第三章土壤的离子交换
- 格式:pdf
- 大小:27.75 MB
- 文档页数:130
土壤地理学第二章/第三章第二章:影响土壤形成的环境因素:俄国道库恰耶夫成土学说:主要观点:土壤成土因素主要有五个气候、生物、母质、地形。
时间影响土壤发育的五个主要因素:1、母质因素(不同岩石风化壳)2、生物因素(不同植被类型:草地与森林)3、气候因素(影响风化,控制植被生长)4、地形因素(影响物质与能量的分配)5、时间因素(控制土壤发育进程)地质大循环和生物小循环的关系:1.大循环是小循环的基础,也是土壤形成的基础(矿质养分);2.小循环是土壤形成的核心(腐殖质);3.大循环大于小循环,自然界会发生水土流失现象;4.大循环小于或者等于小循环,自然界水土保持。
总之,土壤的形成过程是物质的地质大循环与生物小循环过程矛盾与统一。
形成土壤的两个基本作用:◆风化作用:致密的岩石被破坏,营养元素得以释放,并形成疏松的风化层;◆生物作用:有机质加入,营养元素积聚。
1)土壤胶体及结构①土壤胶体:通常所说的土壤胶体实际上是指直径在1—100 mµm之间的土壤颗粒。
②土壤胶体的种类土壤矿物质胶体(无机胶体):次生铝硅酸盐、铁铝化合物有机胶体:腐殖质、有机酸、蛋白质等有机-无机复合胶体③土壤胶体结构微粒核:胶核双电层:内外吸附层、扩散层2)土壤胶体的性质①巨大的比表面积和表面能②带电性带电的原因是什么?电性如何?③土壤胶体离子交换作用④分散和凝聚作用第一:粘土矿物胶体带电土壤中粘土矿物胶体一般都带负电荷,其电荷来源有以下几个方面:同晶置换作用粘土矿物晶质中的一种离子被另一种离子取代的过程。
在这个过程中,只改变了矿物质的化学成分,而矿物的结晶构造不变,故叫做同晶置换作用。
晶格破碎边缘带电矿物质风化破碎过程中,晶格边缘离子一部分电荷未被中和而产生剩余电荷,使晶体边缘带电。
第二:腐殖质胶体带电意义?由于腐殖质分子量大、功能团多,解离后带电量大,对土壤保肥供肥性有重要影响。
第三:两性胶体带电,什么是两性胶体?表面既带负电荷,亦带正电荷的土壤胶体称两性胶体。
土壤胶体的离子交换作用离子交换作用包括阳离子交换吸附作用和阴离子交换吸附作用。
一、土壤阳离子交换吸附作用的概念1.土壤胶体表面所吸附的阳离子,与土壤溶液中的阳离子或不同胶粒上的阳离子相互交换的作用,称为阳离子交换吸附作用。
2.当土壤溶液中阳离子吸附在胶体上时,表示阳离子养分的暂时保蓄,即保肥过程;当胶体上的阳离子解离至土壤溶液中时,表示养分的释放,即供肥过程。
二、土壤阳离子交换吸附作用的特点1. 可逆反应:在自然状况下,很难把土壤胶体上某一阳离子完全彻底地代换到溶液中去。
同时,土壤胶体上吸附的阳离子也必然是多种多样的,不可能为单一种离子所组成。
在湿润地区的一般酸性土壤中,吸附的阳离子有Al3+、H+、Ca2+、Mg2+、K+等;在干旱地区的中性或碱性土壤中,主要的吸附性阳离子是Ca2+,其次有Mg2+、K+、Na+等。
2. 等量交换:以等量电荷关系进行,如一个Ca2+可交换两个Na+;一个二价的钙离子可以交换两个一价的氢离子。
3. 速度受交换点位置和温度的影响:①位置:如果溶液中的离子能直接与胶粒表面代换性离子接触,交换速度就快;如离子要扩散到胶粒内层才进行交换,则交换时间就较长,有的需要几昼夜才能达成平衡。
高岭石类矿物交换作用主要发生在胶粒表面边缘上,所以速率很快;蒙脱石类矿物的离子交换大部分发生在胶粒晶层之间,其速率取决于层间间距或膨胀程度;水云母类的交换作用发生在狭窄的晶层间,所以交换速率较慢。
(高岭石〉蒙脱石〉水云母)②温度:高温可加快离子交换反应的速率,因为温度升高,离子的热运动变得更为剧烈,致使单位时间内碰撞固相表面的次数增多。
三、影响阳离子交换作用的因素1.阳离子的交换能力:(指一种阳离子将胶体上另一种阳离子交换下来的能力。
)主要决定于阳离子被胶粒吸附的力量(或称阳离子与胶体的结合强度),它实质上是阳离子与胶体之间的静电能。
a.离子电荷价:M3+> M2+> M+(M表示阳离子)b.离子的半径及水化程度:同价离子,离子半径大水化半径小,交换能力越强。
土壤阳离子交换量测定原理
土壤阳离子交换量的测定原理是一种广泛用于检测土壤酸碱度的有效手段,其特性是要求土壤中存在一定比例的阳离子可兑换离子,它可以参与电离方式进行阳离子交换,从而发挥对环境的作用。
