15届成都一诊高三理科数学一诊考试试题和答案
- 格式:doc
- 大小:3.77 MB
- 文档页数:9
成都一诊模拟题1理科数学试题第一部分(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分. 1.集合2{||3|4},{|20,},M x x N x x x x Z M N =-<=+-<∈则=A .{|11}x x -≤≤B .{|27}x x ≤≤C .{2}D .{0}2.复数143ii ++的虚部是 A .125i B .125C .125-D .—125i 3.已知平面向量(1,2)a =-,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是 A .c ∥b B .⊥a bC .对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b +cD .向量c 与向量-a b 的夹角为 45︒4..下列有关命题的叙述错误的是( )A .对于命题 p :∃x ∈R , 210x x ++<,则p ⌝为: ∀x ∈R ,210x x ++≥B .命题“若2x -3x + 2 = 0,则 x = 1”的逆否命题为“若 x ≠1,则2x -3x+2≠0”C .若 p ∧q 为假命题,则 p ,q 均为假命题D .“x > 2”是“ 2x -3x + 2 > 0”的充分不必要条件5.执行如图的程序框图,则输出的T 值等于 A .91 B . 55 C .54 D .306.某小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过l5m 3的住户的户数为 A .10 B .50 C .60 D .140 7.要得到函数y=3cos (2x 一4π)的图象,可以将函数3sin 2y x =的图象 A .沿x 轴向左平移8π个单位 B .沿x 向右平移8π个单位C .沿x 轴向左平移4π个单位D .沿x 向右平移4π个单位8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为 A .720 B .600 C .520 D .360 9. 已知存在正数,,a b c ,满足12,ln ln cc b a c c e a≤≤=+,则ln b a 的取值范围是A .[1,)+∞B .1[1,ln 2]2+ C .(,1]e -∞- D . [1,1]e - 10.若函数()y f x =,存在区间[],m n ,同时满足下列条件:①()[],f x m n 在内是单调的;②当[],x m n ∈时,()[][],,f x m n m n 的值域也是,则称是该函数的“和谐区间”.若函数()()110a f x a a x +=-> 有“和谐区间”,则函数()()32111532g x x ax a x =++-+的极值点12,x x 满足A. ()()120,1,1,x x ∈∈+∞B. ()()12,0,0,1x x ∈-∞∈C. ()()12,0,,0x x ∈-∞∈-∞D. ()()121,,1,x x ∈+∞∈+∞ 第二部分(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.函数y =的定义域为12.已知51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为_ .13.51cos 123πα⎛⎫+=⎪⎝⎭,且2ππα-<<-,则cos 12πα⎛⎫-= ⎪⎝⎭_ .14.若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则132+++=x y x z 的取值范围是 _ .15.设V 是全体平面向量构成的集合,若映射R V :→ f 满足对任意向量,V ),(11∈=y x a,V ),(22 ∈=y x b 以及任意R ∈λ,均有)()1()())1((b f a f b a fλλλλ-+=-+.则称映射f 具有性质P .现给出如下映射:①V y x m y x m f R V f∈=-=→),(,)(,:11; ②V y x m y x m f R V f ∈=+=→),(,)(,:222;③V y x m y x m f R V f∈=++=→),(,1)(,:33其中,具有性质P 映射的序号为 .(写出所有具有性质P 映射的序号).三、解答题:共6小题,满分75分,解答应写出必要的文字说明,证明过程或演算步骤. 16.(本小题满分12分)在等比数列14{},2,16.n a a a ==中已知 (I )求数列{}n a 的通项公式;(II )若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n n a b ⋅的通项公式及.n n S 前项和 17.(本小题满分12分)已知函数2()2sin cos .f x x x x x R =+∈ (I )求函数f (x )的周期和最小值(II )在锐角△ABC 中,若()1,2f A AB AC =⋅=,求△ABC 的面积.18.(本小题满分12分)公安部最新修订的《机动车驾驶证申领和使用规定》于2013年1月1日起正式实施,新规实施后,获取驾照要经过三个科目的考试,先考科目一(理论一),科目一过关后才能再考科目二(桩考和路考),科目二过关后还要考科目三(理论二).只有三个科目都过关后才能拿到驾驶证.某驾校现有100(Ⅰ)估计该驾校这100名新学员有多少人一次性(不补考)获取驾驶证;(Ⅱ)第一批参加考试的20人中某一学员已经通过科目一的考试,求他能通过科目二却不能通过科目三的概率;(Ⅲ)驾校为调动教官的工作积极性,规定若所教学员每通过一个科目的考试,则学校奖励教官100元.现从这20人中随机抽取1人,记X 为学校因为该学员而奖励教官的金额数,求X 的数学期望.19.(本小题满分12分)已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c .(Ⅰ)若a 、b 、c 依次成等差数列,且公差为2.求c 的值;(Ⅱ)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.20.(本小题满分13分)已知函数321()(0)3F x ax bx cx d a =-++≠的图像过原点, ()(),()(),(1)0f x F x g x f x f ''===,函数()()y f x y g x ==与的图像交于不同的两点A 、B .(I )()1y F x x ==-在处取得极大值2,求函数()y F x =的单调区间;(II )若使11()0[,]22g x x x =∈-的值满足,求线段AB 在x 轴上的射影长的取值范围. 21.(本小题满分14分) 已知函数(1)()x a x f x e e λλλ+-=-,其中,a λ是常数,且01λ<<.(I )求函数()f x 的极值;(II )对任意给定的正实数a ,是否存在正数x ,使不等式11x e a x--<成立?若存在,求出x ,若不存在,说明理由;(III )设12,(0,)λλ∈+∞,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ. .成都一诊模拟题1理科数学试题参考答案一、选择题(每小题5分 共50分) DBCCB CABDB 二、填空题:(本大题共5小题,每小题5分,共25分) 11. (0,3] 12. 1013. 14.]11,23[; 15.①③.三、解答题:共6个题,共75分。
成都一诊模拟题2理科数学试题第I卷一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)1、设全集U R =,{,A x y =={}2,x B y y x R ==∈,则()R C A B =( ▲ )A 、{}0x x < B 、{}01x x <≤ C 、{}12x x ≤< D 、{}2x x >2、定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗,则函数2)2(2)(-⊗⊕=x xx f 为( ▲ )A 、奇函数B 、偶函数C 、既奇且偶函数D 、非奇非偶函数3、对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的( ▲)A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要4、下列4个命题:(1)若a b <,则22am bm <;(2) “2a ≤”是“对任意的实数x ,11x x a ++-≥成立”的充要条件;(3)命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02<-x x ”;(4)函数21()21x x f x -=+的值域为[1,1]-。
