第二章 主族元素的金属有机化合物
- 格式:ppt
- 大小:8.52 MB
- 文档页数:79
人教版化学必修二全册知识点总结第一章物质结构元素周期表第一节元素周期表一、周期表周期表是根据元素的原子结构和性质,将元素按一定的顺序排列成表格的化学工具。
元素的原子结构是指元素的原子中包含的质子、中子和电子的数量和排列方式。
而元素的性质则是指元素在化学反应中表现出来的特征和行为。
周期表中的元素按照横行和纵列排列,其中横行称为周期,纵列称为族。
横行是按照元素的电子层数从左到右排列,纵列是按照元素的最外层电子数从上到下排列。
周期表中的元素按照周期和族的顺序排列,便于研究元素的周期性规律和性质。
二、元素的性质和原子结构一)碱金属元素:碱金属元素是指周期表中第一族元素,包括锂、钠、钾、铷、铯和钫。
这些元素的原子结构相似,最外层电子数都为1个。
随着核电荷数的增大,电子层数增多,原子半径增大。
这种递变性导致了物理性质的相似性和递变性。
碱金属元素的化学性质也有相似性和递变性,其中最明显的是它们的化合价都为+1.二)卤族元素:卤族元素是指周期表中第七族元素,包括氟、氯、溴、碘和石碳酸。
这些元素的原子结构相似,最外层电子数都为7个。
随着核电荷数的增大,电子层数增多,原子半径增大。
这种递变性导致了物理性质的递变性,包括颜色加深、密度增大和熔点、沸点升高。
卤族元素的化学性质也有递变性,其中最明显的是它们与氢气反应生成氢卤酸。
总结:周期表是研究元素周期性规律和性质的重要工具。
碱金属元素和卤族元素都具有原子结构相似性和递变性,导致了它们的物理性质和化学性质的相似性和递变性。
这些规律和性质的研究有助于我们更深入地理解元素的本质和行为。
原子核外电子按照能量从低到高的顺序填充到各个能级上,每个能级最多容纳一定数量的电子。
3、能级的编号:K、L、M、N、O、P、Q(从内到外依次编号)4、能级的容纳电子数:K层2个电子,L层8个电子,M层18个电子,N层32个电子,O层50个电子,P层72个电子,Q层98个电子。
二.元素周期律1、元素周期律:将元素按照原子序数大小依次排列,具有相似化学性质的元素周期性地出现在同一周期中。
元素周期律教案(详细)第一章:元素周期律的发现1.1 背景介绍讨论化学的发展史,特别是在19世纪初期的化学研究。
介绍道尔顿、阿伏伽德罗、门捷列夫等科学家对化学的贡献。
1.2 元素周期律的发现解释元素周期律的概念,即元素的物理和化学性质具有一定的周期性。
讲述门捷列夫发现元素周期律的过程,以及他编制的第一张元素周期表。
1.3 元素周期律的意义强调元素周期律对化学研究的重要性,如预测新元素、了解元素性质等。
引导学生思考元素周期律对于现代化学科学的应用。
第二章:元素周期表的结构2.1 周期表的基本结构介绍周期表的横行(周期)和纵列(族),以及周期表的扩展。
解释周期表中元素的原子序数、电子排布和价电子等概念。
2.2 周期表的规律讲解周期表中的主要规律,如周期性、递变性、相似性等。
通过实例说明规律在周期表中的体现。
2.3 周期表的应用探讨周期表在元素分类、性质预测、反应规律等方面的应用。
引导学生学会利用周期表解决实际问题。
第三章:主族元素的性质3.1 主族元素的概念介绍主族元素的概念和分类,包括IA族到VIIA族。
解释主族元素的电子排布规律和价电子特点。
3.2 主族元素的性质探讨主族元素的物理和化学性质,如原子半径、电负性、化合价等。
通过实例分析主族元素在实际应用中的特点。
3.3 主族元素的代表性化合物介绍主族元素与非金属元素形成的典型化合物,如酸、碱、盐等。
分析主族元素在生物体和工业中的应用。
第四章:过渡元素的性质4.1 过渡元素的概念解释过渡元素的概念,包括d区元素和f区元素。
介绍过渡元素的电子排布特点和价电子行为。
