固定床吸附实验
- 格式:pdf
- 大小:124.32 KB
- 文档页数:3
第四节固定床吸附过程的计算固定床吸附器结构简单,但由于气体吸附过程是气—固传质,对任一时间或任一颗粒来说都是不稳定过程,因此固定床吸附器的吸附操作是非稳态的,计算过程非常复杂,一般要涉及到物料衡算方程、吸附等温线方程和传热速率方程及热量衡算。
而在气态污染物的吸附净化设计中,由于所涉及到的物系是低浓度的气态混合物,且气量一般比较大,吸附热相对较小,因此可近似地按等温过程处理,可不考虑传热速率方程和热量方程(升温脱附除外)。
这样在设计过程中可采用简化了的方法进行近似计算,计算时往往提出如下假设:(1)气相中吸附质浓度低;(2)吸附操作在等温下进行;(3)传质区通过整个床层时长度保持不变;(4)床层长度比传质区长度大得多。
这些简化限制条件对目前工业上应用的吸附器来说,一般是符合的。
设计中较常采用的是希洛夫近似计算法和透过曲线计算法。
计算过程一般是在吸附剂的选择、吸附设备的选择和吸附效率确定之后进行的。
设计计算的任务是求出吸附器的床层直径和高度,吸附剂的用量,吸附器的一次循环工作时间,床层压降等。
下面首先介绍固定床吸附器的吸附过程。
一、固定床吸附器的吸附过程在固定床吸附器的吸附操作中,一般是混合气体从床层的一端进入,净化了的气体从床层的另一端排出。
因此,首先吸附饱和的应是靠近进气口一端的吸附剂床层。
随着吸附的进行,整个床层会逐渐被吸附质饱和,床层末端流出污染物,此时吸附应该停止,完成了一个吸附过程。
为了描述吸附过程,提出了以下概念。
(一)吸附负荷曲线与透过曲线1. 吸附负荷曲线在实际操作中,对于一个固定床吸附器,气体以等速进入床层,气体中的吸附质就会按某种规律被吸附剂所吸附。
吸附一定时间后,吸附质在吸附剂上就会有一定的浓度,我们把这一定的浓度称为该时刻的吸附负荷。
如果把这一瞬间床层内不同截面上的吸附负荷对床层的长度(高度)作一条曲线,即得吸附负荷曲线。
也就是说,吸附负荷曲线是吸附床层内吸附质浓度x随床层长度z变化的曲线。
固定床吸附器是一种常见的气体分离设备,其基本原理是利用固体吸附剂对气体混合物进行物理吸附,将其中某些组分吸附下来,从而实现气体的分离纯化。
具体来说,固定床吸附器主要由固定床、进料管、出料管和气体分离控制系统等部分组成。
气体混合物通过进料管进入固定床,在固定床中被吸附剂吸附,从而将其中一些组分分离出来。
经过一段时间的吸附作用后,吸附剂会逐渐饱和,需要进行脱附或再生。
在脱附或再生过程中,用气体或者其他物质通过固定床,把吸附剂上吸附的物质带走,从而恢复吸附剂的吸附性能,为下一轮分离作业做好准备。
固定床吸附器主要应用于石油化工、制药、食品加工等领域,用于气体混合物的分离、纯化、脱水、除臭等处理过程中。
材料吸附性能测试方法总结在现代科学技术的发展中,材料的吸附性能是一个重要的研究方向。
吸附作为材料科学的基础性问题,对于环境治理、催化剂设计、能源储存等领域具有重要意义。
因此,准确评估材料的吸附性能是必不可少的。
本文将总结几种常见的材料吸附性能测试方法。
1.批量吸附实验法批量吸附实验法是最常用的测试材料吸附性能的方法之一。
该方法使用一定量的材料,将其与待测物质接触一段时间后,通过测定液相中待测物质的浓度变化来评估材料的吸附性能。
该方法具有简单快捷、成本较低的优点,适用于吸附速度较快的材料。
2.固定床吸附实验法固定床吸附实验法是一种更接近实际工作条件的测试方法。
该方法将待测材料填充在固定床中,通过控制流体的流速和浓度,来测定材料对待测物质的吸附效果。
固定床吸附实验法可以考察材料的吸附容量、吸附速率以及吸附平衡等性能指标,同时还能模拟实际应用中的流体动力学条件。
