FPGA与CPLD的结构原理
- 格式:ppt
- 大小:1.03 MB
- 文档页数:47
简述CPLD/FPGA的原理特点及应用1. 什么是CPLD/FPGACPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)和FPGA (Field Programmable Gate Array,场可编程门阵列)都属于可编程逻辑器件的一种。
它们是在数字电路设计领域中广泛应用的一类芯片,能够根据设计者的需求进行灵活的逻辑和功能配置。
CPLD是由可编程逻辑门、触发器和可编程互连电路构成;FPGA则是基于可编程逻辑块、可编程的互连和内部存储单元块。
2. CPLD/FPGA的工作原理CPLD/FPGA的工作原理是通过对其内部的逻辑单元、开关和互连网络进行编程来实现特定的功能和逻辑操作。
2.1 CPLD的工作原理CPLD是由大量可编程逻辑门和触发器构成的,其中逻辑门负责逻辑运算,触发器负责存储数据。
CPLD内部的可编程逻辑门和触发器的连线可以通过编程修改,从而灵活配置逻辑功能。
CPLD通过内部编程存储器(PROM)或者FLASH等方式存储逻辑设计,并在电源打开后加载这些设计。
一旦CPLD内部的逻辑门和连线被编程好后,它们将始终保持不变,从而实现了硬件的逻辑功能。
2.2 FPGA的工作原理FPGA的逻辑块(Logic Block)是由可编程逻辑单元、可编程的互连和内部存储单元块组成。
逻辑单元负责逻辑运算,互连负责连接逻辑单元和存储单元,内部存储单元用于存储数据。
FPGA利用逻辑单元和互连网络构建逻辑功能,通过内部存储单元来实现数据的存储。
与CPLD不同的是,FPGA的逻辑块在每次上电时都需要重新加载设计,因此它可以根据需求重新配置逻辑功能。
3. CPLD/FPGA的特点CPLD/FPGA有以下几个特点:3.1 可编程性CPLD/FPGA可以根据设计者的需要进行编程,从而实现特定的逻辑功能。
这种可编程性使得CPLD/FPGA适用于多种应用场景,能够灵活应对不同的需求。
可编程逻辑器件工艺及结构LOGOFPGA 芯片的内部结构--查找表由布尔代数理论可知,对于一个n 输入的逻辑运算,不管是与或非运算还是异或运算等等,最多只可能存在种结果。
如果事先将相应的结果存放于一个存贮单元,就相当于实现了与非门电路的功能。
FPGA 通过烧写文件,配置查找表的内容。
从而,在相同的电路情况下实现了不同的逻辑功能。
FPGA 芯片的内部结构--4输入查找表查找表(Look-Up-Table )简称为LUT ,LUT 本质上就是一个RAM 。
目前, FPGA 中多使用4输入的LUT ,所以每一个LUT 可以看成一个有4位地址线的RAM 。
设计者通过原理图或HDL 语言描述了一个逻辑电路后,PLD /FPGA 开发软件会自动计算逻辑电路的所有可能结果,并把真值表(即结果)事先写入RAM 。
这样,每输入一个信号进行逻辑运算就等于输入一个地址进行查表,找出地址对应的内容,然后输出即可。
FPGA芯片的内部结构--4输入查找表实际逻辑电路LUT实现方式a,b,c,d输入逻辑输出RAM地址RAM中存储内容00000000000001000010…..….1111111111FPGA 芯片的内部结构--4输入查找表一个逻辑电路的Verilog HDL 描述直接对应的逻辑电路经过EDA 软件综合FPGA 芯片的内部结构--4输入查找表FPGA 芯片的内部结构--4输入查找表LUT 具有和逻辑电路相同的功能。
实际上,LUT 具有更快的执行速度和更大的规模。
LUT 具有下面的特点:(1)LUT 实现组合逻辑的功能由输入端口数量决定,而不是由复杂度决定。
(2)LUT 实现组合逻辑有固定的传输延迟。
FPGA 芯片的内部结构--6输入查找表多年以来,四输入LUT 一直是业界标准。
