美丽的勾股树
- 格式:ppt
- 大小:1.19 MB
- 文档页数:20
勾股定理基础练习题1.(2009·达州中考)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A .13 B .26 C .47 D .94 如图,在55⨯的正方形网格中,以AB 为边画直角△ABC , 使点C 在格点上,满足这样条件的点C 共 ▲ 个.答案:8.2、(2009·滨州中考)如图,已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8, 则边BC 的长为( )A .21B .15C .6D .以上答案都不对答案:选A4、(2009·湖州中考)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .1.(2010·眉山中考)如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( C )A .90°B .60°C .45°D .30°3、(2009·恩施中考) 如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( B )A .521B .25C .1055+D .354、(2009·滨州中考)某楼梯的侧面视图如图所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .5. (2011贵州贵阳,7,3分)如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是C BA52015 10CAB(A )3.5 (B )4.2 (C )5.8 (D )7 【答案】D1. (2011山东德州13,4分)下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形. 【答案】① ④4. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:。
美丽的勾股树----勾股定理的探索与应用教材分析勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用与生活”是这章书所体现的主要思想。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
学情分析学生通过对勾股定理的学习,已基本掌握了勾股定理及其逆定理,了解了勾股定理的文化背景,体验了勾股定理的证明过程,为进一步探索应用勾股定理做好了铺垫.教学目标1. 经历对问题情景的观察、分析、一般化等思维活动,提出猜想,体验勾股定理的应用.2. 能运用勾股定理的数学模型解决现实世界的实际问题.3. 通过问题的探索,让学生感受勾股定理在实际生活中的应用.4. 在勾股定理的探索过程中,发展合情推理能力,体现数形结合的思想.5. 体会勾股定理的应用价值,体会数学来源于生活,又应用到生活中去,增强学生应用数学知识解决实际问题的经验和感受,同时在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心.教学重点应用勾股定理解决实际问题.教学难点勾股定理的灵活运用.教学过程一、创设情境,激发兴趣教师创设情境,导入新课.同学们,在我们美丽的地球王国上,原始森林,参天古树给我们以神秘的遐想;绿树成荫,微风习习,给我们以美的享受.你知道吗?在古老的数学王国里,有一种树木,它很奇妙,生长速度大的惊人,它是什么呢?下面让我们带着这个疑问一同到数学王国去欣赏吧!【设计意图】教师利用多媒体播放视频,欣赏美丽的勾股树图片,设置疑问:这些美丽的勾股树是怎样做出来的呢?激发学生对勾股定理的应用的探索兴趣和热情.二、回顾与练习师生活动:教师利用多媒体出示问题,学生思考后回答问题:1. 请说说勾股定理的内容.2. 如图所示,a2+b2=,a=,b= ,c= .3. 边长为6cm的正方形的对角线长 .4. 直角三角形两直角边为3和4,则斜边上的高为 .5. 下列各组数据能否构成直角三角形?(1) 5 7 9(2)√2 √3 √5(3) 12 14 18(4) 3a 4a 5a6. 求下列阴影部分的面积(1)阴影部分是正方形(2)阴影部分是矩形(3)阴影部分是半圆7. 等边三角形ABC的边长为a,求它的面积为多少?师生活动:教师指导学生完成第7题的证明过程.【设计意图】通过对勾股定理的回顾与练习,为向下面的问题探索做好知识准备.三、探索与思考问题1 如图1,分别以Rt∆ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?图 1师生活动:教师利用多媒体出示问题,学生思考后回答问题.问题2 如图2,分别以Rt∆ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,猜想S1、S2、S3之间有什么关系?请加以说明.图 2师生活动:教师鼓励学生进行大胆猜想,并利用勾股定理来证明.问题3 如图3 ,分别以Rt∆ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,猜想S1、S2、S3之间有什么关系?请加以说明.师生活动:教师鼓励学生进行大胆猜想,并利用勾股定理、回顾与练习7和三角形面积公式等知识加以证明.【设计意图】 1. 问题1由学生独立完成,问题2和3,让学生经历猜想、证明的过程,用类比的方法进行研究.2. 引导学生建立数学模型,提高学生分析问题、解决问题的能力.3. 规范学生的解题步骤.四、应用与巩固1. 如图,这是一棵奇妙的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形M 的边长是9cm ,则正方形A 、B 、C 、D 的面积和是多少?