其中正确的命题个数是( ▲ )A 、1B 、2C 、3D 、05、定义在实数集R 上的函数()f x ,对一切实数x 都有)()(x f x f -=+21成立,若()f x =0仅有101个不同的实数根,那么所有实数根的和为( ▲ ) A .101 B .151 C .303 D .23036、方程083492sin sin =-+⋅+⋅a a a x x有解,则a 的取值范围( ▲ )A 、0>a 或8-≤aB 、0>aC 、3180≤<aD 、2372318≤≤a7、方程1log )11(2+=+-x xx的实根0x 在以下那个选项所在的区间范围内(▲)A.)21,85(--B.)83,21(--C.)41,83(--D.)81,41(--8、已知函数1()()2(),f x f x f x x=∈满足当[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax=-与x 轴有3个不同的交点,则实数a 的取值范围是(▲)A 、1(0,)eB 、1(0,)2eC 、ln 31[,)3e D 、ln 31[,)32e9、设1>a ,若仅有一个常数c 使得对于任意的]2,[a a y ∈,都有],[2a a x ∈满足方程c y x a a =+log log ,这时c a +的取值为( ▲ ) A .3 B .4 C .5 D .610、定义][x 表示不超过x 的最大整数,记{}][x x x -=,其中对于3160≤≤x 时,函数1}{sin ][sin )(22-+=x x x f 和函数{}13][)(--⋅=xx x x g 的零点个数分别为.,n m 则(▲) A .313,101==n m B .314,101==n m C .313,100==n m D .314,100==n m第Ⅱ卷二.填空题(本大题3个小题,每题5分,共15分,请把答案填在答题卡上)11、已知函数0≤x 时,xx f 2)(=,0>x 时,13()log f x x =,则函数1)]([-=x f f y 的零点个数有▲个.12、给定方程:1()sin 102xx +-=,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解; ④若0x 是该方程的实数解,则0x >–1。
2015年四川省成都七中高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,474.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.25.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.46.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln28.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x2﹣)6展开式中的常数项为.(用数字作答)12.(5分)在如图所示的程序框图中,若输出S=,则判断框内实数p的取值范围是.13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是.14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x )=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.2015年四川省成都七中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]【解答】解:由B中不等式变形得:log2x≥1=log22,得到x≥2,即B=[2,+∞),∵A=[﹣3,4],∴A∩B=[2,4],故选:D.2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)【解答】解:由复数=.∴复数在复平面上对应的点的坐标为().故选:B.3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,47【解答】解:由题意可知茎叶图共有30个数值,所以中位数为:=46.出现次数最多的数是45,故众数是45.故选:B.4.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.2【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,三棱柱的底面为等腰三角形,且三角形的底边长为2,底边上的高为1,∴几何体的体积V=××2×1×2=.故选:B.5.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.4【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选:B.6.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【解答】解:由已知中函数f(x)=A sin(ωx+φ)(其中)的图象,过(,0)点,()点,易得:A=1,T=4()=π,即ω=2即f(x)=sin(2x+φ),将()点代入得:+φ=+2kπ,k∈Z又由∴φ=∴f(x)=sin(2x+),设将函数f(x)的图象向左平移a个单位得到函数g(x)=sin2x的图象,则2(x+a)+=2x解得a=﹣故将函数f(x)的图象向右平移个长度单位得到函数g(x)=sin2x的图象,故选:A.7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln2【解答】解:作出不等式组所对应的可行域(如图),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点A(,﹣ln2)时,截距最大,z取最小值,故目标函数z=2x﹣y的最小值为1+ln2故选:D8.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)【解答】解:对于a与b各有6中情形,故总数为36种设两条直线l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4,或a=3,b =6,故概率为P==设两条直线l1:ax+by=2,l2:x+2y=2相交的情形除平行与重合即可,∵当直线l1、l2相交时b≠2a,图中满足b=2a的有(1,2)、(2,4)、(3,6)共三种,∴满足b≠2a的有36﹣3=33种,∴直线l1、l2相交的概率P==,∵点(P1,P2)在圆(x﹣m)2+y2=的内部,∴(﹣m)2+()2<,解得﹣<m<故选:D.9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)【解答】解:构造函数g(x)=,则g′(x)=.因为∀x∈R,均有f(x)>f′(x),并且e x>0,所以g′(x)<0,故函数g(x)=在R上单调递减,所以g(﹣2014)>g(0),g(2014)<g(0),即>f(0),<f(0),即e2014f(﹣2014)>f(0),f(2014)<e2014f(0).故选:D.10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3【解答】解:∵整数a,b,c,t满足:2a+2b=2c,t=,∴t=≤=当且仅当a=b时,取最大值,∴当a=b>0时,t max==,c=a+1,∵a,b,c,t是整数,∴a=1,t=1,∴log 2t 的最大值为log 21=0. 当a =b =﹣2时,c =﹣1,t ==4,∴log 2t 的最大值为log 24=2. 综上所述,log 2t 的最大值是2. 故选:C .二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x 2﹣)6展开式中的常数项为 15 .(用数字作答) 【解答】解:展开式的通项公式为T r +1=(﹣1)r C 6r x 12﹣3r 令12﹣3r =0得r =4∴展开式中的常数项为C 64=15 故答案为1512.(5分)在如图所示的程序框图中,若输出S =,则判断框内实数p 的取值范围是 (5,6] .【解答】解:S =++…=(1﹣﹣)=(1﹣),令S =得n =5,所以实数p的取值范围是(5,6].故答案为:(5,6].13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是[0,]∪[,2π].【解答】解:∵{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,∴a n+1≥a n,对任意的n∈N*都成立,∴(n+1)2+2sinθ•(n+1)﹣n2﹣2sinθ•n,∴2n+1+2sinθ≥0,转化为2sinθ≥﹣2n﹣1,恒成立,因为n≥1,n∈N*,∴﹣2n﹣1≥﹣3,∴2sinθ≥﹣3,解得sinθ≥﹣,∵θ∈[0,2π]解得0≤θ≤,或≤θ≤2π,故答案为:[0,]∪[,2π];14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于3:2:1.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE;则+2=+=,∵+2+3=,∴﹣=3,又∵==2,∴=2,∴=,∴S△ABC =2S△AOB;同理:S△ABC =3S△AOC,S△ABC=6S△BOC;∴△AOB,△AOC,△BOC的面积比=3:2:1.故答案为:3:2:1.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是④.(写出所有真命题的序号)【解答】解:由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根.①函数y=(x﹣2)2+lnx,则(x>0),方程,即2x2﹣(4+a)x+1=0,当a=﹣4+时有两个相等正根,不符合题意;②定义在(﹣∞,0)∪(0,+∞)的奇函数,如y=x,x∈(﹣∞,0)∪(0,+∞)在各点处没有切线,∴②错误;③三次函数f(x)=x3﹣x2+ax+b,则f′(x)=3x2﹣2x+a,方程3x2﹣2x+a﹣m=0在(﹣2)2﹣12(a﹣m)≤0时不满足方程y′=a(a是导数值)至少有两个根.