但是,在65nm 工艺条件下,相较于其它电路(特别是互连电路),LUT 的常规结构大大缩小。
(1)一个具有四倍比特位的六输入LUT (6-LUT) 仅仅将CLB 面积提高了15% -但是平均而言,每个LUT 上可集成的逻辑数量却增加了40%。
FPGA与CPLD的结构原理FPGA结构原理:FPGA是一种可重构器件,它由大量的可编程逻辑单元(Logic Element,LE)组成,每个LE都包含查找表(Look-Up Table,LUT)、寄存器以及可编程连接资源。
FPGA的结构原理可以分为三个关键组件:查找表、可编程连接资源和I/O资源。
1.查找表:FPGA中的查找表是其最基本的单元,通常由4-6个输入信号和1个或多个输出信号组成。
查找表中包含一个存储器单元和一组可编程拨码开关。
存储器单元中存储了一组真值表,根据输入信号的组合来选择对应的输出信号。
这种基于查找表的逻辑实现既灵活又高效。
2.可编程连接资源:FPGA中的连接资源是一个非常重要的部分,它可以实现片上资源之间的任意连接。
通常,FPGA中的连接资源采用可编程互连点(Programmable Interconnect Point,PIP)的方式实现。
每个PIP可以通过可编程电路来控制是否对其中一对逻辑单元进行连接。
3.I/O资源:FPGA的I/O资源用于与外部世界进行交互。
每个I/O资源通常包含输入/输出引脚、输入/输出缓冲器以及可编程的电平转换电路。
通过对I/O资源的编程,可以根据实际需求来设置引脚的输入/输出电平以及输出驱动能力。
CPLD结构原理:CPLD是一种较小规模的可编程逻辑器件,它通常由若干个宏单元(Macrocell)组成,每个宏单元都包含与FPGA相似的逻辑资源和可编程连接资源。
CPLD的结构原理可以分为三个关键组件:宏单元、可编程连接资源和I/O资源。
1.宏单元:宏单元是CPLD的核心单元,通常由多个查找表、寄存器和触发器组成。
宏单元中的查找表用于实现逻辑功能,寄存器用于存储中间结果或控制信号,触发器用于实现时序逻辑。
一个CPLD可以包含多个宏单元,各个宏单元可以通过可编程连接资源相互连接。
2.可编程连接资源:CPLD中的可编程连接资源通常采用矩阵交叉开关(Crosspoint Switch)的方式实现。
请说明cpld和fpga的可编程原理CPLD(Complex Programmable Logic Device)和FPGA(Field-Programmable Gate Array)是两种可编程逻辑器件,它们都可以通过编程来实现特定的逻辑功能。
下面是它们的可编程原理的说明:CPLD的可编程原理:1. CPLD由一系列可编程逻辑单元(PLU)组成,每个PLU可以执行逻辑运算和存储数据。
2. CPLD中还包含了一些可编程的片内连接资源,用于将不同PLU之间以及PLU 与外部引脚之间的信号连接起来。
3. 在对CPLD进行编程时,用户可以通过使用硬件描述语言(如VHDL或Verilog)描述所需的逻辑功能,并将这些描述转化为CPLD可识别的位文件。
4. 将编程完成的位文件加载到CPLD中后,CPLD会根据其中的逻辑描述配置PLU的功能,以及完成内部和外部信号的连接,从而实现所需的逻辑功能。
FPGA的可编程原理:1. FPGA由大量的可编程逻辑元件(LE)和可编程互连资源(IC)组成,LE是FPGA中最基本的逻辑单元,而IC是用于连接LE的片内资源。
2. FPGA中的LE可以通过编程来实现各种逻辑运算和存储数据的功能。
3. IC提供了灵活的直接互连结构,可以将不同的LE以及LE与外部引脚之间的信号互连起来,从而形成所需的逻辑功能。
4. 在对FPGA进行编程时,用户同样可以使用硬件描述语言来描述逻辑功能,并将其转化为可以被FPGA识别的位文件。