师生活动:学生独立思考,然后口答.2S 1S 3S A B C 图 32. 如图,分别以直角三角形的三边为边长作正方形,然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆.试探索三个圆的面积之间的关系.师生活动: 指导学生独立完成并请一名学生板书解答过程.3. 如图,已知直角三角形ABC 的三边分别为6、8、10,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积.师生活动:指导学生独立完成并请一名学生板书解答过程.【设计意图】 练习对学生来说,达到了进一步巩固所学知识的目的. 问题2和问题3的设计师让学生有更开阔的思维空间,让所学到的知识进一步得到深化.五、欣赏图片,布置作业1. 欣赏美丽的勾股树在琅琊山4A 级国家森林公园里,有许许多多千姿百态的植物.1S 2S 3S CBA可是你是否见过数学王国里的树-----勾股树呢?【设计意图】多媒体出示勾股树图片,让学生在图片欣赏中感受数学美,体会生活中处处有数学,进一步体会数学来源于生活,应用到生活的道理.2. 布置作业必做题:你知道这是如何画出来的吗?仔细看看,你就会发现那一个个细小的部分正是我们学过的勾股图,一个一个连接在一起,构成了多么奇妙美丽的勾股树!动手画画看,相信你也能画出其他形态的勾股树.选做题:如图,分别以Rt∆ABC三边为边向外作三个一般的三角形,其面积分别用S1、S2、S3表示,为使S1、S2、S3仍具有与问题3相同的关系,所作三角形应满足什么条件?【设计意图】必做题是运用所学知识解决实际问题,选做题是在问题3的基础上将题目的条件稍作改动,引发学生对问题的探索兴趣,从而积极主动的去完成探索和思考.。
期末复习- 《勾股定理》常考题与易错题精选(35题)一.勾股定理(共11小题)1.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是3、5、2、3,则最大正方形E的面积是( )A.10B.13C.15D.262.如图,长方形ABCD的顶点A,B在数轴上,点A表示﹣1,AB=3,AD=1.若以点A为圆心,对角线AC长为半径作弧,交数轴正半轴于点M,则点M所表示的数为( )A.B.C.D.3.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=5,BC=12,则S△ACD :S△ABD为( )A.12:5B.12:13C.5:1 3D.13:54.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=2,且∠AOB=30°,则OC的长度为( )A.B.C.4D.5.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为( )A.5B.7C.5或7D.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则点C到直线AB的距离是( )A.B.3C.D.27.已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.8.如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.9.如图,在四边形ABCD中,∠B=90°,∠BCA=60°,AC=2,DA=1,CD=3.求四边形ABCD 的面积.10.如图,每个小正方形的边长都为1.求出四边形ABCD的周长和面积.11.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.二.勾股定理的证明(共3小题)12.如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.13.【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.14.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD和AC都可以分割四边形ABCD)三.勾股定理的逆定理(共8小题)15.下列各组中的三条线段,能构成直角三角形的是( )A.7,20,24B.,,C.3,4,5D.4,5,616.三角形的三边长分别为a、b、c,则下面四种情况中,不能判断此三角形为直角三角形的是( )A.a=3,b=4,c=5B.a=8,b=15,c=17C.a=5,b=12,c=13D.a=12,b=15,c=1817.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.18.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=3m,AD=4m,CD=12m,BC=13m,又已知∠A=90°.求这块土地的面积.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.20.如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.21.如图,在△ABC中,AD为BC边上的高,若BD=4,DC=5,AD=2,判断△ABC的形状,并说明理由.22.如图,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求∠ACB的度数.四.勾股数(共3小题)23.下列四组数中不是勾股数的是( )A.3,4,5B.2,3,4C.5,12,13D.8,15,1724.下列各组数中,是勾股数的为( )A.,2,B.8,15,17C.,D.32,42,5225.