命题③错误;④函数y=e x﹣1(x<0),y′=e x∈(0,1),函数y=x+,=,由,得,∴x>1,则m=1.故要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1,④正确.∴正确的命题是④.故答案为:④.三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.【解答】解:(Ⅰ)设{a n}的公差为d,依题意,有a2=a1+d=﹣5,S5=5a1+10d=﹣20,联立得解得,所以a n=﹣6+(n﹣1)•1=n﹣7.(Ⅱ)因为a n=n﹣7,所以,令,即n2﹣15n+14>0,解得n<1或n>14,又n∈N*,所以n>14,所以n的最小值为15.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.【解答】解:(Ⅰ)∵a sin A=(a﹣b)sin B+c sin C,由正弦定理,得a2=(a﹣b)b+c2,即a2+b2﹣c2=ab.①由余弦定理得cos C=,结合0<C<π,得C=.…(6分)(Ⅱ)由C=π﹣(A+B),得sin C=sin(B+A)=sin B cos A+cos B sin A,∵sin C+sin(B﹣A)=3sin2A,∴sin B cos A+cos B sin A+sin B cos A﹣cos B sin A=6sin A cos A,整理得sin B cos A=3sin A cos A.…(8分)若cos A=0,即A=时,△ABC是直角三角形,且B=,=bc=.…(10分)于是b=c tan B=2tan=,∴S△ABC若cos A≠0,则sin B=3sin A,由正弦定理得b=3a.②联立①②,结合c=2,解得a=,b=,=ab sin C=×××=.∴S△ABC综上,△ABC的面积为或.…(12分)18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)【解答】(1)证明:连接AC交BE于点M,连接FM.由EM∥CD,∴===,∴FM∥AP,又∵FM⊂平面BEF,P A⊄平面BEF,∴P A∥平面BEF;(2)以E为坐标原点,EB,EA,EP所在直线为x,y,z轴,建立空间直角坐标系,则设P(0,0,t),由于PE⊥平面ABCD,则向量=(0,0,﹣t)即为平面BEC的法向量,由于AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,则四边形BCDE为矩形,B(3,0,0),C(3,﹣2,0),由于F为PC上一点,且CF=2FP,则有F(1,,t),则=(1,,t),=(3,0,0),设平面BEF的法向量为=(x,y,z),则即有=0,即x﹣y=0,又=0,即3x=0,则可取=(0,1,),由二面角F﹣BE﹣C为60°,则与的夹角为120°,即有cos120°===﹣,解得,t=.即P(0,0,).PB==2,由于PE⊥平面ABCD,则∠PBE即为直线PB与平面ABCD所成角.在直角三角形PBE中,cos∠PBE===.故直线PB与平面ABCD所成角为arccos=.19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.【解答】解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P(X=2)=+,.∴随机变量X的分布列为∴E(X)==1.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.【解答】解:(Ⅰ)由已知得,又a2=b2+c2,解得a=2,b=1,c=,∴椭圆C的方程为.(Ⅱ)证明:设A(x1,y1),B(x2,y2),①当直线AB的斜率不存在时,则由椭圆的对称性知x1=x2,y1=﹣y2,∵以AB为直线的圆经过坐标原点,∴=0,∴x1x2+y1y2=0,∴,又点A在椭圆C上,∴=1,解得|x1|=|y1|=.此时点O到直线AB的距离.(2)当直线AB的斜率存在时,设AB的方程为y=kx+m,联立,得(1+4k2)x2+8kmx+4m2﹣4=0,∴,,∵以AB为直径的圆过坐标原点O,∴OA⊥OB,∴=x1x2+y1y2=0,∴(1+k2)x1x2+km(x1+x2)+m2=0,∴(1+k2)•,整理,得5m2=4(k2+1),∴点O到直线AB的距离=,综上所述,点O到直线AB的距离为定值.(3)设直线OA的斜率为k0,当k0≠0时,OA的方程为y=k0x,OB的方程为y=﹣,联立,得,同理,得,∴△AOB的面积S==2,令1+=t,t>1,则S=2=2,令g(t)=﹣++4=﹣9()2+,(t>1)∴4<g(t),∴,当k0=0时,解得S=1,∴,∴S的最小值为.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.【解答】解:(Ⅰ)∵(a为常数),∴f(x)lnx=x(1﹣alnx),∴f(x)=.(x>1).f′(x)=﹣a(x>1),∵函数f(x)在(1,+∞)上是减函数,∴f′(x)≤0在(1,+∞)上恒成立,∴a≥的最大值,x∈(1,+∞).令g(x)==+≤,当lnx=2,即x=e2时取得最大值.∴,∴实数a的最小值是.(Ⅱ)f(x)=.f′(x)=﹣a.存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立⇔x∈[e,e2],f(x)min≤f(x)max+a =,①当a ≥时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)min=f(e2)=≤,解得a ≥﹣.②当a <时,由f′(x)=+﹣a,在[e,e2]上的值域为[﹣a ,].(i)当﹣a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上为增函数,∴f(x)min=f(e)=e﹣ae≥e>,不和题意,舍去.(ii)当﹣a<0时,即0<a <时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)>0,f(x)为增函数.∴f(x)min=f(x0)=﹣ax0≤,x0∈(e,e2).∴a ≥﹣>﹣>,与0<a <矛盾.综上可得:a 的取值范围是:.第21页(共21页)。
成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,每小题5分,共25分.11.15; 12.[)5,7; 13.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,,; 14.3:2:1; 15.②④. 提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a bc ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然12x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)xf x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-==. 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . (8)分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .② 联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分18.(Ⅰ)证明:连接AC 交BE 于点M ,连接FM .由//EM CD12AM AE PFMC ED FC∴===. //FM AP ∴. ………………4分 FM BEF PA BEF ⊂⊄面,面, //PA BEF ∴面.………………6分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE ==PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =,tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n nn ⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan 3PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 直线的参数方程也可以做,更简洁。
