第7章 频率调制与解调
- 格式:ppt
- 大小:1.70 MB
- 文档页数:75
第七章 思考题与习题7.1 什么是角度调制?解:用调制信号控制高频载波的频率(相位),使其随调制信号的变化规律线性变化的过程即为角度调制。
7.2 调频波和调相波有哪些共同点和不同点,它们有何联系?解:调频波和调相波的共同点调频波瞬时频率和调相波瞬时相位都随调制信号线性变化,体现在m f MF ∆=;调频波和调相波的不同点在:调频波m f m f k V Ω∆=与调制信号频率F 无关,但f m f k V M Ω=Ω与调制信号频率F 成反比;调相波p p m M k V Ω=与调制信号频率F 无关,但m f m f k V Ω∆=Ω与调制信号频率F 成正比;它们的联系在于()()d t t dtϕω=,从而具有m f MF ∆=关系成立。
7.3 调角波和调幅波的主要区别是什么?解:调角波是载波信号的频率(相位)随调制信号的变化规律线性变化,振幅不变,为等福波;调幅波是载波信号的振幅随调制信号的变化规律线性变化,频率不变,即高频信号的变化规律恒定。
7.4 调频波的频谱宽度在理论上是无限宽,在传送和放大调频波时,工程上如何确定设备的频谱宽度? 解:工程上确定设备的频谱宽度是依据2m BW f =∆确定7.5为什么调幅波调制度 M a 不能大于1,而调角波调制度可以大于1?解:调幅波调制度 M a 不能大于,大于1将产生过调制失真,包络不再反映调制信号的变化规律;调角波调制度可以大于1,因为f fcmmV M k V Ω=。
7.6 有一余弦电压信号00()cos[]m t V t υωθ=+。
其中0ω和0θ均为常数,求其瞬时角频率和瞬时相位解: 瞬时相位 00()t t θωθ=+ 瞬时角频率0()()/t d t dt ωθω==7.7 有一已调波电压1()cos()m c t V A t t υωω=+,试求它的()t ϕ∆、()t ω∆的表达式。
如果它是调频波或调相波,它们相应的调制电压各为什么?解:()t ϕ∆=21A t ω,()()12d t t A t dtϕωω∆∆==若为调频波,则由于瞬时频率()t ω∆变化与调制信号成正比,即()t ω∆=()f k u t Ω=12A t ω,所以调制电压()u t Ω=1fk 12A t ω 若为调相波,则由于瞬时相位变化()t ϕ∆与调制信号成正比,即 ()t ϕ∆=p k u Ω(t )所以调制电压()u t Ω=1pk 21A t ω 由此题可见,一个角度调制波可以是调频波也可以是调相波,关键是看已调波中瞬时相位的表达式与调制信号:与调制信号成正比为调相波,与调制信号的积分成正比(即瞬时频率变化与调制信号成正比)为调频波。
实验三频率调制与解调一、实验目的1、理解频率调制的定义及调频波的实质;2、了解如何用电压控制振荡器(VCO)产生调频信号;3、了解两种调频波解调的方法,即用锁相环路PLL (Phase lock loop)来鉴频和用脉冲计数式鉴频。
二、实验原理调频信号的时域表达式为:s FM(t)=Acos[ωc t+K f∫m(t)dt]式中,K f为频偏常数(调制常数),表示调频器的调制灵敏度,单位为rad/(V·s)。
调频信号的最大频率偏移:ΔωFM=K f∣m(t)∣max调频信号的最大相位偏移(又称调频指数):βFM=ΔθFM= K f∣∫m(t) dt∣max直接产生调频信号的方法之一是设计一个振荡器,使它的振荡频率随输入电压而变。
当输入电压为0时(或没有输入信号时),振荡器产生一频率为f c的正弦波,可看着载波信号。
当输入基带信号的电压变化时,该振荡频率作相应变化。
称这样的振荡器为电压控制振荡器(V oltage Controlled Oscillator)。
用VCO产生FM信号的原理如图3-1(a)所示。
图3-1(b)显示当输入信号为正弦波的FM信号波形。
(a) (b)图3-1 用VCO产生FM信号的原理及波形图FM信号的解调有很多种方法,在这个实验中我们将使用过零检测法,其原理如图3-2所示。
FM信号经限幅产生矩形波序列,触发脉冲信号发生器,产生与频率变化相对应的脉冲序列。
这个序列代表了调频波的过零点,也就包含了基带信号的信息,经低通滤波后可还原基带信号。
图3-2 过零检测器图3-3所示为一加到过零检测器输入端的FM信号,和对应的脉冲序列产生器的输出波形。