3.动态吸附实验法动态吸附实验法是一种较为精确的测试方法。
该方法对待测材料进行连续进样,实时监测出样品中待测物质的浓度变化,通过对吸附过程的分析,得出材料的吸附性能。
动态吸附实验法适用于吸附速率较慢的材料,可以更准确地评估吸附容量、吸附速率以及吸附动力学等性能。
4.计算模拟方法计算模拟方法是一种辅助评估吸附性能的手段。
通过计算机模拟材料的结构和吸附过程,可以得到材料的吸附能力和选择性等性能参数。
计算模拟方法可以提供重要的理论指导,帮助优化实验设计和解释实验结果。
5.表面分析方法表面分析方法是评估材料吸附性能的重要手段之一。
通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶红外光谱(FTIR)等技术,可以观察材料的表面形貌和结构,进而推测材料的吸附机理和性能。
总结起来,以上所述的几种材料吸附性能测试方法各有优劣,可以根据待测材料的性质和实际需求来选择合适的方法。
对于快速评估吸附性能,批量吸附实验法是一个不错的选择;固定床吸附实验法则更加适用于模拟实际工作条件;动态吸附实验法则可以提供更精确的吸附性能数据;计算模拟方法和表面分析方法则可以提供更深入的分析和解释。
甘薯吸附剂固定床吸附脱水制燃料乙醇及技术思考近年来,随着环保意识的不断提高和对可再生能源的追求,生物质能源成为了人们关注的焦点。
而燃料乙醇作为生物质能源的重要代表之一,其生产技术已越来越受到关注。
在燃料乙醇的制备过程中,脱水是一个重要的步骤,而甘薯吸附剂固定床吸附脱水工艺是一种新型的处理方式。
一、甘薯吸附剂固定床吸附脱水工艺1、吸附剂的选择与制备甘薯是一种常见的食品,其淀粉质含量较高。
由此,科学家们将其提取出来制备成吸附剂,用于脱除燃料乙醇中的水分。
研究表明,甘薯吸附剂可以有效地防止燃料乙醇中水分的存在,从而提高燃料乙醇的纯度和热值。
其制备主要包括以下步骤:(1)将甘薯放入清洁的大碗中,倒入适量的水搅拌均匀。
(2)将搅拌好的甘薯浆过滤出淀粉质。
(3)将过滤后的甘薯淀粉质除去杂质,将其晒干。
(4)将干燥的甘薯淀粉质煮沸15分钟,冷却后迅速过滤,得到甘薯吸附剂。
2、吸附床的设计与搭建甘薯吸附剂用于固定床吸附脱水制燃料乙醇,需要设置吸附床。
通常,吸附床由不锈钢或陶瓷制成,可以有效抵御吸附剂的腐蚀和高温。
吸附床的大小和形状可以根据生产需求调整。
然后,将甘薯吸附剂填充到吸附床中,形成吸附剂层。
3、吸附脱水过程甘薯吸附剂固定床吸附脱水制燃料乙醇的过程大致分为两个步骤:吸附与脱附。
首先,燃料乙醇进入吸附床,与吸附剂中的水分相互扩散,水分得以被吸附剂吸附。
当吸附剂中的燃料乙醇纯度达到要求时,废水排出,同时强制通入流经吸附剂层的干燥空气,通过脱附过程,将吸附剂中的水分去除,使甘薯吸附剂再次具有吸附能力,与此同时干燥空气中的水分也被带走。
二、技术思考甘薯吸附剂固定床吸附脱水制燃料乙醇技术具有以下优点:1、非常适合小规模课题研究:该技术相对于其他大型设备,使用成本较低,适合小型的生产实验室等研究场所的学者使用,是一种非常高效的工具。
2、节约能源,环保节能:甘薯吸附剂能够循环使用,不会造成环境污染,同时固定床吸附脱水的工作过程,则使得设备节约大量的能源,能在更短的时间内取得更好的生产效益。
一、实验原理1、活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。
在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。
有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。
