第四章_遗传算法
- 格式:ppt
- 大小:546.00 KB
- 文档页数:37
遗传算法为了增加实用性,直接使用代码进行讲解;通过前面两章,我们知道交叉的方式有:单点交叉、多点交叉、均匀交叉、算术交叉、部分映射交叉【private List<Integer> singlePointCrossover(List<Integer> parent1, List<Integer> parent2) {// 单点交叉int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = 0; i < parent2.size(); i++) {int gene = parent2.get(i);if (!child.contains(gene)) {for (int j = 0; j < child.size(); j++) {if (child.get(j) == -1) {child.set(j, gene);break;}}}}return child;}// 交叉操作(多点交叉)private List<Integer> multiPointCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(parent1.subList(startPos, endPos));for (Integer gene : parent2) {if (!child.contains(gene)) {int insertionIndex = random.nextInt(child.size() + 1);child.add(insertionIndex, gene);}}return child;}// 交叉操作(均匀交叉)private List<Integer> uniformCrossover(List<Integer> parent1, List<Integer> parent2) { List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {if (random.nextBoolean()) {child.add(parent1.get(i));} else {child.add(parent2.get(i));}}return child;}// 交叉操作(算术交叉)private List<Integer> arithmeticCrossover(List<Integer> parent1, List<Integer> parent2) {List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {int gene1 = parent1.get(i);int gene2 = parent2.get(i);child.add((gene1 + gene2) / 2);}return child;}// 交叉操作(部分映射交叉)private List<Integer> partiallyMappedCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = startPos; i <= endPos; i++) {int gene = parent2.get(i);int index = parent2.indexOf(gene);while (child.get(index) != -1) {gene = parent2.get(index);index = parent2.indexOf(gene);}child.set(index, parent2.get(i));}for (int i = 0; i < parent1.size(); i++) {if (child.get(i) == -1) {child.set(i, parent2.get(i));}}return child;}】。
第四章遗传算法在经济活动中,很多实际优化问题涉及到大量参数的优化,或者寻找问题的全局最优解。
这些问题不仅仅涉及大量计算,而且往往难以给出精确的数学模型,或者有了数学模型,也难以求出解析解来。
有的搜索问题还面临着组合爆炸,常规算法无法应付。
这些困难使得一些学者们寻求一种适于大规模并行且具有某些智能特征如自组织、自适应、自学习等的算法。
遗传算法(Genetic Algorithm, GA)就是一种伴随解决此类复杂的、非线性问题而发展起来的广为应用的、高效的随机全局搜索与优化的自适应智能算法。
第一节引言一、遗传算法的生物学意义遗传算法的生物学基础是达尔文进化论和孟德尔遗传变异理论。
根据达尔文进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。
生物种群从低级、简单的类型逐渐发展成为高级、复杂的类型。
各种生物要生存下去就必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。
具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少,直至消亡。
达尔文把这一过程和现象叫做“自然选择、适者生存”。
按照孟德尔遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。
不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。
经过优胜劣汰的自然选择,适应值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的基本规律。
现代遗传学则对基因的本质、功能、结构、突变和调控进行了深入探讨,开辟了遗传工程研究的新领域。
在一定的环境影响下,生物物种通过自然选择、基因交换和变异等过程进行繁殖生长,构成了生物的整个进化过程。
生物进化过程的发生需要四个基本条件:(1)存在由多个生物个体组成的种群;(2)生物个体之间存在着差异,或群体具有多样性;(3)生物能够自我繁殖;(4)不同个体具有不同的环境生存能力,具有优良基因结构的个体繁殖能力强,反之则弱。