土壤阳离子交换量测定原理指的是在不同pH 值土壤中,添加一定量固定电荷溶液,通过测量土壤中阳离子可兑换量,使用pH 计和定标滴定技术,从而计算出土壤的酸碱度。
而土壤的酸碱度是确定其营养元素的释放速度和吸收能力的重要因素之一,如果测量不当,将对土壤的肥力和植物的生长发育产生负面影响。
土壤阳离子交换量的测定原理包括洗液法、替代法和具有统计意义的碘卤化消除法等。
洗液法是土壤准备好后,采用不同酸类溶液或不同碱类溶液来调节土壤中阳离子可兑换量,再用定标滴定技术或电位表测定所得溶液中的离子浓度和碱度,从而测定出土壤的阳离子可兑换量的方法。
替代法是最常用的,即通过上述某种溶液洗液法为基础,在控制pH条件下改变或除去可兑换性阳离子,计算两次测定结果之差,即可得出可兑换性阳离子的数量。
而具有统计意义的碘卤化消除法采用替代法的原理,但其碘卤化消除法更加严谨,不仅可以测定阳离子可兑换量,还可以测定可兑换性碱离子的量。
总而言之,土壤阳离子交换量的测定原理是土壤酸碱度测定的重要方法,它要求土壤中存在一定比例的阳离子可兑换离子,以此进行阳离子交换,进而发挥对土壤的肥力、土壤营养元素的释放和植物的生长发育的作用。
因此,土壤阳离子交换量的测定原理具有重要的意义。
阳离子交换作用的特点
土壤中阳离子的交换作用,可用下式表示:
这种阳离子交换作用的基本特点是可逆反应,迅速平衡,并且是等电量交换。
1,可逆反应:土壤的阳离子交换作用是一种可逆反应,因为这种交换作用只在胶粒表面上进行,可以很快达到平衡。
当然这种平衡是一种动态的平衡。
如上式的
反应,ca2+可以交换下来K十,反过来K*也可以交换下来Ca2+。
这个反应受质量作用定律的支配,即一种离子的浓度大,既或是交换能力较弱而且离子价较低的阳离子,也能交换下来交换能力较高而且离子价也较高的离子。
如吉林省的盐碱土中多苏打,Na+的浓度大,往往可以把土壤胶粒上的Ca2+等阳离子交换下来,而使土壤碱化。
2等当量交换:即各种阳离子之间的交换是在等当量关系下进行的。
例如,NH4+与Ca2+交换时,既不是1毫克的NH4+交换下来1毫克的Ca2+,也不是一个NH4+与一个Ca2+进行交换。
这时只能是1毫克当量的NH4*(18毫克)与1毫壳当量的Ca2+(40/2=20毫克)进行交换,或者说2个NH4+与1个Ca2+进行交换。
土壤的阳离子交换量实验报告
土壤阳离子交换实验属于土壤物理化学实验的一部分,是研究土壤离子的活动度的一
种重要手段。
土壤的阳离子交换量是衡量土壤水热量、有机质、离子活性及土壤结构状况
的量化指标,对提高土壤可持续利用能力具有重要意义。
本实验旨在研究一个典型山地土
壤在不同pH值条件下的阳离子交换量。
实验中,采用的土壤样品来自一个位于山地的森林园地,由该森林园的工作人员采集,整块地将分成三份,每份重200克,由于较大的粒径分布,采集后将各份土壤分别趋近筛选,按粒径由小到大分成7个等级,分别为2、2.5、2.8、3.2、4.0、5.0和6.0毫米。
筛选后取其中一份样品,经晒干后病酸溶法清洗,采用汞堆称法测定阳离子交换量。
实验结果表明,土壤细粒径(<2.0mm)粘壤含量比较高,交换性痕量元素含量较高。
在较低的pH(4.0)条件下,样品的阳离子交换量最高;随着pH值的上升,阳离子交换量逐渐降低,而在较高的pH(8.0)条件下,样品的阳离子交换量最低。
此外,实验结果显示,细粒径土壤的阳离子交换量明显小于粗粒径土壤。
本次实验的结果对深入的研究土壤的阳离子交换量以及土壤的结构状况等具有重要的
指导意义,为采用有效的施肥和入渗性方案提供了参考。
通过这项实验,我们可以正确评
估土壤的营养状况,从而为土壤综合管理提供有力支撑。
土壤阳离子交换量阳离子交换量(CEC)是土壤重要化学性质之一,是指在一定pH值时,每千克干土所能吸附的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)的厘摩尔数,常用单位为cmol(+)/kg。
阳离子交换量是衡量土壤保持或储存阳离子能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
当土壤颗粒带负电荷时,它们会吸引并保留阳离子(带正电荷的离子),阻止它们在土壤剖面中淋失。