当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。
如果在一定压力和温度条件下,用 m 克活性炭吸附溶液中的溶质,被吸附的溶质为 x 毫克,则单位重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算:q e=x/m (1) q e的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。
一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,q e值就比较大。
描述吸附容量q e与吸附平衡时溶液浓度 C 的关系有Langmuir、BET 和 Fruendlieh 吸附等温式。
在水和污水处理常用 Fruendlich 表达式来比较不同温度和不同溶液浓度时的活性炭的吸附容量,即q e=KC1/n (2)式中:q e——吸附容量(mg/g);K——与吸附比表面积、温度有关的系数;n——与温度有关的常数,n>1;C——吸附平衡时的溶液浓度(mg/L)。
这是一个经验公式,通常用图解方法求出 K,n 的值.为了方便易解,往往将式(2)变换成线性对数关系式Lgq e=lg(C0-C/m)=lgK+lgC/n (3)式中:C0——水中被吸附物质原始浓度(mg/L);C——被吸附物质的平衡浓度(mg/L);m——活性炭投加量(g/L)。
固定床吸附课程设计书一、教学目标本课程的教学目标是让学生掌握固定床吸附的基本原理、设计和应用。
具体包括:1.知识目标:学生能够理解吸附的基本概念、吸附等温线、吸附剂的选择等;2.技能目标:学生能够运用固定床吸附理论进行简单的设计和计算;3.情感态度价值观目标:培养学生对环境保护和资源再利用的重视,增强学生的创新意识和实践能力。
二、教学内容本课程的教学内容主要包括:1.吸附的基本原理:吸附剂的种类、吸附等温线、吸附动力学;2.固定床吸附设计:吸附剂的装填、吸附柱的设计、操作条件优化;3.固定床吸附应用:水处理、空气净化、化学品的分离与提纯。
三、教学方法本课程采用多种教学方法,包括:1.讲授法:讲解吸附的基本原理、吸附设计的方法和应用案例;2.讨论法:引导学生探讨吸附过程中的问题,培养学生的思考和解决问题的能力;3.案例分析法:分析实际应用案例,使学生更好地理解吸附技术的原理和应用;4.实验法:进行吸附实验,让学生亲身感受吸附过程,提高学生的实践能力。
四、教学资源本课程的教学资源包括:1.教材:《固定床吸附技术》;2.参考书:相关领域的学术论文、技术手册;3.多媒体资料:教学PPT、视频资料;4.实验设备:吸附柱、吸附剂、实验仪器等。
教学资源的选择和准备应根据教学内容和教学方法的需要进行,以确保教学的顺利进行和学生的学习效果。
五、教学评估本课程的评估方式包括以下几个方面:1.平时表现:包括课堂参与、提问回答、小组讨论等,占总评的30%;2.作业:包括课后习题、小论文等,占总评的20%;3.考试:包括期中考试和期末考试,占总评的50%。
评估方式要求客观、公正,能够全面反映学生的学习成果。
同时,教师应及时给予反馈,帮助学生提高。
六、教学安排本课程的教学安排如下:1.教学进度:按照教材的章节顺序进行,确保每个章节都有足够的教学时间;2.教学时间:每周两次课,每次课90分钟,共18周;3.教学地点:实验室和教室。
固定床吸附过程《固定床吸附过程那些事儿》嘿,朋友们!今天咱来聊聊固定床吸附过程。
这可是个挺有意思的玩意儿呢!想象一下,有一个大罐子,里面装满了特别的小颗粒,就像一群小小的卫士在那排排站。