第1页 共2页 ◎第2页 共2页 【2015年第一次全国大联考【四川卷】理科数学试卷考试时间:120分钟;满分150分 命题人:学科网大联考命题中心第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |ln 12x +<1},N 是自然数集,则A ∩N =( )A .{1,2,3,4}B .{0,1,2,3,4,5}C .{1,2,3,4,5}D .{0,1,2,3,4} 2.已知i 是虚数单位,则复数z =2ii+的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知命题p :∀x ∈R ,x 2-2x +1≥0.则⌝p 是( ) A .∃x ∈R ,x 2-2x +1≤0 B .∃x ∈R ,x 2-2x +1<0 C .∀x ∈R ,x 2-2x +1<0D .∀x ∈R ,x 2-2x +1≥04.十字路口的信号灯计时器是由7根发光灯管构成(如图),每根灯管的功率为50瓦,为节约能源,交管部门决定将其更换为节能发光管,每根灯管的功率仅为10瓦, 如果一天内这个计时器都是从9秒倒计时到0秒,并循环往复,那么,经过更换, 这个计时器每天(24小时)可以节约的电量约为( )A .4.3千瓦时B .4.5千瓦时 .4.7千瓦时 D .5.0千瓦时 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,现需要用一个球装下这个几何体,则该球的体积最小为( ). ABCD6.已知函数的部分图象如右图所示,则Φ=( ) A .π6- B .π6 C .π3- D .π37.已知实数x y 、满足约束条件22,24,4 1.x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩若()(),,3,1a x y b ==-,设z 表示向量a 在向量b方向上射影的数量,则z 的取值范围是( )A .3,62⎡⎤-⎢⎥⎣⎦ B .[]1,6- C.⎡⎢⎣ D.⎡⎢⎣ 8.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若l ⊥α,α⊥β,则l ∥β B .若l ∥α,l ∥β,则α∥βC .若l ⊥α,l ⊥β,则α∥βD .若l ∥α,α⊥β,则l ⊥β9.已知双曲线22221(00)x y a b a b-=>>,的中心为O ,左焦点为F ,P 是双曲线上的一点0OP PF ⋅=uu u r uu u r 且24OP OF OF ⋅=u u u r u u u r u u u r ,则该双曲线的离心率是( )ABCD10.已知定义在{|,}x x k k Z ≠∈上的奇函数()f x 对定义域内的任意实数x 满足:(2)()f x f x +=-,且1<x <2时,f (x )=x 2-x ,则下列结论错误..的是( ) A .函数f (x )的周期为4;B .y =f (x )在32x =处的切线的斜率为2; C .f (x )在(2014,2015)上单调递减;D .方程f (x )=log 2|x |的解的个数为6.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知直线3430x y +-=,6140x my ++=平行, 则它们之间的距离是___________ 12.设,则的值为_________.13.执行下列程序框图,则输出m 的的值为_______.14.若221a ab b -+=,a ,b 是实数,则a b +的最大值是 ______.15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数Φ(x)组成的集合:对于函数Φ(x),存在一个正数M ,使得函数Φ(x)的值域包含于区间[],M M -.例如,当Φ1(x)=x 3,Φ2(x)=sinx 时,Φ1(x)∈A ,Φ2(x)∈B.现有如下命题:()10102210102xa x a x a a x+⋅⋅⋅+++=-()()293121020a a a a a a +⋅⋅⋅++-+⋅⋅⋅++第3页 共4页 ◎第4页 共4页 ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“(),,b R a D f a b ∀∈∃∈=”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()()()(),f x A g x B f x g x B ∈∈+∉,则; ④若函数()()()2ln 22,1xf x a x x a R x =++>-∈+有最大值,则()f x B ∈. 其中的真命题有_____________.(写出所有真命题的序号)三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)一次数学测验,某班50名的成绩全部介于90分到140分之间.将成绩结果按如下方式分成五段:第一段[90,100),第二段[100,110),……,第五段[130,140].按上述分段方法得到 的频率分布直方图如图所示. (Ⅰ)若成绩大于或等于100分且小于120分认为是良 好的,求该校参赛学生在这次数学联赛中成绩良好的 人数; (Ⅱ)现将分数在[90,110)内同学分为第1组,在[110, 120)内的分为第2组,在[120,140)内的分为第3组, 然后从中随机抽取2人,用ξ表示这2人所在组数之 差的绝对值,求ξ的分布列和期望.17.(本小题满分12分)已知函数)22,0()sin()(πϕπωϕω<<->++=b x x f ,其中ω是使得函数图象相邻两对称轴间的距离不超过23π的最小正整数,若将)(x f 的图象先向左平移12π个单位,再向下平移1个单位,所得的函数)(x g 为奇函数. (Ⅰ)求)(x f 的解析式,并求)(x f 的对称中心; (Ⅱ)△ABC 中,如果f (26B π+)=1,b =且asinA -bsinB =sinC (c),求△ABC 的面积.18.(本小题满分12分)已知∠ABC =45°,B 、C 为 定点且BC =3,A 为动点,作AD ⊥BC ,垂足 D 在线段BC 上且异于点B ,如图1。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
成都一诊模拟题2理科数学试题第I卷一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)1、设全集,,则(▲ )A、B、C、D、2、定义两种运算:,,则函数为(▲ )A、奇函数B、偶函数C、既奇且偶函数D、非奇非偶函数3、对于函数,“的图象关于y轴对称”是“=是奇函数”的(▲)A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要4、下列4个命题:(1)若,则;(2)“”是“对任意的实数,成立”的充要条件;(3)命题“,”的否定是:“,”;(4)函数的值域为。
其中正确的命题个数是(▲ )A、1B、2C、3 D、05、定义在实数集R上的函数,对一切实数x都有成立,若=0仅有101个不同的实数根,那么所有实数根的和为(▲ )A.101 B.151 C.303D.6、方程有解,则的取值范围(▲ )A、或B、C、D、7、方程的实根在以下那个选项所在的区间范围内(▲)A.B.C.D.8、已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是(▲)A、B、C、D、9、设,若仅有一个常数使得对于任意的,都有满足方程,这时的取值为(▲ )A.B.C.D.10、定义表示不超过的最大整数,记,其中对于时,函数和函数的零点个数分别为则(▲)A.B.C.D.第Ⅱ卷二.填空题(本大题3个小题,每题5分,共15分,请把答案填在答题卡上)11、已知函数时,,时,,则函数的零点个数有▲个.12、给定方程:,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解;④若是该方程的实数解,则–1。
则正确命题是▲.13、下列命题是真命题的序号为:▲定义域为R的函数,对都有,则为偶函数定义在R上的函数,若对,都有,则函数的图像关于中心对称函数的定义域为R,若与都是奇函数,则是奇函数函数的图形一定是对称中心在图像上的中心对称图形。
若函数有两不同极值点,若,且,则关于的方程的不同实根个数必有三个三.解答题:(本大题共4小题,共50分。
C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。
成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x,集合{1}=P,则UP=ð(A)[0,1)(1,)+∞(B)(,1)-∞(C)(,1)(1,)-∞+∞(D)(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A)(B)(C)(D)3.已知复数z43i=--(i是虚数单位),则下列说法正确的是(A)复数z的虚部为3i-(B)复数z的虚部为3(C)复数z的共轭复数为z43i=+(D)复数z的模为54.函数31,0()1(),03xx xf xx⎧+<⎪=⎨≥⎪⎩的图象大致为(A)(B)(C)(D)5.已知命题p:“若22≥+x a b,则2≥x ab”,则下列说法正确的是(A)命题p的逆命题是“若22<+x a b,则2<x ab”(B)命题p的逆命题是“若2<x ab,则22<+x a b”(C)命题p的否命题是“若22<+x a b,则2<x ab”(D)命题p的否命题是“若22x a b≥+,则2<x ab”yxOxyOxyO xyOGFEHPACBDA 1B 1C 1D 16.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14 (B )34 (C )12(D )328.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是 (A )21(B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)DB C AFE 13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (,2)n n a +(0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54; ③当*n ∈N 时,12sin21n k n <+; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则2(11)<+-n S n .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T . 