4.2 过渡元素的性质探讨过渡元素的物理和化学性质,如电子亲和能、电负性、氧化态等。
通过实例说明过渡元素在催化剂和材料科学中的应用。
4.3 过渡元素的代表性化合物介绍过渡元素与非金属元素形成的典型化合物,如配合物、氧化物等。
分析过渡元素在现代化学工业和科学研究中的重要性。
第五章:镧系和锕系的性质5.1 镧系和锕系的概念解释镧系和锕系的概念,它们是周期表中的两个特殊系列。
第一章物质结构元素周期律第一节元素周期表重难点一元素周期表1.构成原子(离子)的微粒间关系(1)原子序数=核电荷数=核内质子数=核外电子数(原子中)。
(2)离子电荷数=质子数-核外电子数。
(3)质量数(A)=质子数(Z)+中子数(N)。
(4)质子数(Z)=阳离子的核外电子数+阳离子的电荷数。
(5)质子数(Z)=阴离子的核外电子数-阴离子的电荷数。
2.元素周期表的结构(3)过渡元素元素周期表中从ⅢB到ⅡB共10个纵行,包括了第Ⅷ族和全部副族元素,共60多种元素,全部为金属元素,统称为过渡元素。
特别提醒族序数为Ⅱ、Ⅲ的地方是主族和副族的分界线,第一次分界时主族在副族的前面,第二次分界时副族在主族的前面。
“第一次”指ⅠA ⅡA ⅢB ⅣB ⅤB ⅥB ⅦB Ⅷ依次排列。
“第二次”指ⅠB ⅡB ⅢA ⅣA ⅤA ⅥA ⅦA 0依次排列。
重难点二 零族定位法确定元素的位置 1.2.比大小定周期比较该元素的原子序数与0族元素的原子序数大小,找出与其相邻近的两种0族元素,那么该元素就和序数大的0族元素处于同一周期。
3.求差值定族数(1)若某元素原子序数比相应的0族元素多1或2,则该元素应处在该0族元素所在周期的下一个周期的ⅠA 族或ⅡA 族。
(2)若比相应的0族元素少1~5时,则应处在同周期的ⅢA ~ⅦA 族。
(3)若差其他数,则由相应差值找出相应的族。
重难点三 元素的性质与原子结构 1.碱金属单质的相似性和递变性 (1)相似性①与O 2反应生成相应的氧化物,如Li 2O 、Na 2O 等。
②与Cl 2反应生成RCl ,如NaCl 、KCl 等。
③与H 2O 反应,能置换出H 2O 中的氢,反应通式为2R +2H 2O===2ROH +H 2↑。
④与非氧化性酸反应,生成H 2,反应通式为2R +2H +===2R ++H 2↑。
(R 表示碱金属元素)(2)递变性从Li 到Cs ,随着核电荷数的增加,碱金属元素原子的电子层数逐渐增多,原子核对核外电子的吸引能力逐渐减弱,失电子能力逐渐增强,金属性逐渐增强。
必修元素及化合物公开课教案教学设计课件资料第一章:元素的基本概念1.1 元素的定义介绍元素的概念,强调元素是构成物质的基本单元。
通过实例解释元素的存在和应用。
1.2 元素周期表介绍元素周期表的结构和组成。
讲解元素周期表的排列规律和周期性。
1.3 元素的性质讲解元素的主要性质,包括原子序数、原子量和电子排布。
强调元素性质与原子结构的关系。
第二章:化合物的基本概念2.1 化合物的定义介绍化合物的概念,强调化合物是由两种或更多种元素以固定比例结合而成的物质。
通过实例解释化合物的存在和应用。
2.2 化合物的命名讲解化合物的命名规则和命名方法。
强调化合物的命名与化学式的关系。
2.3 化合物的性质讲解化合物的性质,包括化学和物理性质。
强调化合物性质与组成元素的关系。
第三章:化学反应3.1 化学反应的基本概念介绍化学反应的概念,强调化学反应是物质之间发生变化的过程。
通过实例解释化学反应的现象和结果。
3.2 化学反应的类型讲解化学反应的类型,包括合成反应、分解反应、置换反应和复分解反应。
强调化学反应类型与反应物和物的关系。
3.3 化学反应的平衡讲解化学反应的平衡概念和平衡常数。
强调化学反应平衡与反应物和物的浓度关系。
第四章:元素和化合物的关系4.1 元素和化合物的相互转化讲解元素和化合物之间的相互转化关系。