观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.五.勾股定理的应用(共10小题)26.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B=90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?27.由四条线段AB、BC、CD、DA所构成的图形,是某公园的一块空地,经测量∠ADC=90°,CD=3m、AD=4m、BC=12m、AB=13m.现计划在该空地上种植草皮,若每平方米草皮需200元,则在该空地上种植草皮共需多少元?28.如图,某校攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了2米,教练把绳子的下端C拉开8米后,发现其下端刚好接触地面(即BC=8米),AB⊥BC,求攀岩墙AB的高度.29.如图,甲、乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东42°方向航行,乙船向南偏东48°方向航行,0.5小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距17海里,问乙船的航速是多少?30.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图),他们进行了如下操作:①测得水平距离BD的长为8米;②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的小明的身高为1.5米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降9米,则他应该往回收线多少米?31.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?32.一架云梯长25m,如图所示斜靠在一面墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多少米?33.在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C 到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求原来的路线AC的长.34.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面3米,问:发生火灾的住户窗口距离地面BD有多高?35.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)。
一.选择题(共16小题)1.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26C.47 D.942.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15C.6 D.以上答案都不对3.若直角三角形的三边长分别为2,4,x,则x的可能值有()⑴A.1个B.2个C.3个D.4个4.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cmC.4cm D.5cm5.把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()⑷A.2倍B.4倍C.3倍D.5倍6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或337.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是()A.175 B.575C.625 D.7008.下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.⑺A.1个B.2个C.3个D.4个9.小明的爸爸买了一部29英寸(74厘米)的电视机,下列对29英寸的说法中正确的是()A.小明认为指的是荧屏的长度B.妈妈认为指的是荧屏的宽度C.爸爸认为指的是荧屏的周长D.售货员认为指的是荧屏对角线的长度10.已知直角三角形的两直角边的长恰好是方程x2﹣5x+6=0的两根,则此直角三角形的斜边长为()A.B.3 C.D.311.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6C.3 D.4⑾12.如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=,则AC=()A.1 B.2C.3 D.413.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm214.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.1515.下列五个命题:(1)若直角三角形的两条边长为5和12,则第三边长是13;(2)如果a≥0,那么=a(3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等.其中不正确命题的个数是()A.2个B.3个C.4个D.5个16.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A.B.3 C.+2 D.二.填空题(共4小题)⒄⒅19.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.20.如图中的螺旋由一系列直角三角形组成,则第n个三角形的面积为_________.⒆⒇三.解答题(共4小题)21.