图3-3 FM波形及对应脉冲序列三、实验设备1、主机TIMS-301F2、TIMS基本插入模块(1)TIMS-148音频振荡器(Audio Oscillator)(2)TIMS-155双脉冲信号产生(Twin Pulse Generator)(3)TIMS-156共享模块(Utilities)(4)TIMS-157电压控制振荡器(VCO)3、计算机4、Pico虚拟仪器四、实验步骤1、将VCO的频率选择置于“L0”状态,此时VCO的输出频率为800Hz ~17kHz。
频率调制与解调实验报告1.熟悉LM566单片集成电路的组成和应用。
2.掌握用LM566单片集成电路实现频率调制的原理和方法。
3.了解调频方波、调频三角波的基本概念。
4.掌握用LM565单片集成电路实现频率解调的原理,并熟悉其方法。
5.了解正弦波调制的调频方波的解调方法。
6.了解方波调制的调频方波的解调方法。
二、实验准备1.做本实验时应具备的知识点:• LM566单片集成压控振荡器• LM566组成的频率调制器工作原理• LM565单片集成锁相环• LM565组成的频率解调器工作原理2.做本实验时所用到的仪器:•万用表•双踪示波器• AS1637函数信号发生器•低频函数发生器(用作调制信号源)•实验板5(集成电路组成的频率调制器单元)三、实验内容1.定时元件RT 、CT对LM566集成电路调频器工作的影响。
2.输入调制信号为直流时的调频方波、调频三角波观测。
3.输入调制信号为正弦波时的调频方波、调频三角波观测4.输入调制信号为方波时的调频方波、调频三角波观测。
5.无输入信号时(自激振荡产生)的输出方波观测。
6.正弦波调制的调频方波的解调。
7.方波调制的调频方波的解调。
四、实验步骤1.实验准备⑴在箱体右下方插上实验板5。
接通实验箱上电源开关,此时箱体上±12V、±5V电源指示灯点亮。
⑵把实验板5上集成电路组成的频率调制器单元右上方的电源开关(K5)拨到ON位置,就接通了 5V电源(相应指示灯亮),即可开始实验。
2.观察RT 、CT对频率的影响(RT= R3+Wl、CT=C1)⑴实验准备① K4置ON位置,从而C1连接到566的管脚⑦上;②开关K3接通,K1、K2断开,从而W2和C2连接到566的管脚⑤上;③调W2使V5=3.5V(用万用表监测开关K3下面的测试点);④将OUT1端接至AS1637函数信号发生器的INPUT COUNTER来测频率。
⑵改变W1并观察输出方波信号频率,记录当W1为最小、最大(相应地RT为最小、最大)时的输出频率,并与理论计算值进行比较,给定:R3=3kΩ,W1=1kΩ,C1=2200pF。
《高频电子线路》频率调制与解调实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:频率调制与解调一、实验目的和要求通过实验,学习频率调制与解调的工作原理、电路组成和调试方法,学习用锁相环电路实现频率调制、斜率鉴频实现调频信号的解调的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理1、实验原理所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号,解调则是相反的过程,即从已调制信号中恢复出原信号。
根据所控制的信号参量的不同,调制可分为:调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。
调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。
调相,利用原始信号控制载波信号的相位。
这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。
2、实验内容(1)设计实现中心频率为100kHz的调频信号发生器。
绘出电路原理图,采用锁相调频的方式,给出仿真结果图。
(2)对产生的调频信号,采用斜率鉴器进行鉴频,设计失谐网络和包络检波器,绘出电路图,给出仿真结果图。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、采用锁相环路实现调频信号,调频信号的中心频率为100kHz。
2、对调频信号进行解调,采用斜率鉴器,对调频信号进行解调。
将AD741输出的100kHz 的调频信号加到电容C7与地之间,设计失谐网络和包络检波器。