5. 加载位文件后,FPGA会根据其中的逻辑描述初始化LE的功能以及互连资源的连接方式,从而实现所需的逻辑功能。
总的来说,CPLD和FPGA都是可编程的逻辑器件,其可编程原理都是通过将逻辑描述转化为相应的位文件,再将位文件加载到器件中,通过配置器或控制逻辑来执行相应的功能。
区别在于CPLD主要由可编程逻辑单元组成,适用于实现较小规模的逻辑功能,而FPGA则由大量的可编程逻辑元件和互连资源组成,适用于实现较复杂的逻辑功能。
CPLD(complex programable logic device)复杂可编程逻辑器件FPGA(field programable gate array)现场可编程门阵列FPGA和CPLD的逻辑单元本身的结构与SPLD相似,即与阵列和可配置的输出宏单元组成。
FPGA逻辑单元是小单元,每个单元只有1-2个触发器,其输入变量通常只有几个因而采用查找表结构(PROM形式)这样的工艺结构占用的芯片面积小,速度高(通常只有1-2纳秒),每个芯片上能集成的单元数多,但逻辑单元功能弱。
如果想实现一个较复杂的功能,需要几个这样的单元组合才能完成(总延时是各个单元延时和互连延时的和),互连关系复杂。
CPLD中的逻辑单元是单元,通常其变量数约20-28个。
因为变量多,所以只能采用PAL结构。
由于这样的单元功能强大,一般的逻辑在单元内均可实现,因而其互连关系简单,一般通过集总总线既可实现。
电路的延时通常就是单元本身和集总总线的延时(通常在数纳秒至十几纳秒),但是同样集成规模的芯片中的触发器的数量少得多。
从上面分析可知道:小单元的FPGA较适合数据型系统,这种系统所需要的触发器数多,但是逻辑相对简单;大单元的CPLD较适合逻辑型系统,如控制器等,这种系统逻辑复杂,输入变量多,但触发器需求量相对较少。
反熔丝工艺只能一次性编程,EPROM EEPROM 和FLASH工艺可以反复的编程,但是他们一经编程片内逻辑就被固定。
他们都是只读型(ROM)编程,这类编程不仅可靠性较高还可以加密。
XILINX公司的FPGA芯片采用RAM型编程,相同集成规模的芯片中的触发器数目较多,功耗低,但是掉电后信息不能保存,必须与存储器联用。
每次上电时必须先对芯片配置,然后才能使用,这似乎是RAM型PLD的缺点,但是ROM型PLD中的编程信息在使用时是不能变化的,RAM型PLD却可以在工作时更换内容,实现不同的逻辑。
CPLD和FPGA的结构,性能对照:CPLD FPGA PROM集成规模:小(最大数万门)大(最高达百万门)单元粒度:大(PAL结构)小(PROM结构)互连方式:集总总线分段总线长线专用互连编程工艺:EPROM EEPROM FLASH SRAM编程类型:ROM RAM型须与存储器联用信息:固定可实时重构触发器数:少多单元功能:强弱速度:高低222222222222222222222222222222222222延迟:确定,可以预测不能确定不能预测功耗:高低加密性能:可加密不能加密适用场合:逻辑型系统数据型系统LCA(LOGIC CELL ARRAY)逻辑单元阵列CLB(CONFIGURABLE LOGIC BLOCK)可配置逻辑模块IOB(INPUT OUTOUT BLOCK)输入输出块Spartan-xl系列FPGA的主要特性SPARTAN-XL系列的FPGA具有低压,低功耗的特点。
CPLD/FPGA 结构与原理/advance/structures/lut.htm一.基于乘积项(Product-Term)的PLD结构采用这种结构的PLD芯片有:Altera的MAX7000,MAX3000系列(EEPROM工艺),Xilinx的XC9500系列(Flash工艺)和Lattice,Cypress的大部分产品(EEPROM工艺)我们先看一下这种PLD的总体结构(以MAX7000为例,其他型号的结构与此都非常相似):图1 基于乘积项的PLD内部结构这种PLD可分为三块结构:宏单元(Marocell),可编程连线(PIA)和I/O控制块。