19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =.若点0(,2)P x 满足=PA PB ,求0x 的值.21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 13.15 14.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ……………………………………………………………2分122436123(1)205⋅====C C P X C ………………………………………………………2分 1(2)()5===P X P A ………………………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. X 0 1 2 P 15 35 15DBCFEyzO∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC . ∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E ,(0,3,1)D . ∴(2,0,2)=-AE ,(1,3,1)=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n ,即22030-+=⎧⎪⎨-++=⎪⎩x z x y z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n . ∴12121212,22⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC 所成的锐二面角的余弦值22.…………………………8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n ………………………………………………1分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n …………………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分 19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分 ∵1.00625.0625.116875.11<=-. ……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知243=a 得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--.令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分 ∴函数)(x f 的单调递减区间是(0,1),(1,e),单调递增区间是),(+∞e .………………2分 ∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m上单调递减,2(,)m +∞上单调递增.∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分(III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m上单调递减. ∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+. 由0<m ,解得221(21)e m e e +<-+.综上所述,存在这样的负数221(,)(21)+∈-∞-+e m e e 满足题意.……………………………1分。
成都一诊模拟题4理科数学试题第I卷一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上) 1、△ABC 中,若()()0CA CB AC CB +⋅+=,则△ABC 为(▲)A 正三角形B 等腰三角形C 直角三角形D 无法确定2、函数212sin ,10(),(1)()2,,0x x x f x f f a e x π-⎧-<<⎪=+=⎨≥⎪⎩满足则a 的所有可能值为(▲)A .l 或6B .—6C .lD .l 或一63、直线y=5与y=-1在区间[0,4πω]截曲线sin (,0)2y m x n m n ω=+>所得的弦长相等且不为零,则下列正确的是(▲)A .35,22m n ≤= B .m≤3,n=2 C .35,22m n >= D .m>3,n=2 4、直线l :10060x y +-=分别与函数3xy =和3log y x =的交点为11(,)A x y ,22(,)B x y 则122()y y +=(▲)A 2010B 2012C 2014D 不确定5、设等差数列{}n a 的前n 项和为n S ,已知320122012(1)20140a a -+=,32333320174029a a a -+=,则下列结论正确的是(▲)A 2014201232014,S a a =<B 2014201232014,S a a =>C 2014201232013,S a a =<D 2014201232013,S a a =>6、曲线y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫x -π4与直线y =12在y 轴右侧的交点按横坐标从小到大依次记为 P 1、P 2、P 3、…,则|P 2P 4|等于 (▲)A . πB . 2πC . 3πD . 4π7、已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ,若0>k ,则函数1|)(|-=x f y 的零点个数是(▲)A .4B .3C .2D .18、已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是A 2a < B.2a > C.22a -<< D.2a >或2a <-9、若函数c bx ax x x f +++=23)(有极值点21,x x ,且11)(x x f =,则关于x 的方程0)(2))((32=++b x af x f 的不同实根个数是(▲)A .3B .4C .5D .610、设函数)(x f 在其定义域D 上的导函数为)(/x f ,如果存在实数a 和函数)(x h ,其中)(x h 对任意的D x ∈,都有0)(>x h ,使得),1)(()(2/+=ax x x h x f -则称函数)(x f 具有性质)(a ω,给出下列四个函数:①131)(23++=x x x x f -; ②14ln )(++=x x x f ;③xe x x xf )54()(2+=-; ④12)(2++=x x x x f其中具有性质)2(ω的函数有(▲)个A. ①② ④B. ①② ③C. ② ③ ④D. ① ③ ④第Ⅱ卷二.填空题(本大题5个小题,每题5分,共25分,请把答案填在答题卡上)11、已知i 是虚数单位,复数=+ii112一__________. 12、已知命题P:“2[1,2],0x x a ∃∈-<使成立”,若⌝P 是真命题,则实数a 的取值范围是 。
2015年四川省成都市高考数学一诊试卷(理科)一.选择题:(本大题共10小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•成都模拟)设集合,,则M∩N=()A.(﹣1,+∞)B.[﹣1,2)C.(﹣1,2)D.[﹣1,2]2.(5分)(2015•成都模拟)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x>2”是“x2﹣3x+2>0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1<0”3.(5分)(2015•成都模拟)方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)4.(5分)(2015•成都模拟)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.115.(5分)(2015•余杭区模拟)设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中错误的是()A.若m⊥α,m∥n,n∥β,则α⊥βB.若α⊥β,m⊄α,m⊥β,则m∥αC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,m⊂α,n⊂β,则m⊥n6.(5分)(2015•成都模拟)二项式(+)10展开式中的常数项是()A.180 B.90 C.45 D.3607.(5分)(2015•成都模拟)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=2B.∥C.=﹣D.⊥8.(5分)(2015•成都模拟)已知O是坐标原点,点A(﹣1,0),若M(x,y)为平面区域上的一个动点,则|+|的取值范围是()A.[1,]B.[2,]C.[1,2]D.[0,]9.(5分)(2015•成都模拟)已知抛物线C:x2=4y的焦点为F,直线x﹣2y+4=0与C交于A、B两点,则sin∠AFB=()A.B.C.D.10.(5分)(2015•成都模拟)已知函数y=f(x)是定义在R上的偶函数,对于任意x∈R都f(x+6)=f(x)+f(3)成立;当x1,x2∈[0,3],且x1≠x2时,都有>0.给出下列四个命题:①f(3)=0;②直线x=﹣6是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[0,2014]上有335个零点.