这些小颗粒可神奇了,它们能把一些我们不想要的东西给抓住。
比如说,空气里有一些难闻的气味呀,或者水里有一些杂质呀,这些小颗粒就能发挥大作用啦。
它们就像一个个小魔术贴,把那些不好的东西粘住,让干净的空气或者水通过。
在这个过程中啊,这些小颗粒就像勤劳的小蜜蜂,一刻不停地工作着。
它们可不会偷懒哦,一直坚守着自己的岗位。
而且呀,不同的小颗粒有不同的本领呢。
有的擅长抓这个,有的擅长抓那个。
就好像我们每个人都有自己的特长一样。
你知道吗,固定床吸附过程就像是一场无声的战斗。
那些污染物是敌人,小颗粒就是我们的勇士。
它们勇敢地冲上去,和敌人展开搏斗,把敌人一个一个地消灭掉。
有时候呢,这些小颗粒工作久了也会累呀。
就像我们工作了一天会疲惫一样。
这时候就得给它们来个“大休息”,让它们恢复一下体力,重新变得生龙活虎,继续为我们战斗。
还有哦,这个过程也不是随随便便就能进行的。
就像我们做事情要有计划一样,它也得好好安排。
比如说,要选择合适的小颗粒呀,要控制好温度呀、压力呀等等这些条件。
我记得有一次,我在一个工厂里看到了这个固定床吸附的装置,哇,那可真是个大家伙!工人们都很认真地在操作它,就像在照顾一个宝贝似的。
总的来说呢,固定床吸附过程是个很了不起的过程。
它能让我们的环境变得更干净、更美好。
它就像一个默默奉献的英雄,在我们看不见的地方守护着我们。
所以呀,我们要好好珍惜它,让它能一直为我们服务下去。
让我们一起为固定床吸附过程点赞吧!。
活性炭固定床吸脱附的工作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!活性炭固定床吸附脱附是一种常见的空气净化和废水处理技术,主要通过活性炭的吸附作用去除有害物质。
第四节固定床吸附过程的计算固定床吸附器结构简单,但由于气体吸附过程是气—固传质,对任一时间或任一颗粒来说都是不稳定过程,因此固定床吸附器的吸附操作是非稳态的,计算过程非常复杂,一般要涉及到物料衡算方程、吸附等温线方程和传热速率方程及热量衡算。
而在气态污染物的吸附净化设计中,由于所涉及到的物系是低浓度的气态混合物,且气量一般比较大,吸附热相对较小,因此可近似地按等温过程处理,可不考虑传热速率方程和热量方程(升温脱附除外)。
这样在设计过程中可采用简化了的方法进行近似计算,计算时往往提出如下假设:(1)气相中吸附质浓度低;(2)吸附操作在等温下进行;(3)传质区通过整个床层时长度保持不变;(4)床层长度比传质区长度大得多。
这些简化限制条件对目前工业上应用的吸附器来说,一般是符合的。
设计中较常采用的是希洛夫近似计算法和透过曲线计算法。
计算过程一般是在吸附剂的选择、吸附设备的选择和吸附效率确定之后进行的。
设计计算的任务是求出吸附器的床层直径和高度,吸附剂的用量,吸附器的一次循环工作时间,床层压降等。
下面首先介绍固定床吸附器的吸附过程。
一、固定床吸附器的吸附过程在固定床吸附器的吸附操作中,一般是混合气体从床层的一端进入,净化了的气体从床层的另一端排出。
因此,首先吸附饱和的应是靠近进气口一端的吸附剂床层。
随着吸附的进行,整个床层会逐渐被吸附质饱和,床层末端流出污染物,此时吸附应该停止,完成了一个吸附过程。
为了描述吸附过程,提出了以下概念。
(一)吸附负荷曲线与透过曲线1. 吸附负荷曲线在实际操作中,对于一个固定床吸附器,气体以等速进入床层,气体中的吸附质就会按某种规律被吸附剂所吸附。
吸附一定时间后,吸附质在吸附剂上就会有一定的浓度,我们把这一定的浓度称为该时刻的吸附负荷。
如果把这一瞬间床层内不同截面上的吸附负荷对床层的长度(高度)作一条曲线,即得吸附负荷曲线。