强调元素和化合物转化的化学反应过程。
4.2 主族元素和它们的化合物讲解主族元素的基本概念和特点。
强调主族元素和它们的化合物的关系。
4.3 过渡元素和它们的化合物讲解过渡元素的基本概念和特点。
强调过渡元素和它们的化合物的关系。
第五章:化合物的结构和性质5.1 化合物的结构讲解化合物的结构,包括离子晶体、共价晶体和分子晶体。
强调化合物结构与性质的关系。
5.2 化合物的键合性质讲解化合物的键合性质,包括离子键、共价键和金属键。
强调化合物键合性质与性质的关系。
5.3 化合物的物理性质讲解化合物的物理性质,包括颜色、状态、密度和熔点等。
化学干货-----各族元素及其化合物的用途(1)第IA族冯芳芳氢1.单质氢气的用途:氢气在工业上有许多重要应用:化学工业-合成氨;石油裂解加氢、煤炭的加氢液化、油脂加氢固化、塑料合成,无机有机精细化工合成等等;冶金工业-钢铁冶金,铁矿石直接氢还原制海绵铁,然后在氢氛中直接炼钢、钨钼等希有金属冶炼等。
以上这些应用大概用掉了世界氢产量的90%。
这些用途依赖于氢的独特物理和化学性质,是其他物质所不能替代的。
氢气还有一些其他少量用途,例如充装氢气球、无线电元件的烧氢、科学实验中的还原性载气或还原性保护气氛、原子核科研中作为靶核或核反应产物的检定介质等。
2. 氢在能源方面的应用:氢气属二级能源,需要用另一种有效能源从水中制取。
但由于它燃烧后生成水,不会污染环境,成为21世纪非常有前途的无污染能源之一。
它具有以下优点:l)原料来源于地球上贮量丰富的水,因而资源不受限制。
2)氢气燃烧时发热量很大,其燃烧热为同质量石油燃烧的三倍。
作为一种动力燃料,氢气在许多方面比汽油和柴油更优胜,用氢的发动机更易发动,特别是在寒冷的气候里。
3)氢气作为燃料的最大优点是它燃烧后生成物是水,不会污染环境。
4)有可能实现能源的贮存,也有可能实行经济、高效的输送。
锂1. 单质锂的用途:锂的用途越来越广泛,如锂和锂合金是一种理想的高能燃料。
锂电池是一种高能电池。
LiBH4是一种很好的贮氢材料。
锂在核动力技术中将起重要作用,它是较理想的反应堆传热介质,热容量大(接近水)、液态范围宽(453.5~1615K)、粘度小、比重小、蒸气压低。
63Li、73Li被中子轰击都可得到氚,63Li与氚可以进行热核反应,受控热核聚变反应堆可以用氚和锂作燃料。
锂合金也是良好的轻质结构材料。
在金属熔炼中常用Li作除气剂,除去溶解在熔融金属中的氮气和氧气。
2. 锂的化合物的用途:a. 铌(或钽)酸锂: 锂的铌酸盐和钽酸盐是著名的激光材料。
b. LiH: 在有机合成中作还原剂。
《金属有机化学》作业一选择题1.最早的哪个金属有机化合物是1827年由丹麦药剂师Zeise合成的。
()A. (CH3)4TiB. K[Pt(C2H4)Cl3]C. (CH3)2HgD. CH3MgCl2.二茂铁(C5H5)2Fe属于哪一类非经典键合的化合物?()A. M—C键中为缺电子型键B. M—C键中碳原子为π键电子给予体的多中心键化合物C. M—C键以夹心型键形成的π键化合物D. M—C键以σ—π配键形成的化合物3.烯烃和B—H键的加成遵循以下哪个规则?()A. Markovnikov规则B. 反Markovnikov规则C. Zaitsev规则D. 反Zaitsev规则4.下列有关烷基铝说法不正确的是()A.烷基铝化合物是缺电子化合物B.烷基铝化合物一般是强的Lewis酸C.当三烷基铝的烷基为烷氧基所取代后,烷基铝化合物的反应性即降低。
