PLC与变频器工程应用讲座
- 格式:ppt
- 大小:2.23 MB
- 文档页数:80
PLC自动控制技术在变频器中的应用摘要:在我国工业行业飞速发展的背景下,变频器的使用在现代工业企业的生产经营过程中占据了极其关键的地位,并且极大地影响了企业内部数据分析和处理能力水平。
但是由于变频器的实际使用中很容易产生漏洞问题而造成数据分析功能的下降;为规避上述问题,有关工作人员需加强对PLC自动控制及其他技术的运用,利用其增强变频器的人机交互功能,以保证最大限度地满足工业企业发展的要求。
文章主要针对变频器PLC自动控制技术的运用展开了深入的分析。
关键词:PLC 技术;自动控制;变频器一、PLC自动控制技术概念PLC自动控制技术是一种能够编辑并能实现较简单逻辑控制的控制器。
随着PLC自动控制技术研究的不断增加,推动了PLC自动控制技术向更加完善的方向迈进,并逐步取代了原有自动控制技术,逐渐为人们所认识并广泛使用,从某种角度来看,既能推动工业产品的革新,又能推动生产效率的提高。
现在现有的PLC自动控制技术,在具体应用的过程中,只能使用输入输出,控制器等等来进行自动控制。
因其工作操作流程方便而称为微型计算机。
但是在当前的阶段PLC自动控制运用发展当中,PLC的自动控制器运用起来很方便快捷,只是需要对使用人进行训练而已。
另外,PLC自动控制还具备抗干扰能力好,安全性高的特性,所以,将它应用于生产当中,可以提高制造品质和工作效率。
二、现代变频器中的常见问题2.1电动机过载在现代工业生产运营过程当中,为促进生产过程便捷进行,电动机扮演着极其重要的角色。
但由于变频器工作时很容易给电动机带来过载等故障,这些故障的发生将使V/F曲线失配,使电动机的运转发生异常,甚至给工作人员它和本身的安全带来危害,主要有如下几种类型:(1)电动机本身散热功能受影响,使变频器的要求不能满足;(2)电动机长期低速运行,致使其自身性能和参数均受影响,从而影响变频器运行。
2.2变频器参数设置问题变频器运行时,为了使其处于最佳状态,通常需要确保各参数设置合理,当出现参数设置不当时,势必影响到它的正常工作,例如变频器相关功能不正常等。
『PLC在变频调速中的应用三』变频器多段速调速、PNP与NPN接线原创2017-08-27认真PLC技术支持本系列共分四节:变频器的基本知识变频器面板调速变频器多段速模拟量无极调速把PLC与变频器在调速方面的应用基本都介绍了,本系列主要以西门子S7-200系列PLC与MM440变频器为主。
本篇是系列第三讲:多段速多段速在变频器控制中是应用比较广泛的一种调速方式。
本文知识点包括接线图、变频器参数、程序,有条件的可以边看边做实验。
PLC技术是一门实践性技术,多动手多思考进步才快。
用操作面板手动调速比较简单,面板调速不易实现自动控制。
变频器常见的控制方式是,通过端子调整变频器运行模式,本文通过对多段速的应用,介绍端子控制模式。
1、继电器输出型PLC控制多段速例子:用一台继电器输出型CPU,控制一台MM440变频器。
当按下按钮SB1时,电机以5Hz的频率正转。
当按下按钮SB2时,电机以15Hz的频率正转。
当按下按钮SB3时,电机以15Hz的频率反转。
当按下按钮SB4时,电机停止运行。
电动机的技术参数,功率0.06KW、额定转1430r/min、额定电压380V、额定电流0.35A、额定频率50Hz。
设计方案并编写程序。
1.1、主要的软件和硬件配置①软件:STEP 7 MicroWIN V4.0 。
②硬件:变频器MM440一台。
③硬件:CPU226CN一台。
④硬件:三相异步电动机一台。
⑤硬件:编程电缆一根。