也就是说,吸附负荷曲线是吸附床层内吸附质浓度x随床层长度z变化的曲线。
第四节固定床吸附过程的计算固定床吸附器结构简单,但由于气体吸附过程是气—固传质,对任一时间或任一颗粒来说都是不稳定过程,因此固定床吸附器的吸附操作是非稳态的,计算过程非常复杂,一般要涉及到物料衡算方程、吸附等温线方程和传热速率方程及热量衡算。
而在气态污染物的吸附净化设计中,由于所涉及到的物系是低浓度的气态混合物,且气量一般比较大,吸附热相对较小,因此可近似地按等温过程处理,可不考虑传热速率方程和热量方程(升温脱附除外)。
这样在设计过程中可采用简化了的方法进行近似计算,计算时往往提出如下假设:(1)气相中吸附质浓度低;(2)吸附操作在等温下进行;(3)传质区通过整个床层时长度保持不变;(4)床层长度比传质区长度大得多。
这些简化限制条件对目前工业上应用的吸附器来说,一般是符合的。
设计中较常采用的是希洛夫近似计算法和透过曲线计算法。
计算过程一般是在吸附剂的选择、吸附设备的选择和吸附效率确定之后进行的。
设计计算的任务是求出吸附器的床层直径和高度,吸附剂的用量,吸附器的一次循环工作时间,床层压降等。
下面首先介绍固定床吸附器的吸附过程。
一、固定床吸附器的吸附过程在固定床吸附器的吸附操作中,一般是混合气体从床层的一端进入,净化了的气体从床层的另一端排出。
因此,首先吸附饱和的应是靠近进气口一端的吸附剂床层。
随着吸附的进行,整个床层会逐渐被吸附质饱和,床层末端流出污染物,此时吸附应该停止,完成了一个吸附过程。
为了描述吸附过程,提出了以下概念。
(一)吸附负荷曲线与透过曲线1. 吸附负荷曲线在实际操作中,对于一个固定床吸附器,气体以等速进入床层,气体中的吸附质就会按某种规律被吸附剂所吸附。
吸附一定时间后,吸附质在吸附剂上就会有一定的浓度,我们把这一定的浓度称为该时刻的吸附负荷。
如果把这一瞬间床层内不同截面上的吸附负荷对床层的长度(高度)作一条曲线,即得吸附负荷曲线。
也就是说,吸附负荷曲线是吸附床层内吸附质浓度x随床层长度z变化的曲线。
活性炭固定床吸附硝基苯废水性能研究活性炭是一种具有高度吸附性能的材料,在吸附废水处理中被广泛应用。
本研究旨在探讨活性炭固定床对硝基苯废水的吸附性能,并研究吸附过程中的影响因素。
本研究首先制备了活性炭固定床实验装置,并使用硝基苯废水作为吸附剂。
实验过程中,我们对活性炭床高度、流速和初始质量浓度进行了变化,并记录了吸附过程的数据。
实验结果表明,随着活性炭床高度的增加,床内吸附量也随之增加。
当床高度为10 cm时,吸附量最高。
流速对吸附量的影响并不明显,在0.5 cm/s至2.5 cm/s范围内,吸附量变化不大。
初始质量浓度越高,吸附量越大,但当质量浓度达到一定值后,吸附量开始减少。
进一步分析数据发现,活性炭固定床对硝基苯废水的吸附符合Langmuir等温吸附模型。
Langmuir模型可以给出吸附容量和吸附平衡常数两个重要参数,并得出达到平衡吸附所需的时间。
我们还研究了氧化剂对活性炭固定床吸附硝基苯废水性能的影响。
实验结果显示,加入适量的氧化剂可以显著提高吸附量。
这是因为氧化剂能够增加活性炭表面上活性位点的数量,提高吸附效率。
综合以上结果,我们可以得出以下结论:活性炭固定床对硝基苯废水具有良好的吸附性能,可以有效去除废水中的硝基苯。
在实际应用中,应注意控制活性炭床高度和流速,并加入适量的氧化剂以提高吸附效果。
Langmuir等温吸附模型可以用于预测吸附过程和优化废水处理。
在进一步的研究中,可以探索其他吸附剂或改进活性炭固定床结构,以提高吸附效率和减少废水处理成本。
还可以研究吸附后的活性炭再生方法,以实现循环使用,减少资源浪费。