 (14)程序编写步骤 (14)系统初始化 (17)STM32的开发软件 (17)FSMC模块介绍以及初始化程序 (17)屏接口时序的实现 (18)5 运行方法和结果 (19)硬件电路连接 (19)程序编写步骤 (19)现象和结果 (19)6 结论 (20)参考文献 (20)致谢 (20)基于STM32的触摸屏控制设计摘要:伴随着科技的发展,现代电子产品中的单片机和触摸屏在手机、导航仪器、电子测试仪器以及咨询终端等设备中都有很广泛的应用。
基于ARM的图像采集系统的硬件设计与实现刘永林;程耀瑜;梁莹;雷红淼【摘要】传统图像采集系统具有复杂、体积大、不便携带等缺点,而嵌入式图像采集系统集图像采集、显示、处理于一体,具有体积小、功耗低的优点.针对安防监控系统的需要,设计出一种基于ARM的图像采集系统.该系统以S3C2410(ARM9)为核心,利用USB摄像头、显示屏和存储器来构建图像采集和处理系统,并搭建必要的外围电路和通信接口,完成了硬件平台的设计.然后移植嵌入式操作系统和驱动程序,最终实现了图像数据的采集、显示和存储等功能,采集图像清晰,符合系统要求.【期刊名称】《电子测试》【年(卷),期】2011(000)006【总页数】4页(P12-15)【关键词】嵌入式;ARM;S3C2410;图像采集;USB摄像头【作者】刘永林;程耀瑜;梁莹;雷红淼【作者单位】中北大学山西省现代无损检测工程技术研究中心,山西太原030051;中北大学山西省现代无损检测工程技术研究中心,山西太原030051;中北大学山西省光电信息与仪器工程技术研究中心,山西太原030051;中北大学山西省现代无损检测工程技术研究中心,山西太原030051【正文语种】中文【中图分类】TP30 引言现代社会中,安全监测和防护系统在人们的生活、人身和财产安全等方面扮演着越来越重要的作用。
图像的获取和保存是现代安监防护系统最直接、最有效,同时也是最可靠的方式和手段。
俗话说“百闻不如一见”,图像往往含有大量的信息,远比语言和文字携带信息量大,而且一目了然,通俗易懂。
因此基于图像的安防系统是现代安防系统发展的趋势,被广泛地应用于社会生活中。
针对这种现状,本文设计出一种基于ARM处理器的嵌入式图像采集和存储系统,与传统PC图采集系统体积大、处理速度慢、不宜便携的缺点相比,本系统稳定可靠、轻小便携、成本低廉,且具有速度快、功耗低等优点,具有很强的现实意义和广泛的应用前景。
1 系统总体设计目前,对图像信息采集和处理主要有两种方式:一是利用CCD相机和图像采集卡,将模拟信号转换成数字信号,利用总线传送到上位机进行处理。
一种用于实验室的智能自助服务终端的设计摘要:设计了一款基于arm9的实验室智能自助服务终端,系统中采用sumsung公司arm9处理器s3c2410作为主控制器,实现对系统中各个模块的控制。
系统硬件和软件均采用了结构化、模块化的设计方法,使得系统结构更加清晰。
系统实施可以彻底改变传统的实验指导老师对实验报告进行打分的方式,大大提高了实验报告打分效率。
关键词:arm9 自助终端模块化实验报告中图分类号:tp311.52 文献标识码:a 文章编号:1674-098x (2013)03(a)-00-02随着招生规模的扩大及课程改革的需要,高校实验室规模越来越大,传统的管理模式已经日显落后。
随着高校选课制的进行,学生的实验时间分散,这对实验室资源的合理配备与管理也提出了更高的要求。
传统的实验室管理方式过于单一、落后,实验中心老师除了要安排学生做实验外,还要指导实验,并且实验后还需要评阅实验报告成绩以及完成实验报告成绩的录入。
传统实验成绩录入方式是老师将学生学号输入电脑,电脑显示该学生所做过的所有实验项目,然后老师再在所有实验项目中找出待评分实验报告所对应的实验项目,最后将成绩录入,实验报告成绩录入过程枯燥、繁琐。
这种实验室管理方式给老师造成了很重的负担。
基于以上的考虑,该文研究并设计了一种基于arm9的实验室智能自助服务终端。
1 系统结构和工作原理实验室智能自助服务终端系统主要由arm9主控制器模块、ic卡信息采集模块、条形码打印模块、触摸操作显示模块、通讯模块、供电模块、条形码阅读器模块组成,如图1所示。
其工作原理为学生进行某次实验之前将本人的校园卡放置在ic卡读卡器上,读卡器将读取学生基本信息,并将信息显示在触摸屏上,学生可以通过对显示屏上各功能选项进行触摸操作,实现相应的功能。
对应于某次实验,学生在该终端上必须要进行的功能操作是进行一维条形码打印,打印出的条形码上记录着该生本次实验的全部相关信息,包括实验时间、实验项目等内容,由于条形码是由不干胶热敏打印机打印,打印出的条形码背面涂有不干胶,方便学生将条形码粘贴到实验报告纸上。
触摸屏控制实验设计报告序随着中国工业化的快速发展,对工业自动化控制的要求也在不断提高和完善。
触摸屏作为一种可视化的人机界面,以其体积小、可靠性高的特点逐渐取代传统的按钮控制和仪表控制,成为工业控制中人机界面的主流。
本文分析了触摸屏设备的特点、国外现状和发展趋势,设计了一种基于嵌入式实时操作系统WinCE5.0和ARM9系列AT91SAM9261为核心处理器的大型触摸屏控制器。
考虑到触摸屏设备的功能需求,提出了本课题的设计指标,制定了触摸屏控制器的总体设计方案,具体体现在控制器硬件设计和操作系统移植两个方面。
硬件平台采用模块化、结构化的思想进行设计和实现。
分析了触摸屏控制器中的主要硬件模块,包括处理器核心模块、存储模块、触摸屏模块、键盘模块、以太网模块和USB主从模块,并给出了硬件设计方法和电路实现。
硬件测试环境的建立是为了调试我弟弟的硬件模块。
基于搭建的硬件平台,本文重点研究了嵌入式操作系统WinCE 5.0的移植和BSP的开发。
分析了WinCE 5.0操作系统的架构和移植原理,在了解了三星公司的S3C2410 BSP之后,给出了基于AT91SAM9261的WinCE 5.0 BSP的开发过程。
详细分析了WinCE 5.0 Bootloader的工作原理和体系结构。
根据触摸屏系统的功能需求和硬件资源的分配,设计了触摸屏设备的Bootloader,并给出了具体的开发步骤。
深入研究了OAL的功能和原理,详细给出了OAL开发中的重要功能和主要模块。
针对触摸屏控制器的主要硬件模块,在分析WinCE 5.0中断模型和中断机制的基础上,开发了触摸屏驱动程序、矩阵键盘驱动程序和USB主机驱动程序。
在开发的BSP的基础上,利用WinCE 5.0操作系统定制工具Plarform Builder 对操作系统内核进行定制和编译,并对操作系统的性能进行测试。
测试结果表明,WinCE 5.0操作系统能够成功移植到触摸屏控制器上,能够满足工业现场的实时性要求。