D.从烷基铝和烯烃的反应能得到有很长链的烷基的化合物5.Ni(CO)4的几何构型是()A.正四面体型 B. 正方锥型 C.八面体型 D. 三角锥型6.Si—C键的反应性一般比C—C键的反应性为()A. 大B. 小C. 相等D. 不确定7.下列采用sp3杂化轨道成键的是()A. Cr(CO)6B. Fe(CO)5C. Ni(CO)4D. [Ag(CN)2]-8.Fred属于下列哪类配合物?()A. 混合配体羰基金属配合物B. 单核全羰基金属配合物C. 双核羰基金属配合物D. 原子簇配合物9.炔烃配体配合物中炔配体提供给金属的电子数是()A.4B.3C.2D.110.下列不属于类环戊二烯基配体的是()A. B. C. D.11.IA族金属的烷基物和芳基物的活性正确的是()A. Li-R<Na-R<K-R<Rb-R<Cs-RB. Li-R<K-R<Na-R<Rb-R<Cs-RC. Cs-R<Rb-R<K-R<Na-R<Li-RD. Cs-R<Rb-R<Na-R<K-R<Li-R12.Ni(CO)4属于哪一类非经典键合的化合物?()A. M—C键中为缺电子型键B. M—C键中碳原子为π键电子给予体的多中心键化合物C. M—C键以夹心型键形成的π键化合物D. M—C键以σ—π配键形成的化合物13.铝氢化物中最重要的是氢化铝锂,LiAlH4是重要的()A.还原剂 B. 氧化剂C. 催化剂D.脱水剂14.Fe(CO)5的几何构型是( )A. 正四面体型B. 正方锥型C. 三角锥型D. 八面体型15.Si —C 键的反应性一般比C —C 键的反应性为( )。
一、选择题1.下列各项中表达正确的是 A .F -的结构示意图: B .CO 2的分子模型示意图:C .CSO 的电子式:D .HClO 的结构式:H —Cl —O答案:C 【详解】A .F -的最外层含有8个电子,F -的结构示意图:,故A 错误;B .二氧化碳为直线型结构,碳原子半径大于氧原子半径,则CO 2的分子模型示意图:,故B 错误;C .CSO 属于共价化合物,C 与O 、S 分别形成2个共用电子对,则CSO 的电子式:,故C 正确;D .次氯酸的结构式:H-O-Cl ,O 、Cl 均满足最外层8电子稳定结构,故D 错误; 故选C 。
2.下列说法不正确的是( ) ①24N H 分子中既含极性键又含非极性键②若2R -和+M 的电子层结构相同,则原子序数:R>M ③2F 、2Cl 、2Br 、2I 熔点随相对分子质量的增大而升高 ④3NCl 、3PCl 、2CO 、2CS 分子中各原子均达到8e -稳定结构 ⑤固体熔化成液体的过程是物理变化,所以不会破坏化学键 ⑥HF 分子很稳定是由于HF 分子之间能形成氢键 ⑦由于非金属性:Cl>Br>I ,所以酸性:HCl>HBr>HI A .②⑤⑥⑦ B .①③⑤C .②④⑤D .③⑤⑦答案:A 【详解】24N H 分子中N 原子之间形成非极性共价键,N 原子和H 原子之间形成极性共价键,①正确;若2R -和M +的电子层结构相同,则M 处于R 的下一周期,所以原子序数:M R >,②错误;2F 、2Cl 、2Br 、2I 的组成和结构相似,熔点随相对分子质量的增大而升高,③正确;3NCl 、3PCl 、2CO 、2CS 分子中各原子均满足最外层电子数8+=化合价,则均达到8e -稳定结构④正确;固体熔化成液体的过程是物理变化,但可能破坏化学键,例如氢氧钠熔化时离子键被破坏,⑤错误;HF分子很稳定,是因为H F-键键能大,与分子间氢键无关,⑥错误;元素的非金属性越强,其最高价氧化物对应水化物的酸性越强,但氢化物的酸性变化无此规律,酸性:HCl HBr HI<<,⑦错误。
第二章主族元素的金属有机化合物主族元素的金属有机化合物是指含有主族元素金属和碳元素的化合物。
这类化合物具有独特的化学性质和应用价值,可以广泛应用于有机合成、催化剂、光电材料等领域。
本文将对主族元素的金属有机化合物进行详细介绍。
一、有机锂化合物有机锂化合物是最常见的主族元素的金属有机化合物之一、它们通常由金属锂与卤代烃反应得到。