先请阅读下列题目和解答过程:“已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)②∴c2=a2+b2③∴△ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.22.如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.23.如图,已知∠C=90°,BC=3cm,BD=12cm,AD=13cm.△ABC的面积是6cm2.(1)求AB的长度;(2)求△ABD的面积.24.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:(2)如果a+b﹣c=m,观察上表猜想:=_________,(用含有m的代数式表示);(3)说出(2)中结论成立的理由.答案与评分标准一.选择题(共16小题)1.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26C.47 D.94考点:勾股定理。
几何画板绘制美丽的勾股树目录•引言•勾股树基本构造与性质•使用几何画板进行勾股树绘制•创意拓展:个性化勾股树设计•案例分析:优秀勾股树作品展示•总结回顾与展望未来发展趋势引言勾股定理简介01勾股定理是数学中的基本定理之一,指出在直角三角形中,直角边的平方和等于斜边的平方。
02勾股定理在几何、三角学、代数学等领域有着广泛的应用,是数学学习和研究的重要基础。
勾股树概念及意义勾股树是一种基于勾股定理的几何图形,由多个相互嵌套的直角三角形构成,呈现出树状结构。
勾股树不仅具有独特的数学美感,还有助于加深对勾股定理的理解和应用,激发对数学的兴趣和热爱。
几何画板在勾股树绘制中应用几何画板是一种专业的几何绘图工具,具有强大的图形绘制和编辑功能,适合用于绘制各种复杂的几何图形。
在勾股树的绘制中,几何画板可以方便地绘制出精确的直角三角形,并通过复制、旋转等操作快速构建出整个勾股树结构。
此外,几何画板还支持多种颜色、线条样式等设置,使得绘制出的勾股树更加美观和生动。
勾股树基本构造与性质勾股树定义及构造方法勾股树定义勾股树是一种基于勾股定理的几何构造,通过不断迭代生成的一种树状结构。
构造方法从一个直角三角形开始,分别以直角三角形的三边为边长,向外作正方形。
然后,以新生成的正方形的边长为直角边,构造新的直角三角形,并重复上述过程。
在勾股树中,每个直角三角形的斜边都是其两个直角边的平方和的平方根,这符合勾股定理。
边长关系角度关系对称性勾股树中所有直角三角形的锐角都相等,这使得整个图形具有一种和谐的美感。
勾股树具有轴对称性,以直角三角形的斜边所在直线为对称轴,两侧图形完全对称。
030201勾股树性质探讨解析可以通过相似三角形的性质来证明。
在勾股树中,每个直角三角形都可以通过前一个直角三角形通过相似变换得到,因此它们的对应角相等。
例题1给定一个直角三角形,其直角边长为a 和b ,斜边长为c 。
请构造一个勾股树,并求出第n 级迭代后,树中所有正方形的面积之和。
第一章勾股定理第1节探索勾股定理课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A.13B.26C.34D.472.下列说法正确的是().A.若a、b、c是ABC的三边长,则222+=a b cB.若a、b、c是Rt ABC△的三边长,则222+=a b cC.若a、b、c是Rt ABC△的三边长,90A∠=︒,则222+=a b cD.若a、b、c是Rt ABC△的三边长,90C∠=︒,则222+=a b c3.如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9B.8C.27D.454.直角三角形中,有两边的长分别为3和4,那么第三边的长的平方为( ) A .25 B .14C .7D .7或25 5.如图,在Rt ABC ∆中,90ACB ∠=,正方形,AEDC BCFG 的面积分别为25和144,则AB 的长度为( )A .13B .169C .12D .56.在中Rt ABC △,90C ∠=︒,若4AC =,3BC =,则AB 的长为( )A .5B .5C .6D .77.在Rt ABC ∆中,a ,b ,c 分别是A ∠,B ,C ∠的对边,若90A ∠=︒,则( ) A .222+=a b cB .222b c a +=C .222a c b +=D .b a c +=8.△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .a b c +=B .a b c +>C .a b c +<D .222+=a b c9.在Rt △ABC 中,若斜边AB =3,则AC 2+BC 2等于( )A .6B .9C .12D .1810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225 C .365 D .334 评卷人得分二、填空题 11.在直角三角形ABC 中,△C=90°,BC=12,AC=9,则AB=______.12.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km .13.在由小方格组成的网格中,我们发现对直角三角形的三边,有“直角三角形两直角边的平方和等于______”结论成立,并通过拼图证明是正确的,我们把它叫做______定理.14.等腰三角形ABC的面积为212cm,底上的高3cmAD,则它的周长为______ cm.15.(1)如图所示,已知两个正方形的面积分别是144和36,则正方形A的面积为________;(2)如图所示,已知两个正方形的面积分别是225和81,则正方形B的面积为________.16.