土壤颗粒所携带的阳离子称为可交换阳离子,是植物养分最重要的直接来源。
阳离子交换量越高,能保持的阳离子数量越多,土壤的保肥、供肥性能和缓冲能力越强。
一般认为阳离子交换量大于20cmol(+)/kg为保肥能力强的土壤;20~10cmol(+)/kg为保肥能力中等的土壤;小于10cmol(+)/kg为保肥能力弱的土壤。
影响阳离子交换量的因素很多,包括土壤质地、有机质含量、黏土的数量和种类、胶体类型、土壤pH值等。
土壤质地越细,阳离子交换量越高;黏粒含量高的土壤比黏粒含量低的土壤能够保持更多的可交换阳离子;有机质是阳离子交换量的一个非常重要的来源,有机质含量高的土壤阳离子交换量较有机质含量低的砂质土壤高;有机胶体比矿质胶体具有更高的阳离子交换量;土壤pH值也会影响土壤阳离子交换能力,随着土壤pH值的增加,阳离子交换量增加;生物炭表面多孔,具有较大的比表面积、较强的阳离子交换能力,能增加土壤阳离子交换量。
土壤的阳离子交换量决定了土壤能容纳的正离子的数量(阳离子),反过来土壤阳离子交换量会对土壤的肥力管理产生重大影响。
在正常管理措施下,具有高阳离子交换量和高缓冲能力的土壤,其pH值变化比低阳离子交换量的土壤慢得多。
阳离子交换量还会影响氮肥和钾肥的施用时间。
阳离子交换量低的土壤一些阳离子可能会淋失,易造成土壤缺钾、镁等阳离子。
在这些土壤上秋季施铵、氮和钾会导致一些养分从根层淋失,特别是在低阳离子交换量的砂质土壤中。
土壤阳离子交换作用指的是土壤中的离子与土壤中的阳离子交换的过程。
土壤中的阳离子包括钠、钾、镁和铝等。
这些阳离子主要与土壤中的阴离子,如氯离子、硫酸根离子和氢离子等进行交换。
土壤阳离子交换作用对土壤和植物生长有重要影响,因为它影响着土壤中的离子平衡和土壤的酸碱度。
高阳离子交换能力的土壤可以有效地吸附和结合有害的阴离子,这有助于提高土壤的质量和保护植物免受有害阴离子的影响。
土壤阳离子交换作用还可以通过添加碳酸钠或其他阳离子来调节土壤酸碱度,提高土壤适宜植物生长的条件。
同时,土壤阳离子交换作用还可以用来减少土壤中的盐分,这有助于提高土壤的适宜性并促进植物的生长。
土壤的离子交换现象实验一、目的意义了解土壤胶体的若干基本特点,加深课堂讲述时所涉及的土壤胶体性能的理解。
1、土壤胶体溶液的电泳现象将土壤胶体溶液盛在U形管中,通过直流电(50—100V)后,则发现土壤胶粒颗粒向一极集中,这种现象称之为电泳,实验装置如图。
(图4—1)通电后10—15分钟,观察土壤胶体颗粒趋向正极还是负极?从此现象中;可具体了解土壤胶体颗粒带的总电荷是正还是负的?图4—1 电泳现象的实验装置2、土壤胶体代换吸收作用的观察(1)不同质地土壤对NO3--N和NH4+-N的吸收。
分别称取砂质土壤和粘土各10克放入50ml三角瓶中,(或大试管)再加入10μg/g硝酸铵溶液20ml,摇动5分钟后,过滤。
①分别吸取滤液2ml于2支试管中,再吸取10μg/g硝酸铵溶液2ml于第三支试管中,再加50%醋酸0.5ml(或10滴)摇匀,再各加0.2克硝试粉,摇匀,观察三管中溶液的颜色的变化,比较其深浅并说明原因。
②分别吸取滤液2 ml于2支试管中,再吸取10μg/g硝酸铵溶液2毫升第三支试管中、,三管中分别加入10%酒石酸钾钠溶液10滴,摇匀后再加入钠氏剂6滴,观察三管中溶液颜色变化,比较深浅,并说明原因。
(2)不同土壤对磷酸根的吸收固定分别称取赤红壤底土、表土及沙土10g,放于50毫升三角瓶中,再加入20μg/g磷酸二氢钾(KH2PO4)溶液20毫升摇动5分钟后,过滤。
分别吸取滤液2毫升于3支试管中,再吸取20μg/g磷酸二氢钾溶液2毫升于第四支试管中,四管中分别加入钼酸铵溶液10滴,摇匀后,再加入氯化亚锡溶液1滴,摇匀,观察四支管中溶液颜色变化,比较深浅,并说明原因。
3、土壤胶体凝聚现象的观察取试管4支分别装入粘粒悬浮液5毫升(从机械分析得到的粘粒悬浮液稀释5倍为材料)然后分别加入不同电解质(1molL-1NaCl、0.5molL-11/2CaCl2、0.05molL-11/3AlCl3),并不断摇动,观察各管中凝聚现象,当试管中出现凝聚时,不再加电解质,记下所用各种电解质的体积(滴数)按下表列出各种电解质的凝集力的大小并解释原因。