电气接线图如下1.2、变频器参数设置根据上图所示设定为:当端子DIN1接通时对应一个频率,当端子DIN1和DIN2同时接通时对应一个频率,当端子DIN3接通时为反转,断开时为正转。
变频器参数较多也比较灵活,当熟悉了参数后可根据自己的工艺随时调整。
本例各个端子功能就根据以上设定。
根据以上配置设定如下参数:P0003=2:专家级P0010=1:修改电机参数P0304=380:额定电压P0305=0.35:额定电流P0307=0.06:额定功率P0310=50:额定频率P0311=1430:额定转速P1000=3:频率源为固定频率P1080=0:电动机最小频率P1082=0:电动机最大频率P1120=10:加速时间:10sP1121=10:减速时间:10sP0700=2:命令源为端子输入P0701=16:固定频率设定值 (直接选择 + ON 命令)P0702=17:固定频率设定值 (直接选择 + ON 命令)P0703=12:反转P1001=5:固定频率1P1001=10:固定频率2P0010=0:运行时为0当Q0.0为1时变频器DIN1接通,电动机以5Hz(固定频率1)的频率运行,固定频率1的设定值在P1001中;当Q0.0和Q0.1同时为1时变频器DIN1和DIN2接通,电动机以15Hz(固定频率1+固定频率2)的频率运行,固定频率2的设定值在P1002中。
PLC自动控制技术在变频器中的应用摘要:电气工程中有很多的电动机需要长期或者间歇运行,有的需要变频控制,有的为了更加精细地控制产品指标和生产参数,采用多元化的控制方式,包括直接启动、软启动、正反转启动、降压启动、变频器控制等。
变频器控制在自动控制中有着举足轻重的作用,包括启停控制、运行、故障、电流、频率给定、频率切换等方式,电机扭矩等大量的电信号需要与PLC进行数据交换,采用一对一硬接线的方式可以实现控制目的,但需要很多的接线进入PLC模块,这会影响系统的性能,工作量很大,容易出错,且成本高。
采用PLC与变频器通信的方式来控制电机,可以实现更好的控制效果。
基于此,本文探讨PLC自动控制技术在变频器中的应用。
关键词:PLC;变频器;自动控制应用一、PLC技术概述(一)工作原理PLC为可编译逻辑控制器,是一种新型的控制系统,由于系统中采用了现代化技术,可对被控制模块实施专业化、自动化管理。
PLC技术可分为输入采样、用户程序运行和输出更新三个阶段。
第一阶段,该技术允许综合学习和分析读取相关数据,以相对牢固地存储相关数据。
第二阶段PLC技术主要进行科学合理的扫描。
计算用户显示的梯形数据,确保其逻辑和可靠性,并在固定文件中显示数据的实际处理条件和结果。
在第三阶段,PLC技术允许初始数据传输、在固定区域中完整显示数据,然后向外传输数据。
CPU技术在PLC技术的开发中起着关键作用,因为它能够相应地处理数据,确保这些过程的可靠性和效率,并能够更好地检测和分析自动化系统的实际运行情况。
随着我国科学的发展,近年来,PLC技术从长远来看已有了积极的发展。
但是,PLC的运行机理与我们平常所见或所用的普通电脑装置有很大的区别。
通常,PLC的工作模式是周期性重复扫描,集中数据采集和更新,并按次序指令执行。
我们把整个扫描过程称为一个循环。
从内部工程师的观点,扫描周期可以分为三个阶段:输入信号扫描,工业控制程序的执行,以及输出信号的更新。
PLC自动控制技术在变频器中的应用摘要:通过将PLC技术高效应用在电气设备自动化控制系统内,可以有效解决传统电力工程自动化控制运行期间的缺陷问题,为实现电气设备全过程、全时段管控目标提供了重要技术支持。
现阶段PLC技术日渐成熟,其在电气设备自动化控制系统中的应用也愈加广泛。