其中正确命题的个数为()A.1 B.2 C.3 D.4二、填空题:(本大题共5小题,每小题5分,共25分.)11.(5分)(2015•南海区校级模拟)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为.12.(5分)(2015•成都模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为.13.(5分)(2015•岳阳模拟)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)(2013春•衡水校级月考)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:.15.(5分)(2015•成都模拟)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出所有正确命题的序号).三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2015•成都模拟)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:x x1x2x3ωx+ϕ0 π2πAsin(ωx+ϕ)0 0 ﹣0(Ⅰ)请写出上表的x1、x2、x3,并直接写出函数的解析式;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.17.(12分)(2015•成都模拟)每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元.根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.(1)求某两人选择同一套餐的概率;(2)若用随机变量X表示某两人所获优惠金额的总和,求X的分布列和数学期望.18.(12分)(2015•衡阳校级模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:A1O∥平面AB1C;(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.19.(12分)(2015•成都模拟)已知各项均为正数的数列{a n}的前n项和为S n,且a2n+a n=2S n (1)求a1(2)求数列{a n}的通项;(3)若b n=(n∈N*),T n=b1+b2+…b n,求证:T n<.20.(13分)(2015•成都模拟)已知椭圆=1(a>b>0)经过点(,﹣),且椭圆的离心率e=.(1)求椭圆的方程;(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.21.(14分)(2015•成都模拟)已知函数f(x)=lnx+x2.(1)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围;(2)在(1)的条件下,且a>1,h(x)=e3x﹣3ae x,x∈[0,ln2],求h(x)的极小值;(3)设F(x)=2f(x)﹣3x2﹣k(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.2015年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•成都模拟)设集合,,则M∩N=()A.(﹣1,+∞)B.[﹣1,2)C.(﹣1,2)D.[﹣1,2]【考点】指数函数的单调性与特殊点;交集及其运算;其他不等式的解法.【专题】计算题.【分析】由题意,可先化简两个集合,得,,再由交集的运算求出交集,即可选出正确答案.【解答】解:由题意,,∴M∩N={x|﹣1≤x<2}∩{x|x>﹣1}=(﹣1,2),故选C.【点评】本题考查求集合的交,解分式不等式,指数不等式,解题的关键是正确化简两个集合及理解交的运算.2.(5分)(2015•成都模拟)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x>2”是“x2﹣3x+2>0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1<0”【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】分别根据四种命题之间的关系以及充分条件和必要条件的定义即可得到结论.【解答】解:A.命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,则A错误.B.由x2﹣3x+2>0,解得x>2或x<1,则“x>2”是“x2﹣3x+2>0”的充分不必要条件,故B 错误.C.命题“若x=y,则sinx=siny”为真命题,则根据逆否命题的等价性可知命题“若x=y,则sinx=siny”的逆否命题为真命题,故C正确.D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1≥0”,故D错误.故选:C【点评】本题主要考查命题的真假判断,要求熟练掌握四种命题,充分条件和必要条件,含有量词的题目的真假判断.3.(5分)(2015•成都模拟)方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】令f(x)=ln(x+1)﹣,得出f(1)f(2)<0,从而得出答案.【解答】解:令f(x)=ln(x+1)﹣,而f(1)=ln2﹣2<0,f(2)=ln3﹣1>0,∴方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是(1,2),故选:B.【点评】他考查了函数的零点问题,特殊值代入是方法之一,本题属于基础题.4.(5分)(2015•成都模拟)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.11【考点】程序框图.【专题】空间位置关系与距离.【分析】根据框图的流程依次计算运行的结果,直到不满足条件S<20,计算输出k的值.【解答】解:由程序框图知:第一次运行S=1+2=3,k=1+2=3;第二次运行S=1+2+6=9.k=3+2=5;第三次运行S=1+2+6+10=19,k=5+2=7;第四次运行S=1+2+6+10+14=33,k=7+2=9;此时不满足条件S<20,程序运行终止,输出k=9.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程依次计算运行的结果是解答此类问题的常用方法.5.(5分)(2015•余杭区模拟)设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中错误的是()A.若m⊥α,m∥n,n∥β,则α⊥βB.若α⊥β,m⊄α,m⊥β,则m∥αC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,m⊂α,n⊂β,则m⊥n【考点】空间中直线与平面之间的位置关系.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:若m⊥α,m∥n,n∥β,则由平面与平面垂直的判定定理得α⊥β,故A正确;若α⊥β,m⊄α,m⊥β,则由直线与平面平行的判定定理得m∥α,故B正确;若m⊥β,m⊂α,则由平面与平面垂直的判定定理得α⊥β,故C正确;若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故D错误.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)(2015•成都模拟)二项式(+)10展开式中的常数项是()A.180 B.90 C.45 D.360【考点】二项式定理的应用.【专题】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:二项式(+)10展开式的通项公式为T r+1=•2r•,令5﹣=0,求得r=2,可得展开式中的常数项是•22=180,故选:A.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.7.(5分)(2015•成都模拟)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=2B.∥C.=﹣D.⊥【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】根据向量共线定理,可得若+=成立,则向量,共线且方向相反,对照各个选项并结合数乘向量的含义,可得本题答案.【解答】解:由+=,得若=﹣≠,即有=﹣,则,共线且方向相反,因此当因此当向量、共线且方向相反时,能使+=成立.对照各个选项,可得A项中向量、的方向相同,B项中向量,共线,方向相同或相反,C项中向量、的方向相反,D项中向量、的方向互相垂直故选:C.【点评】本题考查了数乘向量的含义与向量共线定理等知识,属于基础题.8.(5分)(2015•成都模拟)已知O是坐标原点,点A(﹣1,0),若M(x,y)为平面区域上的一个动点,则|+|的取值范围是()A.[1,]B.[2,]C.[1,2]D.[0,]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由题意作出可行域,由向量的坐标加法运算求得+的坐标,把||转化为可行域内的点M(x,y)到定点N(1,0)的距离,数形结合可得答案.