如图所示,图1中x的值为_______,图2中的y的值为_______.17.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是____m.18.若直角三角形的斜边长为17cm,一条直角边长为15cm,则面积为______.19.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.评卷人得分三、解答题20.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,求()2a b+的值.21.如图,要为一段高5m,长13m的楼梯铺上红地毯.问:红地毯至少需要多少米?22.如图,你能计算出各直角三角形中未知边的长吗?23.如图所示,3AC =,2BC =,5AD =,求正方形BEFD 的面积.24.规范表达(严格按格式):如图,已知△A=90°,AC=5,AB=12,BE=3.求长方形的面积.25.已知一个等腰三角形的底边和腰的长分别为12 cm 和10 cm ,求这个三角形的面积.参考答案:1.D【解析】【分析】根据勾股定理:两条直角边的平方和等于斜边的平方,而正方形的面积等于边长的平方,故可得到以斜边为边长的正方形的面积等于两个以直角边为边长的面积之和.【详解】由勾股定理得:正方形F的面积=正方形A的面积+正方形B的面积=32+52=34,同理,正方形G的面积=正方形C的面积+正方形D的面积=22+32=13,△正方形E的面积=正方形F的面积+正方形G的面积=47.故选D.【点睛】此题考查的是勾股定理,掌握以直角三角形斜边为边长的正方形的面积等于两个以直角边为边长的正方形面积之和是解决此题的关键.2.D【解析】【分析】根据勾股定理,直角三角形中,两直角边的平方和等于斜边的平方,即可解答.【详解】解:由勾股定理,A、没有确定直角和斜边,故A 错误;B、没有确定斜边,故B错误;C、斜边为a,则222a b c=+,故C错误;D、90C∠=︒,则a与b为直角边,c为斜边,则222+=a b c,故D正确;故选择:D.【点睛】本题考查了勾股定理,解题的关键是熟练掌握勾股定理.3.A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可.【详解】△正方形A、B、C的面积依次为2、4、3,△根据图形得:2+4=x−3.解得:x=9.故选A.【点睛】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键.4.D【解析】【分析】根据勾股定理可以得到解答.【详解】解:由勾股定理知,第三边的长的平方为22437-=,+=或者223425故选D.【点睛】本题考查勾股定理的应用,注意第三边的平方既可能是已知两边的平方和,也可能是已知两边的平方差.5.A【解析】【分析】由正方形的面积公式可知AC2=25,BC2=144,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,由此可求AB2.即可得出AB的长.【详解】解:△在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,又△AC2=144,BC2=25,△AB2=25+144=169,△AB=169=13.故选A.【点睛】本题考查勾股定理的应用,解题关键是明确直角三角形的边长的平方即为相应的正方形的面积.6.B【解析】【分析】Rt△ABC,△C=90°,则根据勾股定理AB2=AC2+BC2即可求AB的长度.【详解】在直角△ABC中,△C=90°,由勾股定理可得222224325AB AC BC=+=+=,所以5AB=.故选B.【点睛】本题考查勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.7.B【解析】【分析】根据题意画出图形,利用勾股定理求解即可.【详解】解:如图所示,△△A=90°,△b2+c2=a2.故选B.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.本题易忽视90A ∠=︒,受思维定式的影响,想当然地认为C ∠为直角,从而错选A.解答此类简单题时,一定不能掉以轻心,8.B【解析】【详解】对于任意一个三角形,三角形的三边关系满足:两边之和大于第三边.故选B.点睛:本题主要考查了三角形的三边关系,三角形的两边之和大于第三边,两边之差小于第三边,特别要注意,不要把三角形看成是一个直角三角形,误认为三角形的三边满足勾股定理,很容易错选为D.9.B【解析】【分析】利用勾股定理将AC 2+BC 2转化为AB 2,再求值. 【详解】△Rt △ABC 中,AB 为斜边,△AC 2+BC 2=AB 2,△AB 2+AC 2=AB 2=32=9.故选B .【点睛】本题考查了勾股定理;熟练掌握勾股定理,由勾股定理得出AC 2+BC 2=AB 2是解决问题的关键.10.C【解析】【分析】首先根据勾股定理求出斜边AB 的长,再根据三角形的面积为定值即可求出则点C 到AB 的距离.【详解】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:2215AB AC BC=+=,过C作CD△AB,交AB于点D,又S△ABC=12AC•BC=12AB•CD,△91236155AC BCCDAB⋅⨯===,则点C到AB的距离是365.故选:C.【点睛】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.11.15【解析】【详解】2291215AB=+=12.5【解析】【详解】试题解析:如图,在Rt△OAB中,90AOB∠=,△OA=4千米,OB=3千米,△225AB AO BO=+=千米.所以甲、乙两人相距5千米.故答案为5.13.