宏单元是PLD的基本结构,由它来实现基本的逻辑功能。
图1中蓝色部分是多个宏单元的集合(因为宏单元较多,没有一一画出)。
可编程连线负责信号传递,连接所有的宏单元。
I/O控制块负责输入输出的电气特性控制,比如可以设定集电极开路输出,摆率控制,三态输出等。
图1 左上的INPUT/GCLK1,INPUT/GCLRn,INPUT/OE1,INPUT/OE2 是全局时钟,清零和输出使能信号,这几个信号有专用连线与PLD中每个宏单元相连,信号到每个宏单元的延时相同并且延时最短。
宏单元的具体结构见下图:图2 宏单元结构左侧是乘积项阵列,实际就是一个与或阵列,每一个交叉点都是一个可编程熔丝,如果导通就是实现“与”逻辑。
后面的乘积项选择矩阵是一个“或”阵列。
两者一起完成组合逻辑。
图右侧是一个可编程D触发器,它的时钟,清零输入都可以编程选择,可以使用专用的全局清零和全局时钟,也可以使用内部逻辑(乘积项阵列)产生的时钟和清零。
如果不需要触发器,也可以将此触发器旁路,信号直接输给PIA或输出到I/O脚。
二.乘积项结构PLD的逻辑实现原理下面我们以一个简单的电路为例,具体说明PLD是如何利用以上结构实现逻辑的,电路如下图:图3假设组合逻辑的输出(AND3的输出)为f,则f=(A+B)*C*(!D)=A*C*!D + B*C*!D ( 我们以!D表示D的“非”)PLD将以下面的方式来实现组合逻辑f:图4A,B,C,D由PLD芯片的管脚输入后进入可编程连线阵列(PIA),在内部会产生A,A反,B,B反,C,C反,D,D反8个输出。
CPLD和FPGA内部结构和原理1.CPLD的内部结构和原理:CPLD中的主要组件是可编程逻辑单元(PLU),每个PLU中包含了多个可编程逻辑阵列(PLA),以及用于配置逻辑功能的多个存储器单元。
每个PLA都包含了输入寄存器、多个AND门和一个OR门。
当CPLD需要实现一些逻辑功能时,相关的逻辑门将被编程为特定的功能,并在PLU中通过可编程互连的方式连接起来。
此外,CPLD通常还包含时钟管理单元、输入/输出单元和可编程的信号延迟单元。
CPLD的工作原理如下:1) 配置:在设计过程中,使用者将所需逻辑功能转换为硬件描述语言(如VHDL或Verilog),然后通过设计工具将其编译为CPLD可接受的配置文件。
配置文件将存储在CPLD的非易失性存储器中(通常是闪存或EEPROM)。
2)启动:当CPLD上电时,其中的配置文件会被加载到可编程逻辑单元中,使CPLD实现所需的逻辑功能。
3)运行:一旦CPLD成功配置,它将按照配置文件中定义的逻辑功能来处理输入信号,并在输出端口提供相应的输出信号。
CPLD还可以通过重配置来支持动态更新设计,以满足不同的应用需求。
2.FPGA的内部结构和原理:FPGA由海量的可编程逻辑单元和可编程互连网络组成。
可编程逻辑单元由可编程逻辑阵列(Look-Up Table,LUT)和触发器组成,用于实现具体的逻辑功能。
可编程互连网络通过配置跨可编程逻辑单元的信号路径实现不同模块之间的连接。
FPGA的工作原理如下:1)配置:同样,设计者使用硬件描述语言编写逻辑功能描述,并通过设计工具将其编译为FPGA可接受的配置文件。
配置文件存储在FPGA的非易失性存储器中。
2)启动:当FPGA上电时,配置文件会被加载到FPGA的可编程逻辑单元和可编程互连网络中,以实现所需的逻辑功能。
3)运行:一旦FPGA成功配置,它将按照配置文件中定义的逻辑功能来处理输入信号,并在输出端口提供相应的输出信号。
FPGA还可以支持动态重配置,即在运行时重新配置FPGA以改变逻辑功能。