【解答】解:+=(﹣1,0)+(x,y)=(x﹣1,y),则|+|=,设z=|+|=,则z的几何意义为M到定点D(1,0)的距离,由约束条件作平面区域如图,由图象可知当M位于A(0,2)时,z取得最大值z=,当M位于C(1,1)时,z取得最小值z=1,1≤z≤,即|+|的取值范围是[1,],故选:A【点评】本题考查了简单的线性规划,考查了数形结合、转化与化归等解题思想方法,考查了向量模的求法,是中档题.9.(5分)(2015•成都模拟)已知抛物线C:x2=4y的焦点为F,直线x﹣2y+4=0与C交于A、B两点,则sin∠AFB=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先有抛物线方程求得F的坐标,进而直线方程与抛物线方程联立求得A,B的坐标,利用两点间的距离公式分别求得|AB|,|AF|,|BF|,利用余弦定理求得cos∠AFB,进而求得sin∠AFB.【解答】解:由抛物线方程可知,2p=4,p=2,∴焦点F的坐标为(0,1),联立直线与抛物线方程,求得x=﹣2,y=1或x=4,y=4,令A坐标为(﹣2,1),则B坐标为(4,4),∴|AB|==3,|AF|==2,|BF|==5,∴在△ABF中cos∠AFB===,∴sin∠AFB==,故选:B.【点评】本题主要考查抛物线的简单性质,直线与抛物线的关系,余弦定理的应用等知识.考查了学生综合运用基础知识解决问题的能力.10.(5分)(2015•成都模拟)已知函数y=f(x)是定义在R上的偶函数,对于任意x∈R都f(x+6)=f(x)+f(3)成立;当x1,x2∈[0,3],且x1≠x2时,都有>0.给出下列四个命题:①f(3)=0;②直线x=﹣6是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[0,2014]上有335个零点.其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【专题】综合题;函数的性质及应用.【分析】①在f(x+6)=f (x)+f (3)中,令x=﹣3,可得f(﹣3)=0,f(x)是R上的偶函数,从而可判断①;②由(1)知f(x+6)=f (x),所以f(x)的周期为6,再利用f(x)是R上的偶函数,可得f(﹣6﹣x)=f(﹣6+x),从而可判断②;③依题意知,函数y=f(x)在[0,3]上为增函数,利用f(x)的周期为6,且f(x)是R 上的偶函数,可判断函数y=f(x)在[﹣9,﹣6]上为减函数,从而可判断③;④由题意可知,y=f(x)在[0,6]上只有一个零点3,而2014=335×6+3,从而可判断④.【解答】解:①:对于任意x∈R,都有f(x+6)=f (x)+f (3)成立,令x=﹣3,则f(﹣3+6)=f(﹣3)+f (3),即f(﹣3)=0,又因为f(x)是R上的偶函数,所以f(3)=0,即①正确;②:由(1)知f(x+6)=f (x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(﹣x),而f(x)的周期为6,所以f(x+6)=f(﹣6+x),f(﹣x)=f(﹣x﹣6),所以:f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴,即②正确;③:当x1,x2∈[0,3],且x1≠x2时,都有>0,所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[﹣3,0]上为减函数而f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数,故③错误;④:f(3)=0,f(x)的周期为6,函数y=f(x)在[0,3]上为增函数,在[3,6]上为减函数,所以:y=f(x)在[0,6]上只有一个零点3,而2014=335×6+4,所以,函数y=f(x)在[0,2014]上有335+1=336个零点,故④错误.故正确命题的个数为2个,故选:B.【点评】本题考查命题的真假判断与应用,着重考查函数的奇偶性、周期性、对称性及零点的确定的综合应用,属于难题.二、填空题:(本大题共5小题,每小题5分,共25分.)11.(5分)(2015•南海区校级模拟)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为.【考点】复数代数形式的乘除运算.【专题】计算题.【分析】首先求出|4+3i|,代入后直接利用复数的除法运算求解.【解答】解:∵|4+3i|=.由(3﹣4i)z=|4+3i|,得(3﹣4i)z=5,即z=.∴z的虚部为.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.12.(5分)(2015•成都模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据四棱锥的俯视图得到四棱锥的特征,根据四棱锥的左视图为直角三角形,得到四棱锥的高即可求出它的体积【解答】解:由四棱锥的俯视图可知,该四棱锥底面为ABCD为正方形,PO垂直于BC于点O,其中O为BC的中点,若该四棱锥的左视图为直角三角形,则△BPC为直角三角形,且为等腰直角三角形,∵B0=1,∴PO=BO=1,则它的体积为.故答案为:.【点评】本题主要考查三视图的识别和应用以及锥体的体积的计算,考查线面垂直和面面垂直的判断,考查学生的推理能力.13.(5分)(2015•岳阳模拟)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有180种不同的填报专业志愿的方法(用数字作答).【考点】计数原理的应用.【专题】应用题;排列组合.【分析】分类讨论,分别求出甲、乙都不选、甲、乙两个专业选1个时的报名方法,根据分类计数原理,可得结论.【解答】解:甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.【点评】本题考查计数原理的运用,考查排列组合知识,考查学生分析解决问题的能力,正确分类是关键.14.(5分)(2013春•衡水校级月考)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:4﹣.【考点】等差数列的性质;点到直线的距离公式.【专题】等差数列与等比数列.【分析】由题意可得动直线l:ax+by+c=0过定点Q(1,﹣2),PMQ=90°,点M在以PQ为直径的圆上,求出圆心为PQ的中点C(0,﹣1),且半径为.求得点N到圆心C的距离,再减去半径,即得所求.【解答】解:因为a,b,c成等差数列,故有2b=a+c,即a﹣2b+c=0,对比方程ax+by+c=0可知,动直线恒过定点Q(1,﹣2).由于点P(﹣1,0)在动直线ax+by+c=0上的射影为M,即∠PMQ=90°,所以点M在以PQ为直径的圆上,该圆的圆心为PQ的中点C(0,﹣1),且半径为=,再由点N到圆心C的距离为NC=4,所以线段MN的最小值为NC﹣r=4﹣,故答案为:4﹣.【点评】本题主要考查等差数列的性质,直线过定点问题、圆的定义,以及点与圆的位置关系,属于中档题.15.(5分)(2015•成都模拟)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出所有正确命题的序号).【考点】命题的真假判断与应用.【专题】计算题;简易逻辑.【分析】①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③根据图象的平移规律可得结论;④根据sinx+cosx=sin(x+)≤<,可以判断.【解答】解:①函数y=cos(2x﹣),x=时,y=﹣1,所以函数y=cos(2x﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x﹣)+],即y=sin(2x﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.【点评】本题利用三角函数图象与性质,考查命题的真假判断与应用,考查学生分析解决问题的能力,属于中档题.三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2015•成都模拟)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:x x1x2x3ωx+ϕ0 π2πAsin(ωx+ϕ)0 0 ﹣0(Ⅰ)请写出上表的x1、x2、x3,并直接写出函数的解析式;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】(Ⅰ)由表中数据列关于ω、φ的二元一次方程组,求得ω、φ的值,得到函数解析式,进一步求得x1、x2、x3;(Ⅱ)由函数图象平移求得,求出最高点和最低点的坐标,进一步求出三角形OPQ的边长,由余弦定理求得∠OQP的大小.【解答】解:(Ⅰ)由表可知,+φ=,+φ=,解得,ω=,φ=.由x1+=0、x2+=π、x3+=2π,得,,.∴;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数,∵P、Q分别为该图象的最高点和最低点,∴.∴OP=2,PQ=4,,∴.∴.【点评】本题考查了由y=Asin(ωx+φ)的部分图象求解函数解析式,考查了y=Asin(ωx+φ)的性质,考查了余弦定理的应用,训练了五点作图法,是中档题.17.(12分)(2015•成都模拟)每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元.根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.