斜边的平方勾股【解析】【分析】根据勾股定理的内容,即可得到答案.【详解】解:在直角三角形中,两直角边的平方和等于斜边的平方,我们把这个定理叫做勾股定理.故答案为斜边的平方,勾股.【点睛】本题考查了勾股定理的内容和证明,解题的关键是熟练掌握勾股定理.14.18【解析】【分析】首先根据面积即可求得三角形的底边.根据等腰三角形的三线合一,即可求得底边的一半.再运用勾股定理求得等腰三角形的腰长,从而求得等腰三角形的周长.【详解】设底为a,则12a⋅3=12,a=8,△BD=2a=4,根据勾股定理得,AB=22AD BD+=2234+=5cm,△腰为5,△周长为5+5+8=18cm.【点睛】本题考查勾股定理和等腰三角形的三线合一,解题的关键是掌握勾股定理和等腰三角形的三线合一.15.(1)180(2)144【解析】【分析】(1)根据正方形面积可以求得两条直角边的平方,斜边的平方根据勾股定理就可以计算出来,进而可得答案;(2)根据正方形面积可以得斜边的平方和一条直角边的平方,则另一条直角边的平方根据勾股定理就可以计算出来,进而可得答案.【详解】(1)如图,根据题意,CD2=144,DF2=36,且△CDF=90°,△CF2= CD2+ DF2=144+36=180故A的面积为180.(2)如图,根据题意MN2=81,ML2=225,且△MNL=90°,△NL2=ML2-MN2=225-81=144故B的面积为144.【点睛】本题考查勾股定理,在本题中每一条边所对正方形的面积正好等于该边的平方,而三边的平方符合勾股定理.16.413【解析】【分析】(1)先根据勾股定理计算出x的平方,再计算x;(2)先根据勾股定理计算出y的平方再计算y.【详解】(1)因为图1为直角三角形,所以根据勾股定理x2+32=52,即x2=52-32=16,所以x=4;(2)因为图2为直角三角形,所以根据勾股定理y2=52+122=169,所以y=13.【点睛】本题考查勾股定理,在直角三角形中已知两直角边可根据勾股定理求出斜边(或斜边的平方).17.12【解析】【详解】△直角三角形的斜边长为15m,一直角边长为9m,△另一直角边长=2215912-=,故梯子可到达建筑物的高度是12m.故答案是:12.18.260cm【解析】【分析】先根据勾股定理求出另一条直角边的长度,然后利用直角三角形面积公式算出即可.【详解】∵直角三角形的斜边长为17cm,一条直角边长为15cm,∴另一直角边长为:2217158-=cm,∴直角三角形面积为:11582⨯⨯=60 2cm,故答案为260cm.【点睛】本题主要考查了勾股定理,根据直角三角形的两条边长求出另一条直角边长度是解题的关键.19.17【详解】试题解析:根据勾股定理可知,△S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,△S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.△正方形D的面积=49-8-10-14=17(cm2).20.25【解析】【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.【详解】解:根据勾股定理可得:a2+b2=13,ab×4=13-1=12,即:2ab=12,四个直角三角形的面积是:12则(a+b)2=a2+2ab+b2=13+12=25.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.21.需要爬行的最短路径是17cm.【解析】【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此利用勾股定理求出水平距离即可.【详解】根据勾股定理,楼梯水平长度为2213512(米),则红地毯至少要12+5=17米长,故答案为17m.【点睛】本题考查生活中的平移现象和勾股定理,解题的关键是掌握平移的性质和勾股定理. 22.(1)5;(2)24.【详解】试题分析:根据勾股定理:直角三角形中,两直角边的平方和等于斜边的平方直接进行计算即可.试题解析:解:(1)根据勾股定理得:x 2=32+42=9+16=25,解得:x =5或x =-5(舍去),则x =5;(2)根据勾股定理得:252=72+x 2,即x 2=576,解得:x =24或x =-24(舍去),则x =24.23.12BEFD S =正方形.【解析】【分析】在Rt ABC ∆中根据勾股定理计算出AB 2的长度,在Rt ABD ∆中根据勾股定理计算出BD 2,从而得出正方形BEFD 的面积.【详解】在Rt ABC ∆中,根据勾股定理,得22222329413AB AC BC =+=+=+=.在Rt ABD ∆中,根据勾股定理,得222251312BD AD AB =-=-=.所以212BEFD S BD ==正方形. 【点睛】本题考查用勾股定理计算线段的长度,在本题中利用勾股定理计算线段的长度时,可只求线段的平方.24.39【解析】【详解】试题解析:在RtΔABC 中,利用勾股定理BC 的长,再求出长方形BCDE 的面积即可.试题解析:在RtΔABC中,△A=90°,AB=12,AC=5,△BC=2222AC AB+=+=51213△长方形BCDE的面积=13×3=39.25.48cm2【解析】【详解】试题分析:先根据题意画出图形,再根据勾股定理得出三角形的高,即可求解其面积.如图:等边△ABC 中BC="12" cm,AB="AC=10" cm作AD△BC,垂足为D,则D为BC中点,BD="CD=6" cm在Rt△ABD中,AD2=AB2-BD2=102-62=64△AD="8" cm△S△ABD=BC·AD=×12×8=48(cm2)考点:本题考查的是勾股定理点评:解答本题的关键是熟练掌握勾股定理:即任意直角三角形两直角边的平方和等于斜边的平方.。