C21nFR65kΩR550ΩC71µF L11.2mHU2AD741CH3247651U3AD741CH3247651R131kΩR141kΩR152kΩR164kΩD21N4150D31N4150V712VV812VC81µFXSC1A BExt Trig++__+_C3160nFR810kΩR71kΩR111kΩR121kΩC4160nFC510µF C9160nF4、分析说明U2、U3、D2、D3的作用。
幅值调制与解调和频率调制与解调 - 电子技术由于传感器输出的电信号一般为较低的频率重量(在直流至几十千赫兹),当被测量信号比较弱时,为了实现信号的传输尤其是远距离传输,可以接受直流放大或调制与解调。
信号传输过程中简洁受到工频及其他信号的干扰,若接受直流放大器则在传输过程中必需接受有限措施抑制干扰信号的影响。
而在实际中,往往接受更有效的先调制而后沟通放大,即在被测信号上叠加一高频信号,将它从低频区推移到高频区,也可以提高电路的抗干扰力量和信号的信噪比。
对应于信号的三要素:幅值、频率和相位,依据载波的幅值、频率和相位随调制信号而变化的过程,调制可以分为调幅、调频和调相。
其波形分别称为调幅波、调频波和调相波。
一、幅值调制与解调调幅是将一个高频简谐信号(载波信号)与测试信号(调制信号)相乘,使载波信号随测试信号的变化而变化。
调幅的目的是为了便于缓变信号的放大和传送,然后再通过解调从放大的调制波中取出有用的信号。
所以调幅过程就相当于频谱“搬移”过程。
而解调的目的是为了恢复被调制的信号。
把调幅波再次与原载波信号相乘,则频域图形将再一次进行“搬移”,其结果如图5-12所示。
当用一低通滤波器滤去频率大于fm的成分时,则可以复现原信号的频谱。
与原频谱的区分在于幅值为原来的一半,这可以通过放大来补偿。
这一过程称为同步解调,同步是指解调时所乘的信号与调制时的载波信号具有相同的频率和相位。
用等式表示为:二、频率调制与解调调频比较简洁实现数字化,特殊是调频信号在传输过程中不易受到干扰,所以在测量、通信和电子技术的很多领域中得到了越来越广泛的应用。
调频是利用信号电压的幅值把握一个振荡器,振荡器输出的是等幅波,但其振荡频率偏移量和信号电压成正比。
信号电压为正值时调频波的频率上升,负值时则降低;信号电压为零时,调频波的频率就等于中心频率。
调频波的瞬时频率为:式中:f0 为载波频率;Δf 为频率偏移,与调制信号的幅值成正比。
解析通信技术中的频率调制与解调原理频率调制(Frequency Modulation,简称FM)和解调是通信技术中常用的调制解调方式。
频率调制通过改变信号的频率来表示信息,而解调则是将调制信号转换为原始信号的过程。
本文将对频率调制与解调的原理进行解析。
频率调制是一种常见的调制方式,它利用调制信号的频率变化来传递信息。
调制的基本原理是将原始信号与载波信号相结合,通过改变载波信号的频率来改变信号的特性。
在频率调制中,最常用的调制方式是调频调制(Phase Modulation,简称PM)和频率调制。
调频调制通过改变载波信号的相位来传递信息。
在调频调制中,原始信号被看作是一个不断变化的相位信号,这个相位信号被加到载波信号上。
调频调制的优点是抗噪声性能好,缺点是传输带宽较大。
频率调制是调频调制的一种特殊形式,它通过改变载波信号的频率来传递信息。
频率调制在调频调制的基础上进行简化,使得调制后的信号更容易被解调。
频率调制的原理可以通过调幅调制(Amplitude Modulation,简称AM)来说明。
调幅调制是通过改变载波信号的幅度来传递信息。
在调幅调制中,原始信号与载波信号相乘,产生调制信号。
调制信号的幅度与原始信号的幅度成正比,从而实现信息的传递。
解调时,可以通过简单的电路将调制信号的幅度还原为原始信号。
频率调制的优点是抗干扰能力强,信号质量较好,可以传输较长距离的信号。
然而,频率调制也存在一些局限性,如占用带宽较大和对设备的要求较高。
解调是将调制信号还原为原始信号的过程。
解调的原理与调制相反,它通过一系列的操作将调制信号转换为原始信号。
解调的方法有很多种,常见的有包络检波、同步检波和鉴频检波等。
包络检波是一种简单且常见的解调方法。
它通过将调制信号通过非线性元件,如二极管,使输入信号的幅度和波形发生变化。
然后,通过一个低通滤波器将幅度变化后的信号转换为原始信号。
这种解调方法常用于调幅调制的解调。
同步检波是一种精确的解调方法。