为使电气设备自动化控制系统能够充分发挥出应有的作用,还应当结合控制系统及PLC技术应用特征,对电气设备自动化系统内部结构进行优化及完善。
关键词:变频器;PLC自动控制技术;应用引言PLC又被称为可编程逻辑控制器,在系统中可以作为储存器,也具有编程的相关功能,是信息化技术发展的代表,具有显著优势。
在电气工程自动化领域,PLC技术改变了传统的技术应用框架,显著增强了自动化控制功能,产生深远影响。
因此,为更好地顺应电气工程项目的发展要求,应掌握PLC技术的应用要点,充分发挥该技术的功能。
1概述PLC技术PLC技术又被称之为可编程逻辑控制器,是专门为工业环境下设计出的数字运算操作电子系统。
PLC控制器内部设置了可编程储存装置,用于储存逻辑运算、顺序控制、定时、算术运算等操作指令。
可编程逻辑控制器内部具有的微处理器主要被应用于自动化控制数学运算控制器中,可以将控制指令随时载入并执行。
可编程逻辑控制器内部包括CPU、指令及数据内存、电源、数字模拟转换等功能模块,可满足逻辑控制、时序控制、模拟控制等要求。
2变频器的工作原理变压器在生产领域的应用比较多,通过变压器的使用,可实现普通电能向不同频率交流电的转化,在生产中的变压器使用,利用这一功能达到了变速和调节的目的。
在一些环节的电路控制,变压器是不可或缺的控制设备,变压器中的微型处理器、D/A、A/D接口,为信息处理、传输提供了保障。
在信号处理环节,利用的是启停与正反转操作控制信号的方式,根据PLC的控制原理与控制,前期所接收的信号可率先被转化为模拟信号,再由A/D加工模拟信号,实现模拟信号向数字信号的转化,当得到数字信号后,上传到微处理器中。
PLC与变频器通讯在电机控制中的应用在工业自动化中,PLC(可编程逻辑控制器)和变频器通讯在电机控制中起着至关重要的作用。
PLC和变频器的联接可以实现对电机的精准控制,提高生产效率,降低能耗,减少运行成本。
本文将详细介绍PLC与变频器通讯在电机控制中的应用。
1. 变频器的基本原理变频器是将交流电转换为可变频率和可变电压的设备,它可以实现对电机的速度控制。
通过改变变频器的输出频率和电压,可以调整电机的转速,实现对电机的精确控制。
变频器广泛应用于工业生产中,可以提高设备的性能,降低能耗,延长设备的使用寿命。
2. PLC与变频器通讯的原理PLC作为工业控制系统中的核心部件,可以通过各种通讯接口与其他设备进行连接。
在电机控制中,PLC通常与变频器进行通讯,实现对电机的控制和监控。
PLC可以通过MODBUS、PROFIBUS、以太网等通讯协议与变频器进行通讯,实现对变频器的参数设置、运行状态监控和报警处理。
3. PLC与变频器通讯的应用场景(1)电机启停控制通过PLC与变频器的通讯,可以实现对电机的启停控制。
PLC向变频器发送启动指令,变频器接收指令后控制电机启动,并根据设定的参数进行速度调节。
在停止时,PLC可以向变频器发送停止指令,变频器接收指令后将电机停止。
(2)电机转速控制PLC与变频器通讯还可以实现对电机的转速控制。
通过PLC发送速度设定值,变频器根据设定值调整输出频率和电压,从而实现对电机转速的精确调节。
这种控制方式可以根据生产需求随时调整电机的转速,确保生产线的稳定运行。
(3)故障监测与报警处理在电机控制中,PLC与变频器通讯还可以实现对电机运行状态的实时监控和故障报警处理。
通过监测电机的运行参数,如电流、转速、温度等,当发生异常情况时,PLC可以及时向操作员发出报警信号,提示操作员进行故障处理。
监测到电机运行异常情况时,还可以执行相应的保护措施,避免设备损坏和生产事故的发生。
(4)数据采集与分析通过PLC与变频器通讯,可以实现对电机运行数据的实时采集和存储。