(1)求某两人选择同一套餐的概率;(2)若用随机变量X表示某两人所获优惠金额的总和,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(1)由题意利用互斥事件加法公式能求出某两人选择同一套餐的概率.(2)由题意知某两人可获得优惠金额X的可能取值为400,500,600,700,800,1000.分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由题意可得某两人选择同一套餐的概率为:.(2)由题意知某两人可获得优惠金额X的可能取值为400,500,600,700,800,1000.,,,,,,综上可得X的分布列为:X 400 500 600 700 800 1000PX的数学期望.【点评】本小题主要考查学生对概率知识的理解,通过分布列的计算,考查学生的数据处理能力.18.(12分)(2015•衡阳校级模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:A1O∥平面AB1C;(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.【考点】直线与平面平行的判定;用空间向量求平面间的夹角.【专题】计算题;证明题.【分析】(Ⅰ)欲证A1O∥平面AB1C,根据直线与平面平行的判定定理可知只需证A1O与平面AB1C内一直线平行,连接CO、A1O、AC、AB1,利用平行四边形可证A1O∥B1C,又A1O⊄平面AB1C,B1C⊆平面AB1C,满足定理所需条件;(Ⅱ)根据面面垂直的性质可知D1O⊥底面ABCD,以O为原点,OC、OD、OD1所在直线分别为x轴、y轴、z轴建立坐标系,求出平面C1CDD1的一个法向量,以及平面AC1D1的一个法向量,然后求出两个法向量夹角的余弦值即可求出锐二面角A﹣C1D1﹣C的余弦值.【解答】解:(Ⅰ)证明:如图(1),连接CO、A1O、AC、AB1,(1分)则四边形ABCO为正方形,所以OC=AB=A1B1,所以,四边形A1B1CO为平行四边形,(3分)所以A1O∥B1C,又A1O⊄平面AB1C,B1C⊆平面AB1C所以A1O∥平面AB1C(6分)(Ⅱ)因为D1A=D1D,O为AD中点,所以D1O⊥AD又侧面A1ADD1⊥底面ABCD,所以D1O⊥底面ABCD,(7分)以O为原点,OC、OD、OD1所在直线分别为x轴、y轴、z轴建立如图(2)所示的坐标系,则C(1,0,0),D(0,1,0),D1(0,0,1),A(0,﹣1,0).(8分)所以,(9分)设为平面C1CDD1的一个法向量,由,得,令z=1,则y=1,x=1,∴.(10分)又设为平面AC1D1的一个法向量,由,得,令z1=1,则y1=﹣1,x1=﹣1,∴,(11分)则,故所求锐二面角A﹣C1D1﹣C的余弦值为(12分)【点评】本题主要考查了线面平行的判定,以及利用空间向量的方法求解二面角等有关知识,同时考查了空间想象能力、转化与划归的思想,属于中档题.19.(12分)(2015•成都模拟)已知各项均为正数的数列{a n}的前n项和为S n,且a2n+a n=2S n (1)求a1(2)求数列{a n}的通项;(3)若b n=(n∈N*),T n=b1+b2+…b n,求证:T n<.【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】(1)a2n+a n=2S n中令n=1求a1(2)又a2n+a n=2S n有a2n+1+a n+1=2S n+1,两式相减得并整理得(a n+1+a n)(a n+1﹣a n﹣1)=0,数列{a n}是以a1=1,公差为1的等差数列,以此求数列{a n}的通项;(3)由(2)得出a n=n,利用放缩法求证:T n<.【解答】解:(1)令n=1,得a12+a1=2S1=2a1,∵a1>0,∴a1=1,(2)又a2n+a n=2S n,有a2n+1+a n+1=2S n+1,两式相减得并整理得(a n+1+a n)(a n+1﹣a n﹣1)=0,∵a n>0,∴a n+1﹣a n=1,∴数列{a n}是以a1=1,公差为1的等差数列,通项公式为a n=1+(n﹣1)×1=n;(3)n=1时b1=1<符合…(9分)n≥2时,因为==2(﹣)所以T n=b1+b2+…b n<1+2(++…+﹣)=1=∴T n<.【点评】本题考查等差数列的判定与通项公式求解,不等式的证明,是数列与不等式的结合.20.(13分)(2015•成都模拟)已知椭圆=1(a>b>0)经过点(,﹣),且椭圆的离心率e=.(1)求椭圆的方程;(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线中的最值与范围问题.【分析】(1)由已知得,,由此能求出椭圆的方程.(2)当直线AC的斜率不存在时,AC:x=1,则BD:y=0.直线PQ恒过一个定点;当直线AC的斜率存在时,设AC:y=k(x﹣1)(k≠0),BD:.联立方程组,得(4k2+3)x2﹣8k2x+4k2﹣12=0,由此利用韦达定理结合已知条件能证明直线PQ恒过一个定点.【解答】(1)解:由,得,即a2=4c2=4(a2﹣b2),即3a2=4b2.…(1分)由椭圆过点知,.…(2分)联立(1)、(2)式解得a2=4,b2=3.…(3分)故椭圆的方程是.…(4分)(2)证明:直线PQ恒过一个定点.…(5分)椭圆的右焦点为F(1,0),分两种情况.1°当直线AC的斜率不存在时,AC:x=1,则BD:y=0.由椭圆的通径得P(1,0),又Q(0,0),此时直线PQ恒过一个定点.…(6分)2°当直线AC的斜率存在时,设AC:y=k(x﹣1)(k≠0),则BD:.又设点A(x1,y1),C(x2,y2).联立方程组,消去y并化简得(4k2+3)x2﹣8k2x+4k2﹣12=0,…(8分)所以...…(10分)由题知,直线BD的斜率为﹣,同理可得点.…(11分).,…(12分)即4yk2+(7x﹣4)k﹣4y=0.令4y=0,7x﹣4=0,﹣4y=0,解得.故直线PQ恒过一个定点;…(13分)综上可知,直线PQ恒过一个定点.…(14分)【点评】本题考查椭圆方程的求法,考查直线恒过一个定点的证明,解题时要认真审题,注意函数与方程思想的合理运用.21.(14分)(2015•成都模拟)已知函数f(x)=lnx+x2.(1)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围;(2)在(1)的条件下,且a>1,h(x)=e3x﹣3ae x,x∈[0,ln2],求h(x)的极小值;(3)设F(x)=2f(x)﹣3x2﹣k(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】计算题;分类讨论;导数的概念及应用;导数的综合应用.【分析】(1)求出g(x)的导数,函数g(x)=f(x)﹣ax在定义域内为增函数即为g′(x)≥0,x>0恒成立,运用分离参数,运用基本不等式求得函数的最小值即可;(2)令e x=t,则t∈[1,2],则h(x)=H(t)=t3﹣3at,求出H′(t),由H′(t)=0,得t=,讨论①若1<t,②若<t≤2,函数的单调性,即可得到极小值;(3)即证是否存在,使F'(x0)=0,因为x>0时y=F'(x)单调递减,且F'(1)=0,所以即证是否存在使x0=1.即证是否存在m,n使m=2﹣n.求F(x)的导数,求得单调区间,构造函数G(x)=F(x)﹣F(2﹣x),其中0<x<1,求出导数,求得单调性,运用单调性即可得证.【解答】解:(1)g(x)=f(x)﹣ax=lnx+x2﹣ax,g′(x)=+2x﹣a由题意,知g′(x)≥0,x>0恒成立,即a≤(2x+)min.又x>0,2x+,当且仅当x=时等号成立.故(2x+)min=2,所以a.(2)由(Ⅰ)知,1<a,令e x=t,则t∈[1,2],则h(x)=H(t)=t3﹣3atH′(t)=3t2﹣3a=3(t﹣)(t),由H′(t)=0,得t=,由于1<a,则∈[1,],①若1<t,则H′(t)<0,H(t)单调递减;h(x)在(0,ln]也单调递减;②若<t≤2,则H′(t)>0,H(t)单调递增.h(x)在[ln,ln2]也单调递增;故h(x)的极小值为h(ln)=﹣2a.(3)即证是否存在,使F'(x0)=0,因为x>0时y=F'(x)单调递减,且F'(1)=0,所以即证是否存在使x0=1.即证是否存在m,n使m=2﹣n.证明:F(x)=2lnx﹣x2﹣k.x、F'(x)、F(x)的变化如下:x (0,1) 1 (1,+∞)F'(x)+ 0 ﹣F(x)↗↘即y=F(x)在(0,1)单调递增,在(1,+∞)单调递减.又F(m)=F(n)=0且0<m<n所以0<m<1<n.构造函数G(x)=F(x)﹣F(2﹣x),其中0<x<1,即G(x)=(2lnx﹣x2)﹣[2ln(2﹣x)﹣(2﹣x)2]=2lnx﹣2ln(2﹣x)﹣4x+4,=,当且仅当x=1时G'(x)=0,故y=G(x)在(0,1)单调增,所以G(x)<G(1)=0.所以0<x<1时,F(x)<F(2﹣x).又0<m<1<n,所以F(m)<F(2﹣m),所以F(n)=F(m)<F(2﹣m).因为n、2﹣m∈(1,+∞),所以根据y=F(x)的单调性知n>2﹣m,即.又在(0,+∞)单调递减,所以.即函数F(x)在(x0,F(x0))处的切线不能平行于x轴.【点评】本题考查导数的综合应用:求切线方程和极值、最值,考查分类讨论的思想方法,以及构造函数求导数,运用单调性解题,考查运算能力,属于中档题.参与本试卷答题和审题的老师有:xintrl;maths;1619495736;清风慕竹;zlzhan;caoqz;双曲线;wsj1012;wfy814;sxs123;刘长柏;minqi5;zwx097(排名不分先后)菁优网2016年2月2日。