有机锂化合物具有反应活性强、易与其他化合物发生反应等特点,因此在有机合成中得到广泛应用。
例如,有机锂试剂可以作为亲核试剂参与亲电加成反应,从而实现碳-碳键的构建;同时,有机锂试剂还可以用于合成取代基多的有机化合物。
二、有机硼化合物有机硼化合物是另一类重要的主族元素的金属有机化合物。
它们通常由金属硼烷与卤代烃反应得到。
有机硼化合物具有独特的化学性质,可以作为有机合成中的重要试剂。
例如,一些具有硼取代基的有机硼化合物可以与有机羰基化合物进行加成反应,得到取代基多的有机化合物;另外,有机硼化合物还可以用于构建碳-硼键,从而实现新的有机化合物的构建。
三、有机锗化合物有机锗化合物也是主族元素的金属有机化合物中的一种。
它们通常由重金属锗与卤代烃反应得到。
有机锗化合物具有独特的结构和性质,可以应用于光电材料、生物活性物质等方面。
例如,一些具有锗取代基的有机锗化合物可以用作有机发光材料,具有很强的荧光发射性质;此外,有机锗化合物还可以用于合成新型的生物活性分子,具有潜在的药物研发价值。
四、有机锑化合物有机锑化合物也是主族元素的金属有机化合物的一类代表。
它们通常由金属锑与有机卤化物反应得到。
有机锑化合物在有机合成中具有广泛应用,特别是在催化剂领域。
例如,一些具有锑取代基的有机锑化合物可以用作光催化剂,可以通过光照下的电子转移过程进行还原或氧化反应;此外,有机锑化合物还可以用于合成特殊的有机合成试剂,具有催化剂的效果。
总之,主族元素的金属有机化合物是一类具有独特性质和广泛应用价值的化合物。
有机锂化合物、有机硼化合物、有机锗化合物和有机锑化合物等都在有机合成、催化剂、光电材料等领域得到了广泛应用。
一、选择题1.(0分)[ID :139545]科学研究表明,PCl 5在气态条件下为分子形态,在熔融条件下能发生电离: 2PCl 5PCl +4+PCl -6,下列说法错误的是 A .PCl 5分子中的化学键为极性键B .PCl 5在熔融状态下具有一定的导电性C .PCl +4呈正四面体构型 D .PCl -6中P 只用3s 、3p 轨道参与成键2.(0分)[ID :139599]下列说法中正确的是A .随着核电荷数的递增同主族元素的单质熔点不断升高B .草酸二甲酯分子中σ键和π键个数比为6:1C .DNA 的双螺旋结构与氢键无关D .原子的价电子排布为(n-1)d 6~8ns 2的元素一定位于元素周期表d 区3.(0分)[ID :139590]X 元素的简单阳离子和Y 元素的简单阴离子的核外电子层结构相同,下列叙述正确的是A .简单离子半径:X>YB .原子半径:X<YC .原子序数:X<YD .原子最外层电子数:X<Y 4.(0分)[ID :139577]短周期主族元素X 、Y 、Z 、W 的原子序数依次增加,K 、L 、M 均是由这些元素组成的氧化物,甲、乙分别是元素Y 、W 的单质,甲是常见的固体,乙是常见的气体。
K 是红棕色气体,丙的浓溶液具有强氧化性,上述物质的转化关系如图所示。
下列说法不正确的是( )A .Y 、Z 、W 三种元素电负性:W>Z>YB .Y 、Z 、W 三种元素的第一电离能:W>Z>YC .Y 、Z 、W 与氢元素均可形成含非极性键的二元化合物D .由X 、Y 、Z 、W 构成的化合物中可能含有离子键5.(0分)[ID :139575]下列有关说法正确的是A .氧原子处于基态的轨道表示式B .用价层电子对互斥理论预测3NH 的空间结构为三角锥形C .用电子式表示2MgCl 的形成:D .向5%的22H O 溶液中加入2MnO 粉末后,分解速率迅速加快是因为2MnO 粉末降低了反应的焓变6.(0分)[ID :139569]意大利罗马大学的 FulvioCacace 等人获得了极具理论研究意义的气态 N4分子,其分子结构如图所示。